Skip to content
2000
Volume 20, Issue 2
  • ISSN: 1574-8855
  • E-ISSN: 2212-3903

Abstract

Diuretics are advised as the initial course of action for hypertension because they are successful in lowering hypervolemia and resolving electrolyte abnormalities. The most popular diuretics are included with their main characteristics in this summary. The primary line of treatment for common cardiovascular and non-cardiovascular diseases is diuretics. Patients with hypertension, oedema, heart failure, as well as a variety of renal disorders are frequently treated with conventional diuretics. The usage of the various types of diuretics that are now licensed for therapeutic use generally has a favourable risk/benefit ratio. Nevertheless, they are not without drawbacks. Pharmaceutical scientists have thus been working to develop new drugs with an enhanced pharmacological profile. SGLT2 inhibitors (sodium-glucose-linked cotransporter 2 inhibitors) have altered how hypoglycaemic medications are thought to affect heart failure. Despite the presence or absence of diabetes, the sodium-glucose-linked cotransporter subtype 2-inhibitor class, which was first developed as a therapy for T2DM (Type 2 Diabetes mellitus), has shown considerable promise in lowering cardiovascular risk, particularly in relation to heart failure (HF) outcomes. The immediate and substantial improvements observed in clinical studies do not appear to be attributable to the drug's fundamental mechanism, which involves inducing glycosuria and diuresis by blocking receptors in the renal nephron. Among patients with chronic heart failure and cirrhosis, hyponatremia is a risk factor for death.

Loading

Article metrics loading...

/content/journals/cdth/10.2174/0115748855282746231208072819
2024-01-24
2024-12-28
Loading full text...

Full text loading...

References

  1. BaK. SowM.A. MagneJ. Risk of amputation under diuretics in patients with or at risk of lower extremity arterial disease: A systematic review and meta-analysis.Arch. Cardiovasc. Dis.20231166-735736310.1016/j.acvd.2023.04.002
    [Google Scholar]
  2. EllisonD.H. Clinical pharmacology in diuretic use.Clin. J. Am. Soc. Nephrol.20191481248125710.2215/CJN.0963081830936153
    [Google Scholar]
  3. KellerF. HannA. Clinical pharmacodynamics.Clin. J. Am. Soc. Nephrol.20181391413142010.2215/CJN.1096091729769182
    [Google Scholar]
  4. LiM. ZhangS. YangB. Urea transporters identified as novel diuretic drug targets.Curr. Drug Targets202021327928710.2174/138945012066619112910191531782365
    [Google Scholar]
  5. ManolisA. KallistratosM. DoumasM. Torasemide in hypertension and heart failure: Re-inventing loop diuretic therapy.Curr. Pharm. Des.202127232714272110.2174/138161282766621040614293333823773
    [Google Scholar]
  6. TitkoT. PerekhodaL. DrapakI. TsapkoY. Modern trends in diuretics development.Eur. J. Med. Chem.202020811285510.1016/j.ejmech.2020.11285533007663
    [Google Scholar]
  7. GotohK. ShibataH. Aldosterone: History and introduction. In: In Textbook of Nephro-Endocrinology.2nd ed.Academic Press2018465476
    [Google Scholar]
  8. MullensW. DammanK. HarjolaV.P. The use of diuretics in heart failure with congestion — a position statement from the Heart Failure Association of the European Society of Cardiology.Eur. J. Heart Fail.201921213715510.1002/ejhf.136930600580
    [Google Scholar]
  9. FelkerG.M. EllisonD.H. MullensW. CoxZ.L. TestaniJ.M. Diuretic therapy for patients with heart failure: JACC state-of-the-art review.J. Am. Coll. Cardiol.202075101178119510.1016/j.jacc.2019.12.05932164892
    [Google Scholar]
  10. NatsisM. AntzaC. DoundoulakisI. StabouliS. KotsisV. Hypertension in obesity: Novel insights.Curr. Hypertens. Rev.2020161303610.2174/18756506OTgwfNzgcTcVY30987571
    [Google Scholar]
  11. IshikawaS. NaitoS. IimoriS. Loop diuretics are associated with greater risk of sarcopenia in patients with non-dialysis-dependent chronic kidney disease.PLoS One2018132e019299010.1371/journal.pone.019299029447254
