Skip to content
2000
Volume 20, Issue 2
  • ISSN: 1574-8855
  • E-ISSN: 2212-3903

Abstract

Cancer is a complex and high-mortality disease in the clinic. Cancer metastasis leads to most cancer deaths. The therapeutics for cancer metastasis are greatly unsatisfactory now. Despite different types of antimetastatic agents and drugs have been reported, 90% of patients die in 5 years after metastatic nodules at secondary sites have been found.

Many pharmacologic challenges and opportunities for current metastasis therapies are presented. To overcome the dilemma and shortcomings of antimetastatic treatment, medical, chemical, pharmaceutical, methodological and technical issues are integrated and highlighted. To introduce up-to-date knowledge and insights into drug targeting and pharmaceutical features and clinical paradigms, relevant drug design insights are discussed—including different pathological modes, diagnosis advances, metastatic cascade, tumor plasticity, variety of animal models, therapeutic biomarkers, computational tools and cancer genomics. Integrated knowledge, systems and therapeutics are focused.

In summary, medicinal comparison, pharmaceutical innovation and clinical strategies should be increasingly investigated.

Loading

Article metrics loading...

/content/journals/cdth/10.2174/0115748855284405231212051251
2024-01-24
2024-12-27
Loading full text...

Full text loading...

References

  1. SiegelR.L. MillerK.D. WagleN.S. JemalA. Cancer statistics, 2023.CA Cancer J. Clin.2023731174810.3322/caac.2176336633525
    [Google Scholar]
  2. AliI. Rahis-ud-din, Saleem K, Aboul-Enein HY, Rather A. Social aspects of cancer genesis.Cancer Ther.201181614
    [Google Scholar]
  3. GuptaG.P. MassaguéJ. Cancer metastasis: Building a frame-work.Cell2006127467969510.1016/j.cell.2006.11.00117110329
    [Google Scholar]
  4. LuD.Y. XuB. LuT.R. Anticancer drug development, evaluative architecture.Lett. Drug Des. Discov.202323
    [Google Scholar]
  5. AhujaV. New drug approvals by FDA from 2013-2017.Environ. Toxicol. Pharmacol.201869772774
    [Google Scholar]
  6. LambertA.W. PattabiramanD.R. WeinbergR.A. Emerging bio-logical principles of metastasis.Cell2017168467069110.1016/j.cell.2016.11.03728187288
    [Google Scholar]
  7. LimE.J. KangJ.H. KimY.J. KimS. LeeS.J. ICAM-1 promotes cancer progression by regulating SRC activity as an adapter protein in colorectal cancer.Cell Death Dis.202213441710.1038/s41419‑022‑04862‑135487888
    [Google Scholar]
  8. FaresJ. FaresM.Y. KhachfeH.H. SalhabH.A. FaresY. Molecular principles of metastasis: A hallmark of cancer revisited.Signal Transduct. Target. Ther.2020512810.1038/s41392‑020‑0134‑x32296047
    [Google Scholar]
  9. ParkerA.L. BenguiguiM. FornettiJ. Current challenges in metastasis research and future innovation for clinical translation.Clin. Exp. Metastasis202239226327710.1007/s10585‑021‑10144‑535072851
    [Google Scholar]
  10. LuD-Y. LuT-R. Anti-metastatic drug development, overview and perspectives.HPMIJ202362455110.15406/hpmij.2023.06.00217
    [Google Scholar]
  11. LuD.Y. LuT.R. WuH.Y. CaoS. Cancer metastasis treatments.Curr. Drug Ther.201381242910.2174/1574885511308010003
    [Google Scholar]
  12. RuggeriB.A. CampF. MiknyoczkiS. Animal models of disease: Preclinical animal models of cancer and their applications and utility in drug discovery.Biochem. Pharmacol.201487115016110.1016/j.bcp.2013.06.02023817077