    [Google Scholar]
  12. MinegishiS. LuftF.C. TitzeJ. KitadaK. Sodium handling and interaction in numerous organs.Am. J. Hypertens.202033868769410.1093/ajh/hpaa04932198504
    [Google Scholar]
  13. MartinsV.M. ZiegelmannP.K. HelalL. Thiazide diuretics alone or in combination with a potassium-sparing diuretic on blood pressure-lowering in patients with primary hypertension: Protocol for a systematic review and network meta-analysis.Syst. Rev.20221112310.1186/s13643‑022‑01890‑y35135630
    [Google Scholar]
  14. RahimiK. BidelZ. NazarzadehM. Pharmacological blood pressure lowering for primary and secondary prevention of cardiovascular disease across different levels of blood pressure: An individual participant-level data meta-analysis.Lancet2021397102851625163610.1016/S0140‑6736(21)00590‑033933205
    [Google Scholar]
  15. BernardiL.S. JúniorP.N.S. BarretoB.I.F. Determination of hydrochlorothiazide and two major degradation products by stability indicating high performance liquid chromatography.Curr. Pharm. Anal.202016217618010.2174/1573412914666181017151551
    [Google Scholar]
  16. LoutradisC. PapadopoulouE. AngeloudiE. KaragiannisA. SarafidisP. The beneficial hemodynamic actions of SGLT-2 inhibitors beyond the management of hyperglycemia.Curr. Med. Chem.202027396682670210.2174/092986732666619102911171331663470
    [Google Scholar]
  17. GittoM. VillaschiA. FedericiM. CondorelliG. StefaniniG.G. The emerging role of sodium-glucose cotransporter 2 inhibitors in heart failure.Curr. Pharm. Des.202329748149310.2174/138161282966623021714332436799420
    [Google Scholar]
  18. LaiS. MangiulliM. PerrottaA.M. Cardiovascular risk and quality of life in autosomal dominant polycystic kidney disease patients on therapy with tolvaptan: A pilot study.Curr. Vasc. Pharmacol.202119555656410.2174/157016111899920091809480932957887
    [Google Scholar]
  19. Japundžić-ŽigonN. LozićM. ŠarenacO. MurphyD. Vasopressin & oxytocin in control of the cardiovascular system: An updated review.Curr. Neuropharmacol.2019181143310.2174/1570159X1766619071715050131544693
    [Google Scholar]
  20. RodriguezM. HernandezM. CheungpasitpornW. Hyponatremia in heart failure: Pathogenesis and management.Curr. Cardiol. Rev.201915425226110.2174/1573403X1566619030611181230843491
    [Google Scholar]
  21. IovinoM. LiscoG. GiagulliV.A. Angiotensin II-vasopressin interactions in the regulation of cardiovascular functions. evidence for an impaired hormonal sympathetic reflex in hypertension and congestive heart failure.Endocr. Metab. Immune Disord. Drug Targets202121101830184410.2174/187153032166621031912030833745438
    [Google Scholar]
  22. Guerra-TorresX.E. A case report of tuberous sclerosis and autosomal dominant polycystic kidney disease in the era of tolvaptan.Curr Rev Clin Exp Pharmacol202318328429010.2174/277243281766622051716201235585803
    [Google Scholar]
  23. VerbalisJ.G. GoldsmithS.R. GreenbergA. Diagnosis, evaluation, and treatment of hyponatremia: Expert panel recommendations.Am. J. Med.201312610S1S4210.1016/j.amjmed.2013.07.00624074529
    [Google Scholar]
  24. HitomiY. NagatomoY. YukinoM. Characterization of tolvaptan response and its impact on the outcome for patients with heart failure.J. Cardiol.202178428529310.1016/j.jjcc.2021.04.01434039465
    [Google Scholar]
  25. SarafidisP. PellaE. KanbayM. PapagianniA. SGLT-2 inhibitors and nephroprotection in patients with diabetic and non-diabetic chronic kidney disease.Curr. Med. Chem.202330182039206010.2174/092986732966622082512130436028970
    [Google Scholar]
  26. LupsaB.C. InzucchiS.E. Use of SGLT2 inhibitors in type 2 diabetes: Weighing the risks and benefits.Diabetologia201861102118212510.1007/s00125‑018‑4663‑630132031
    [Google Scholar]
  27. WangZ. SunJ. HanR. Efficacy and safety of sodium‐glucose cotransporter‐2 inhibitors versus dipeptidyl peptidase‐4 inhibitors as monotherapy or add‐on to metformin in patients with type 2 diabetes mellitus: A systematic review and meta‐analysis.Diabetes Obes. Metab.201820111312010.1111/dom.1304728656707
    [Google Scholar]
  28. LinD.S.H. WangT.D. BuranakitjaroenP. Angiotensin receptor neprilysin inhibitor as a novel antihypertensive drug: Evidence from Asia and around the globe.J. Clin. Hypertens.202123355656710.1111/jch.1412033305531
    [Google Scholar]
  29. KjeldsenS.E. NarkiewiczK. BurnierM. OparilS. Will we ever use angiotensin receptor neprilysin inhibition (ARNi) for the treatment of hypertension?Blood Press.2019282757610.1080/08037051.2019.158497530806086
    [Google Scholar]
  30. LuX. XinY. ZhuJ. Diuretic resistance prediction and risk factor analysis of patients with heart failure during hos-pitalization.Glob. Heart20221713310.5334/gh.111335837353
    [Google Scholar]
  31. GuoL. FuB. LiuY. HaoN. JiY. YangH. Diuretic resistance in patients with kidney disease: Challenges and opportunities.Biomed. Pharmacother.202315711405810.1016/j.biopha.2022.11405836473405
    [Google Scholar]
  32. JardimS.I. Ramos dos SantosL. AraújoI. A 2018 overview of diuretic resistance in heart failure.Rev. Port. Cardiol.2018371193594510.1016/j.repce.2018.03.02130470451
    [Google Scholar]
  33. CareyR.M. WheltonP.K. New findings bearing on the prevention, detection and management of high blood pressure.Curr. Opin. Cardiol.202136442943510.1097/HCO.000000000000086434059611
    [Google Scholar]
  34. WilliamsB. ManciaG. SpieringW. ESC/ESH Guidelines for the management of arterial hypertension: The Task Force for the management of arterial hypertension of the European Society of Cardiology (ESC) and the European Society of Hypertension (ESH).Eur. Heart J.201839333021310410.1093/eurheartj/ehy33930165516
    [Google Scholar]
  35. SchneiderR.H. SalernoJ. BrookR.D. 2020 International society of hypertension global hypertension practice guidelines – lifestyle modification.J. Hypertens.202038112340234110.1097/HJH.000000000000262533027117
    [Google Scholar]
  36. PerunovicT. GoetzeJ.P. C-Type natriuretic peptide in essential hypertension.JACC Basic Transl. Sci.20238556857110.1016/j.jacbts.2023.02.00737325397
    [Google Scholar]
  37. KotanidouE.P. GizaS. TsinopoulouV.R. VogiatziM. Galli-TsinopoulouA. Diagnosis and management of endocrine hy-pertension in children and adolescents.Curr. Pharm. Des.202026435591560810.2174/138161282666620111310361433185153
    [Google Scholar]
  38. BryniarskiP. NazimekK. MarcinkiewiczJ. Immunomodulatory potential of diuretics.Biology202110121315
    [Google Scholar]
  39. Hammoudi-BendibN. ManamaniL. OuabdesselamS. Ambulatory blood pressure monitoring in the diagnosis and management of arterial hypertension in current medical practice in algeria.Curr. Hypertens. Rev.2021171758210.2174/157340211666620032414422332208121
    [Google Scholar]
  40. FilippiniT. MalavoltiM. WheltonP.K. NaskaA. OrsiniN. VincetiM. Blood pressure effects of sodium reduction: Dose–response meta-analysis of experimental studies.Circulation2021143161542156710.1161/CIRCULATIONAHA.120.05037133586450
    [Google Scholar]
  41. ChenQ. ZhuS. LiaoJ. HeW. Study of acute kidney injury on 309 hypertensive inpatients with ACEI/ARB – diuretic treatment.J. Natl. Med. Assoc.2018110328729610.1016/j.jnma.2017.06.00829778133
    [Google Scholar]
  42. GhoshS. KumarM. Prevalence and associated risk factors of hypertension among persons aged 15–49 in India: A cross-sectional study.BMJ Open2019912e02971410.1136/bmjopen‑2019‑02971431848161
    [Google Scholar]
  43. ChrysantS.G. Pathophysiology and treatment of obesity‐related hypertension.J. Clin. Hypertens.201921555555910.1111/jch.1351830907058
    [Google Scholar]
  44. OsuagwuU. ZeriedF. NgozikaE. Al-AnaziM. MashigeK. Choroidal thickness measured by ocular coherence tomography (SDOCT) and body mass index in healthy Saudi Women: A cross-sectional controlled study.Curr. Med. Imaging Rev.202218666667310.2174/157340561866622013110595735100959