    [Google Scholar]
  13. Herter-SprieG.S. KungA.L. WongK.K. New cast for a new era: Preclinical cancer drug development revisited.J. Clin. Invest.201312393639364510.1172/JCI6834023999436
    [Google Scholar]
  14. LuD.Y. LuT.R. XuB. Anti-metastatic drug development, work out towards new direction.Med. Chem.201887192196
    [Google Scholar]
  15. HellmannK. BurrageK. Control of malignant metastases by ICRF l59.Nature1969224521627327510.1038/224273a05344607
    [Google Scholar]
  16. HermanE.H. WitialD.T. HellmannK. WaravdekarV.S. Biologi-cal properties of ICRF-159 and related bis(dioxopiperazine) compounds.Adv. Pharmacol.19821924929010.1016/S1054‑3589(08)60025‑36819768
    [Google Scholar]
  17. KessenbrockK. PlaksV. WerbZ. Matrix metalloproteinases: Regulators of the tumor microenvironment.Cell20101411526710.1016/j.cell.2010.03.01520371345
    [Google Scholar]
  18. TarabolettiG. MargosioB. Antiangiogenic and antivascular therapy for cancer.Curr. Opin. Pharmacol.20011437838410.1016/S1471‑4892(01)00065‑011710736
    [Google Scholar]
  19. FolkmanJ. Angiogenesis.Annu Rev Med200657111810.1146/annurev.med.57.121304.13130616409133
    [Google Scholar]
  20. WongM.H. StocklerM.R. PavlakisN. Bisphosphonates and other bone agents for breast cancer.Cochrane Database Syst. Rev.2012152CD00347410.1002/14657858.cd003474pmed322336790
    [Google Scholar]
  21. BattafaranoG. RossiM. MaramponF. Del FattoreA. Cellular and molecular medication of bone metastatic lesion.Int. J. Mol. Sci.2018196170910.3390/ijms1906170929890702
    [Google Scholar]
  22. LuD.Y. ChenX.L. DingJ. Treatment of solid tumors and metastases by fibrinogen-targeted anticancer drug therapy.Med. Hypotheses200768118819310.1016/j.mehy.2006.06.04516956730
    [Google Scholar]
  23. BobekV. Anticoagulant and fibrinolytic drugs - possible agents in treatment of lung cancer?Anticancer. Agents Med. Chem.201212658058810.2174/18715201280061768722292773
    [Google Scholar]
  24. RothwellP.M. FowkesF.G.R. BelchJ.F.F. OgawaH. WarlowC.P. MeadeT.W. Effect of daily aspirin on long-term risk of death due to cancer: analysis of individual patient data from random-ised trials.Lancet20113779759314110.1016/S0140‑6736(10)62110‑121144578
    [Google Scholar]
  25. FidlerI.J. Macrophages and metastasis--a biological approach to cancer therapy.Cancer Res.19854510471447262992766
    [Google Scholar]
  26. LuD.Y. XiY.C. Antimetastatic therapies according to metastatic cascade.Adv. Pharmacoepidemiol. Drug Saf.201213e10710.4172/2167‑1052.1000e107
    [Google Scholar]
  27. YarlaNS SukochevaO PelusoI PuttaS BramhachariPV YadalaK Targeting arachidonic acid pathway—associated NF-kB in pancreatic cancer Role of Transcription Factors in Gastro-intestinal Malignancies.401409
    [Google Scholar]
  28. LuD. CaoJ. Structural aberrations of cellular sialic acids and their functions in cancer metastases.J Shanghai Univ20015216417010.1007/s11741‑001‑0016‑6
    [Google Scholar]
  29. LuD.Y. LuT.R. WuH.Y. Antimetastatic therapy targeting aberrant sialylation profiles in cancer cells.Drugs Ther Stud2011111210.4081/dts.2011.e12
    [Google Scholar]
  30. LuD.Y. LuT.R. WuH.Y. Development of antimetastatic drugs by targeting tumor sialic acids.Sci. Pharm.201280349750810.3797/scipharm.1205‑0123008802
    [Google Scholar]
  31. VajariaB.N. PatelK.R. BegumR. PatelP.S. Sialylation: An avenue to target cancer cells.Pathol. Oncol. Res.201622344344710.1007/s12253‑015‑0033‑626685886
    [Google Scholar]
  32. LuD.Y. LuT.R. DingJ. Anti-metastatic therapy at aberrant sialylation in cancer cells, a potential hotspot.ClinProteomBioinform201721118
    [Google Scholar]
  33. MunkleyJ. ScottE. Targeting aberrant sialylation to treat cancer.Medicines20196410210.3390/medicines604010231614918
    [Google Scholar]
  34. ThejassP. KuttanG. Antimetastatic activity of Sulforaphane.Life Sci.200678263043305010.1016/j.lfs.2005.12.03816600309
    [Google Scholar]
  35. LeeS.J. ChungI.M. KimM.Y. ParkK.D. ParkW.W. MoonH.I. Inhibition of lung metastasis in mice by oligonol.Phytother. Res.20092371043104610.1002/ptr.281019288502
    [Google Scholar]
  36. ParasuramanS. Herbal drug discovery: Challenges and perspectives.Curr. Pharmacogenomics Person. Med.2018161636810.2174/1875692116666180419153313
    [Google Scholar]
  37. YakisichJ.S. Challenges and limitations of targeting cancer stem cells and/or the tumour microenvironment.Drugs Ther Stud2012211010.4081/dts.2012.e10
    [Google Scholar]
  38. ParkT.S. DonnenbergV.S. DonnenbergA.D. ZambidisE.T. ZimmerlinL. Dynamic interactions between cancer stem cells and their stromal partners.Curr. Pathobiol. Rep.201421415210.1007/s40139‑013‑0036‑524660130
    [Google Scholar]
  39. MageeJ.A. PiskounovaE. MorrisonS.J. Cancer stem cells: Impact, heterogeneity, and uncertainty.Cancer Cell201221328329610.1016/j.ccr.2012.03.00322439924
    [Google Scholar]
  40. FidlerI.J. The pathogenesis of cancer metastasis: The ‘seed and soil’ hypothesis revisited.Nat. Rev. Cancer20033645345810.1038/nrc109812778135
    [Google Scholar]
  41. NietoM.A. HuangR.Y.J. JacksonR.A. ThieryJ.P. EMT: 2016.Cell20161661214510.1016/j.cell.2016.06.02827368099
    [Google Scholar]
  42. ThieryJ.P. AcloqueH. HuangR.Y.J. NietoM.A. Epithelial-mesenchymal transitions in development and disease.Cell2009139587189010.1016/j.cell.2009.11.00719945376
    [Google Scholar]
  43. LorentzenA. BeckerP.F. KoslaJ. Single cell polarity in liquid phase facilitates tumour metastasis.Nat. Commun.20189188710.1038/s41467‑018‑03139‑629491397
    [Google Scholar]
  44. CristofanilliM. BuddG.T. EllisM.J. Circulating tumor cells, disease progression, and survival in metastatic breast cancer.N. Engl. J. Med.2004351878179110.1056/NEJMoa04076615317891
    [Google Scholar]
  45. YangG. LiX. LiX. Traditional chinese medicine in cancer care: A review of case series published in the chinese literature.Evid. Based Complement. Alternat. Med.201220121810.1155/2012/75104622778776
    [Google Scholar]
  46. KitagishiY. MatsudaS. MinamiA. OnoY. NakanishiA. OguraY. Regulation in cell cycle via p53 and PTEN tumor suppressors.Cancer Stud. Mol. Med.2014111710.17140/CSMMOJ‑1‑101
    [Google Scholar]
  47. LuD.Y. LuT.R. Anticancer activities and mechanisms of bisdioxopiperazine compounds probimane and MST-16.Anticancer. Agents Med. Chem.2010101789110.2174/187152061100901007819845502
    [Google Scholar]
  48. LuD.Y. LuT.R. Antimetastatic activities and mechanisms of bisdioxopiperazine compounds.Anticancer. Agents Med. Chem.201010756457010.2174/18715201079349865420950258
    [Google Scholar]