    [Google Scholar]
  45. LuyckxV.A. BrennerB.M. Clinical consequences of devel-opmental programming of low nephron number.Anat. Rec.2020303102613263110.1002/ar.2427031587509
    [Google Scholar]
  46. HusainK. AnsariR.A. FerderL. Alcohol-induced hypertension: Mechanism and prevention.World J. Cardiol.20146524525210.4330/wjc.v6.i5.24524891935
    [Google Scholar]
  47. AcinM.T. RuedaJ.R. SaizL.C. Alcohol intake reduction for controlling hypertension.Cochrane Database Syst. Rev.202099CD01002232960976
    [Google Scholar]
  48. Kalisch-SmithJ.I. VedN. SparrowD.B. Environmental risk factors for congenital heart disease.Cold Spring Harb. Perspect. Biol.2020123a03723410.1101/cshperspect.a03723431548181
    [Google Scholar]
  49. YouashS. SharmaV. Depression, antidepressants and hypertensive disorders of pregnancy: A systematic review.Curr. Drug Saf.201914210210810.2174/157488631466619012114471130666916
    [Google Scholar]
  50. CalviA. FischettiI. VerziccoI. Antidepressant drugs effects on blood pressure.Front. Cardiovasc. Med.2021870428110.3389/fcvm.2021.70428134414219
    [Google Scholar]
  51. BiolettoF. BollatiM. LopezC. Primary aldosteronism and resistant hypertension: A pathophysiological insight.Int. J. Mol. Sci.2022239480310.3390/ijms2309480335563192
    [Google Scholar]
  52. BoutariC. GeorgianouE. SachinidisA. Renovascular hypertension: Novel insights.Curr. Hypertens. Rev.2020161242910.2174/18756506OTgxsMTM8TcVY31038069
    [Google Scholar]
  53. FaragS.M. RabeaH.M. AbdelrahimM.E.A. MahmoudH.B. Target blood pressure and combination therapy: Focus on angiotensin receptor blockers combination with either calcium channel blockers or beta blockers.Curr. Hypertens. Rev.202218213814410.2174/157340211866622062712025436508272
    [Google Scholar]
  54. MaideenN.M.P. BalasubramanianR. MuthusamyS. A comprehensive review of the pharmacologic perspective on loop diuretic drug interactions with therapeutically used drugs.Curr. Drug Metab.202223318819910.2174/138920022366622040109211235366769
    [Google Scholar]
  55. KatsimardouA. ImprialosK. StavropoulosK. SachinidisA. DoumasM. AthyrosV. Hypertension in metabolic syndrome: Novel insights.Curr. Hypertens. Rev.2020161121810.2174/18756506OTgw7ODElTcVY30987573
    [Google Scholar]
  56. KotfisK. LechowiczK. DrożdżalS. COVID-19—The potential beneficial therapeutic effects of spironolactone during SARS-CoV-2 infection.Pharmaceuticals20211417110.3390/ph1401007133477294
    [Google Scholar]
  57. BalochS. BalochM.A. ZhengT. PeiX. The coronavirus disease 2019 (COVID-19) pandemic.Tohoku J. Exp. Med.2020250427127810.1620/tjem.250.27132321874
    [Google Scholar]
  58. LechowiczK. DrożdżalS. MachajF. COVID-19: The potential treatment of pulmonary fibrosis associated with SARS-CoV-2 infection.J. Clin. Med.202096191710.3390/jcm906191732575380
    [Google Scholar]
  59. LiaudetL. SzaboC. Blocking mineralocorticoid receptor with spironolactone may have a wide range of therapeutic actions in severe COVID-19 disease.Crit. Care202024131810.1186/s13054‑020‑03055‑632513242
    [Google Scholar]
  60. HaasM.J. Jurado-FloresM. HammoudR. The effects of known cardioprotective drugs on proinflammatory cytokine secretion from human coronary artery endothelial cells.Am. J. Ther.2019263e321e33210.1097/MJT.000000000000064829232287
    [Google Scholar]
  61. MooreB.B. MooreT.A. Viruses in idiopathic pulmonary fibrosis. Etiology and exacerbation.Ann. Am. Thorac. Soc.201512S2S186S19210.1513/AnnalsATS.201502‑088AW26595738
    [Google Scholar]
  62. PalM. BerhanuG. DesalegnC. KandiV. Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2): An update.Cureus2020123e742310.7759/cureus.742332337143
    [Google Scholar]
  63. AlRyalatS.A. Al-RyalatN. MalkawiL. Radiology during the COVID-19 pandemic: Mapping radiology literature in 2020.Curr. Med. Imaging Rev.202319217518110.2174/157340561866621123010563134967299