  49. LuD.Y. DingJ. ChenR.T. XuB. YarlaN.S. LuT.R. Antimetastatic mechanisms of Bisdioxopiperazine compound study, a gateway to success.J Mol Cell Pharmacol201711e101
    [Google Scholar]
  50. LuD.Y. XuB. DingJ. Antitumor effects of two bisdioxopiperazines against two experimental lung cancer models in vivo.BMC Pharmacol.2004413210.1186/1471‑2210‑4‑3215617579
    [Google Scholar]
  51. LuD. HuangM. XuC. Anti-proliferative effects, cell cycle G2/M phase arrest and blocking of chromosome segregation by probimane and MST-16 in human tumor cell lines.BMC Pharmacol.2005511110.1186/1471‑2210‑5‑1115963241
    [Google Scholar]
  52. XuB. DingJ. ZhuH. XuC-H. HuangM. LuD-Y. Medicinal chemistry of probimane and MST-16: comparison of anticancer effects between bisdioxopiperazines.Med. Chem.20062436937510.2174/15734060677772409516848748
    [Google Scholar]
  53. LuD.Y. WuF.G. ZhenZ.M. Different spontaneous pulmonary metastasis inhibitions against lewis lung carcinoma in mice by bisdioxopiperazine compounds of different treatment schedules.Sci. Pharm.2010781132010.3797/scipharm.0910‑1621179367
    [Google Scholar]
  54. JamesS.E. SalsburyA.J. Effect of (plus or minus)-1,2-bis(3,5-dioxopiperazin-1-yl)propane on tumor blood vessels and its relationship to the antimetastatic effect in the Lewis lung carcinoma.Cancer Res.19743448398424814996
    [Google Scholar]
  55. LuD.Y. ChenR.T. LuT.R. The absorption, distributions and excretions of 14C-probimane.Sci. Pharm.201078344545010.3797/scipharm.1005‑0521179357
    [Google Scholar]
  56. LuD.Y. LuD.R. DingJ. Cell biological manifestations of bisdioxopiperazines treatment of human tumor cell lines in culture.Anticancer. Agents Med. Chem.201010965766010.2174/18715201079447984321235436
    [Google Scholar]
  57. ChenF. QiX. QianM. DaiY. SunY. Tackling the tumor microenvironment: What challenge does it pose to anticancer therapies?Protein Cell201451181682610.1007/s13238‑014‑0097‑125185441
    [Google Scholar]
  58. HofbauerL.C. BozecA. RaunerM. JakobF. PernerS. PantelK. Novel approaches to target the microenvironment of bone metastasis.Nat. Rev. Clin. Oncol.202118848850510.1038/s41571‑021‑00499‑933875860
    [Google Scholar]
  59. LitakJ. CzyżewskiW. SzymoniukM. Biological and clinical aspects of metastatic spinal tumors.Cancers20221419459910.3390/cancers1419459936230523
    [Google Scholar]
  60. LeeS.H. ChoiY. Communication between the skeletal and immune systems.Osteoporos. Sarcopenia201512819110.1016/j.afos.2015.09.004
    [Google Scholar]
  61. LuJ. HuD. ZhangY. MaC. ShenL. ShuaiB. Current comprehensive understanding of denosumab (the RANKL neutralizing antibody) in the treatment of bone metastasis of malignant tumors, including pharmacological mechanism and clinical trials.Front. Oncol.202313113382810.3389/fonc.2023.113382836860316
    [Google Scholar]
  62. LuD.Y. XuB. Cancer bone metastasis, experimental study.Acta Orthop Orthopaedica202251213
    [Google Scholar]
  63. LuD.Y. XuB. Bone cancer and metastatic trials, drug treatment.Acta Orthop Orthopaedica202149313310.31080/ASOR.2021.04.0355
    [Google Scholar]
  64. KumarA. Immuno-oncology: Is it a new hope for cancer patients?Cancer Stud. Mol. Med.201521666810.17140/CSMMOJ‑2‑108
    [Google Scholar]
  65. van DenderenB.J.W. ThompsonE.W. The to and fro of tumour spread.Nature2013493743348748810.1038/493487a23344357
    [Google Scholar]
  66. LuD.Y. LuT.R. XuB. Cancer metastasis, a clinical dilemma for therapeutics.Curr. Drug Ther.201611216316910.2174/1574885511666160810143216
    [Google Scholar]
  67. Eslami-SZ. Cortés-HernándezL.E. ThomasF. PantelK. Alix-PanabièresC. Functional analysis of circulating tumour cells: the KEY to understand the biology of the metastatic cascade.Br. J. Cancer2022127580081010.1038/s41416‑022‑01819‑135484215
    [Google Scholar]
  68. PantelK. Alix-PanabièresC. Crucial roles of circulating tumor cells in the metastatic cascade and tumor immune escape: Biology and clinical translation.J. Immunother. Cancer20221012e00561510.1136/jitc‑2022‑00561536517082
    [Google Scholar]
  69. DvorakH.F. Tumor stroma, tumor blood vessels, and anti-angiogenesis therapy.Cancer J.201521423724310.1097/PPO.000000000000012426222073
    [Google Scholar]
  70. DvorakH.F. WeaverV.M. TlstyT.D. BergersG. Tumor microenvironment and progression.J. Surg. Oncol.2011103646847410.1002/jso.2170921480238
    [Google Scholar]
  71. LuD.Y. LuT.R. ChenX.L. XuB. DingJ. Plasma fibrinogen concentrations in patients with solid tumor and therapeutic improvements by combining anticoagulants and fibrinolytical agents.Adv. Pharmacoepidemiol. Drug Saf.201544e133
    [Google Scholar]
  72. GoodmanS.L. PicardM. Integrins as therapeutic targets.Trends Pharmacol. Sci.201233740541210.1016/j.tips.2012.04.00222633092
    [Google Scholar]
  73. BendasG. BorsigL. Cancer cell adhesion and metastasis: Selectins, integrins, and the inhibitory potential of heparins.Int. J. Cell Biol.2012201211010.1155/2012/67673122505933
    [Google Scholar]
  74. LuD.Y. LuT.R. ChenE.H. DingJ. XuB. Tumor fibrin/fibrinogen matrix as a unique therapeutic target for pulmonary cancer growth and metastases.Clin. Res. Pulmonol.2015311027
    [Google Scholar]
  75. PastòA. ConsonniF.M. SicaA. Influence of innate immunity on cancer stemness.Int. J. Mol. Sci.2020219335210.3390/ijms2109335232397392
    [Google Scholar]
  76. FrenzelT. HoffmannB. SchmitzR. BethgeA. SchumacherU. WedemannG. Radiotherapy and chemotherapy change vessel tree geometry and metastatic spread in a small cell lung cancer xenograft mouse tumor model.PLoS One20171211e018714410.1371/journal.pone.018714429107953
    [Google Scholar]
  77. Sims-MourtadaJ. OpdenakerL.M. DavisJ. WuC. Long-term, low dose genistein decreases stem cell populations and sensitizes inflammatory breast cancer cell lines to radiation.Cancer Stud. Mol. Med.201521606510.17140/CSMMOJ‑2‑107
    [Google Scholar]
  78. PietrobonoS. SteccaB. Aberrant sialylation in cancer: Biomarker and potential target for therapeutic intervention.Cancers2021139201410.3390/cancers1309201433921986
    [Google Scholar]
  79. HuB DuQ ShenKP XuL Principles and scientific basis of traditional cancer treatments.J Bioanalys Biomed2012S6: 005
    [Google Scholar]
  80. LuD.Y. LuT.R. CheJ.Y. WuH.Y. Old theories revisited on cancer assistant therapy.Int J Medical and Health Sciences Res2014155057
    [Google Scholar]
  81. ShuL. CheungK.L. KhorT.O. ChenC. KongA.N. Phytochemicals: Cancer chemoprevention and suppression of tumor onset and metastasis.Cancer Metastasis Rev.201029348350210.1007/s10555‑010‑9239‑y20798979
    [Google Scholar]
  82. IorioF. KnijnenburgT.A. VisD.J. A landscape of pharmacogenomic interactions in cancer.Cell2016166374075410.1016/j.cell.2016.06.01727397505
    [Google Scholar]
  83. AliI. HaqueA. WaniW.A. SaleemK. Al Za’abiM. Analyses of anticancer drugs by capillary electrophoresis: A review.Biomed. Chromatogr.201327101296131110.1002/bmc.295323843248
    [Google Scholar]
  84. AliI. LoneM.N. AlothmanZ.A. AlwarthanA. Insights into the pharmacology of new heterocycles embedded with oxopyrrolidine rings: DNA binding, molecular docking, and anticancer studies.J. Mol. Liq.201723439140210.1016/j.molliq.2017.03.112
    [Google Scholar]
  85. VetvickaV. FusekM. Procathepsin D as a tumor marker, anti-cancer drug or screening agent.Anticancer. Agents Med. Chem.201212217217510.2174/18715201279901490422292775
    [Google Scholar]
  86. ChenL. YangS. JakoncicJ. ZhangJ.J. HuangX.Y. Migrastatin analogues target fascin to block tumour metastasis.Nature201046472911062106610.1038/nature0897820393565
    [Google Scholar]
  87. ValastyanS. ReinhardtF. BenaichN. A pleiotropically acting microRNA, miR-31, inhibits breast cancer metastasis.Cell200913761032104610.1016/j.cell.2009.03.04719524507
    [Google Scholar]
  88. IiizumiM. LiuW. PaiS.K. FurutaE. WatabeK. Drug development against metastasis-related genes and their pathways: A rationale for cancer therapy.Biochim. Biophys. Acta2008178628710418692117
    [Google Scholar]
  89. AliI. SaleemK. UddinR. HaqueA. El-AzzounyA. Natural products: Human friendly anti-cancer medications.Egypt Pharm J201092133179
    [Google Scholar]
  90. LuD.Y. LuT.R. LuY. YarlaN.S. WuH.Y. Discover natural chemical drugs in modern medicines.Metabolomics201663181
    [Google Scholar]
  91. LuD.Y. LuT.R. Herbal medicine in new era.Am. J. Hosp. Palliat. Care20193412513010.15406/hpmij.2019.03.00165
    [Google Scholar]
  92. LuD.Y. LuT.R. YarlaN.S. Natural drug cancer treatments, strategies from herbal medicine to chemical or biological drugs.Stud Nat Prod Chem2020669111510.1016/B978‑0‑12‑817907‑9.00004‑0
    [Google Scholar]
  93. LuD.Y. LuT.R. Drug discoveries from natural resources.J Primary Health Care & General Practice20193128
    [Google Scholar]
  94. PattanayakS. Anti-cancer plants and their therapeutic use as succulent biomedicine capsules.Explor Anim Med Res202313015010.52635/eamr/13(S)01‑50
    [Google Scholar]
  95. LuD.Y. LuT.R. Knowledge of the molecular signaling pathways improves the chances of treatment of gastro-intestinal stromal tumors.Can Stud Mol Med Open202221697110.30654/MJPS.10011
    [Google Scholar]
  96. GargP.K. Potential of molecular imaging to advance molecular medicine.Cancer Stud. Mol. Med.201731e3e410.17140/CSMMOJ‑3‑e004
    [Google Scholar]
  97. de MacedoJ.E. Knowledge of the molecular signaling pathways improves the chances of treatment of gastro-intestinal stromal tumors.Cancer Stud. Mol. Med.201521697110.17140/CSMMOJ‑2‑109
    [Google Scholar]
  98. YuiY. KumaiJ. WatanabeK. WakamatsuT. SasagawaS. Lung fibrosis is a novel therapeutic target to suppress lung metastasis of osteosarcoma.Int. J. Cancer2022151573975110.1002/ijc.3400835342929
    [Google Scholar]
  99. JelgersmaC. VajkoczyP. How to target spinal metastasis in experimental research: An overview of currently used experimental mouse model and future prospects.Int. J. Mol. Sci.20212211542010.3390/ijms2211542034063821
    [Google Scholar]
  100. SurayaR. NaganoT. KobayashiK. NishimuraY. Microbiome as a target for cancer therapy.Integr. Cancer Ther.20201910.1177/153473542092072132564632
    [Google Scholar]
  101. MalaviyaA. PaariK.A. MalviyaS. KondapalliV. GhoshA. SamuelR.A. Gut microbiota and cancer correlates. In: Probiotic Research in Therapeutics.Springer202112710.1007/978‑981‑15‑8214‑1_1
    [Google Scholar]
  102. HollingsheadM.G. GreenbergN. Gottholm-AhaltM. ROADMAPS: An online database of response data, dosing regimens, and toxicities of approved oncology drugs as single agents to guide preclinical in vivo studies.Cancer Res.202282122219222510.1158/0008‑5472.CAN‑21‑415135472132
    [Google Scholar]
  103. EmranT.B. ShahriarA. MahmudA.R. Multidrug resistance in cancer: Understanding molecular mechanisms, immune-prevention and therapeutic approaches.Front. Oncol.20221289165210.3389/fonc.2022.89165235814435
    [Google Scholar]
  104. Dianat-MoghadamH. MahariA. SalahlouR. KhaliliM. AziziM. SadeghzadehH. Immune evader cancer stem cells direct the perspective approaches to cancer immunotherapy.Stem Cell Res. Ther.202213115010.1186/s13287‑022‑02829‑935395787
    [Google Scholar]
  105. ZhuH. LiaoS.D. ShiJ.J. DJ-1 mediates the resistance of cancer cells to dihydroarteminisinin through cancer cells through reactive oxygen species removal.Free Radic. Biol. Med.201471121132
    [Google Scholar]
  106. LuD.Y. LuT.R. XuB. CheJ.Y. ShenY. YarlaN.S. Individualized cancer therapy, future approaches.Curr. Pharmacogenomics Person. Med.201816215616310.2174/1875692116666180821095434
    [Google Scholar]
  107. LuD.Y. LuT.R. CheJ.Y. YarlaN.S. Individualized cancer therapy, what is the next generation?EC Cancer201826286297
    [Google Scholar]
  108. LuD.Y. QuR.X. LuT.R. WuH.Y. Cancer bioinformatics for update anticancer drug developments and personalized therapeutics.Rev. Recent Clin. Trials201712210111010.2174/157488711266617020916144428190390
    [Google Scholar]
  109. LuDY LuTR XuB DingJ Pharmacogenetics of cancer therapy: Breakthroughs from beyond?Future Science OA201514FFSO8010.4155/fso.15.80
    [Google Scholar]
  110. Al-JanabiI. Pharmacogenomics driving precision cancer medicine.AJMS20223486310.54133/ajms.v3i.85
    [Google Scholar]
  111. LuD.Y. LuT.R. Drug sensitivity testing for cancer therapy, technique analysis and trend.Curr Rev Clin Exp Pharmacol202318131110.2174/277243281666621091010464934515020
    [Google Scholar]
  112. LuD.Y. LuT.R. YarlaN.S. XuB. Drug sensitivity testing for cancer therapy, key areas.Rev. Recent Clin. Trials202217429129910.2174/157488711766622081909452835986532
    [Google Scholar]
  113. LuD.Y. LuT.R. Drug sensitivity testing, a unique drug selection strategy.ABST20202596610.1016/j.abst.2020.11.001
    [Google Scholar]
  114. PopovaA.A. LevkinP.A. Precision medicine in oncology: In vitro drug sensitivity and resistance test (DSRT) for selection of personalized anticancer therapy.Adv. Ther.202032190010010.1002/adtp.201900100
    [Google Scholar]
  115. LuD.Y. LuT.R. XuB. YarlaN.S. Anticancer drug developments, challenge from historic perspective.EC Pharmacol Toxicol2018611922936
    [Google Scholar]
  116. LuD.Y. LuT.R. ChenE.H. Keep up the pace of drug development evolution and expenditure.Cancer Rep. Rev.20182516510.15761/CRR.1000165
    [Google Scholar]
  117. MasilamaniK. SenthilnathanB. ManoyogambigaM. Techniques and tools for in silico drug design for the development of anticancer drugs.Int. J. Life Sci. Pharma Res.202313513014810.22376/ijlpr.2023.13.5.P130‑P148
    [Google Scholar]
  118. BeleteT.M. Recent updates on the development of Deuterium-containing drugs for the treatment of cancer.Drug Des. Devel. Ther.2022163465347210.2147/DDDT.S37949636217450
    [Google Scholar]
  119. LuD.Y. LuT.R. ChenE.H. Anticancer drug development, system updating and global participation.Curr. Drug Ther.2017121374510.2174/1574885511666161025122906
    [Google Scholar]
  120. LuD.Y. LuT.R. CaoS. Cancer metastases and clinical therapies.Cell Dev. Biol.201214e11010.4172/2168‑9296.1000e110
    [Google Scholar]
  121. LuD.Y. ChenE.H. WuH.Y. LuT.R. XuB. DingJ. Anticancer drug combination, how far we can go through?Anticancer. Agents Med. Chem.2017171212810.2174/187152061666616040411202827039923
    [Google Scholar]
  122. LuD.Y. LuT.R. YarlaN.S. Drug combination in clinical cancer treatment.Rev. Recent Clin. Trials201712320221128782482
    [Google Scholar]
  123. KomarovaN.L. Mathematical modeling of tumorigenesis: Mission possible.Curr. Opin. Oncol.2005171394310.1097/01.cco.0000143681.37692.3215608511
    [Google Scholar]
  124. KhalilI.G. HillC. Systems biology for cancer.Curr. Opin. Oncol.2005171444810.1097/01.cco.0000150951.38222.1615608512
    [Google Scholar]
  125. WangX.S. LeeS. ZhangH. TangG. WangY. An integral genomic signature approach for tailored cancer therapy using genome-wide sequencing data.Nat. Commun.2022131293610.1038/s41467‑022‑30449‑735618721
    [Google Scholar]
  126. LoeweL. A framework for evolutionary systems biology.BMC Syst. Biol.2009312710.1186/1752‑0509‑3‑2719239699
    [Google Scholar]
  127. WernerH.M.J. MillsG.B. RamP.T. Cancer Systems Biology: A peek into the future of patient care?Nat. Rev. Clin. Oncol.201411316717610.1038/nrclinonc.2014.624492837
    [Google Scholar]
  128. LeeJ. KimY. JinS. Q-omics: Smart software for assisting oncology and cancer research.Mol. Cells2021441184385010.14348/molcells.2021.016934819397
    [Google Scholar]
  129. YadavM. EswariJ.S. Modern paradigm towards potential target identification for antiviral (SARS-nCoV-2) and anticancer lipopeptides: A pharmacophore-based approach.Avicenna J. Med. Biotechnol.2022141707810.18502/ajmb.v14i1.817235509362
    [Google Scholar]
  130. KherlopianA.R. SongT. DuanQ. A review of imaging techniques for systems biology.BMC Syst. Biol.2008217410.1186/1752‑0509‑2‑7418700030
    [Google Scholar]
  131. FranssenL.C. LorenziT. BurgessA.E.F. ChaplainM.A.J. A mathematical framework for modeling the metastatic spread of cancer.Bull. Math. Biol.20198161965201010.1007/s11538‑019‑00597‑x30903592
    [Google Scholar]
  132. GerleeP. JohanssonM. Inferring rates of metastatic dissemination using stochastic network models.PLOS Comput. Biol.2019154e100686810.1371/journal.pcbi.100686830933969
    [Google Scholar]
  133. MayM. Why drug delivery is the key to new medicines.Nat. Med.20222861100110210.1038/s41591‑022‑01826‑y35668179
    [Google Scholar]
  134. LuD. ShenW. CaoJ. LuT. CuiB. FuZ. Effect of magnetized water on the mice given high doses of antineoplastic drugs.J Shanghai Univ199931818310.1007/s11741‑999‑0036‑1
    [Google Scholar]
/content/journals/cdth/10.2174/0115748855284405231212051251
Loading
/content/journals/cdth/10.2174/0115748855284405231212051251
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test