    [Google Scholar]
  64. PalazzuoliA. TecsonK.M. VicenziM. Usefulness of combined renin-angiotensin system inhibitors and diuretic treatment in patients hospitalized with COVID-19.Am. J. Cardiol.202216713313810.1016/j.amjcard.2021.12.00435027137
    [Google Scholar]
  65. LauS. LauK.R. RathmanL. RobertsJ.D. The efficacy, safety, and cost savings of high dose IV diuretics for heart failure patients in an outpatient setting with limited hospital bed space due to Covid-19.J. Card. Fail.202329466910.1016/j.cardfail.2022.10.302
    [Google Scholar]
  66. AbdelmonemR. ElhabalS.F. AbdelmalakN.S. El-NabarawiM.A. TeaimaM.H. Formulation and characterization of acetazolamide/carvedilol niosomal gel for glaucoma treatment: In vitro, and in vivo study.Pharmaceutics202113222110.3390/pharmaceutics1302022133562785
    [Google Scholar]
  67. SarhanA. RokneJ. AlhajjR. Glaucoma detection using image processing techniques: A literature review.Comput. Med. Imaging Graph.20197810165710.1016/j.compmedimag.2019.10165731675645
    [Google Scholar]
  68. OlivieriD.J. LynchM.G. CockerhamG.C. GreenbergP.B. A survey of glaucoma surgery practice patterns in the Veterans Health Administration.Mil. Med.20201857-8e972e97610.1093/milmed/usaa03332412083
    [Google Scholar]
  69. SihotaR. AngmoD. RamaswamyD. DadaT. Simplifying “target” intraocular pressure for different stages of primary open-angle glaucoma and primary angle-closure glaucoma.Indian J. Ophthalmol.201866449550510.4103/ijo.IJO_1130_1729582808
    [Google Scholar]
  70. PopovicM. SchlenkerM.B. Angle-closure glaucoma in a myopic patient precipitated by sexual excitation: A case report.J. Curr. Glaucoma Pract.201812314214410.5005/jp‑journals‑10078‑123831354207
    [Google Scholar]
  71. WangR. GaoY. LiuA. ZhaiG. A review of nanocarrier-mediated drug delivery systems for posterior segment eye disease: Challenges analysis and recent advances.J. Drug Target.202129768770210.1080/1061186X.2021.187836633474998
    [Google Scholar]
  72. Van BerkelM.A. ElefritzJ.L. Evaluating off-label uses of acetazolamide.Am. J. Health Syst. Pharm.201875852453110.2146/ajhp17027929626002
    [Google Scholar]
  73. HayashiK. YoshidaM. SatoT. ManabeS. YoshimuraK. Intraocular pressure elevation after cataract surgery and its prevention by oral acetazolamide in eyes with pseudoexfoliation syndrome.J. Cataract Refract. Surg.201844217518110.1016/j.jcrs.2017.11.01729525617
    [Google Scholar]
  74. MaggiL. UrruC. FriuliV. Synthesis and characterization of carvedilol-etched halloysite nanotubes composites with enhanced drug solubility and dissolution rate.Molecules2023288340510.3390/molecules2808340537110635
    [Google Scholar]
  75. SopyanI. LayyarezaR.T. MegantaraS. MarvitaS.S. Carvedilol solubility enhancement by multicomponent crystallization with coformers of benzoic acid, isonicotinamide, and saccharin.Pharmacia202370228329010.3897/pharmacia.70.e98177
    [Google Scholar]
  76. SoutoE.B. Dias-FerreiraJ. López-MachadoA. Advanced formulation approaches for ocular drug delivery: State-of-the-art and recent patents.Pharmaceutics201911946010.3390/pharmaceutics1109046031500106
    [Google Scholar]
  77. MoiseevR.V. MorrisonP.W.J. SteeleF. KhutoryanskiyV.V. Penetration enhancers in ocular drug delivery.Pharmaceutics201911732110.3390/pharmaceutics1107032131324063
    [Google Scholar]
  78. RahićO. TucakA. OmerovićN. Novel drug delivery systems fighting glaucoma: Formulation obstacles and solutions.Pharmaceutics20201312810.3390/pharmaceutics1301002833375224
    [Google Scholar]
  79. TanS.Y. Mei WongJ.L. SimY.J. Type 1 and 2 diabetes mellitus: A review on current treatment approach and gene therapy as potential intervention.Diabetes Metab. Syndr.201913136437210.1016/j.dsx.2018.10.00830641727
    [Google Scholar]
  80. GharraviA.M. JafarA. EbrahimiM. Current status of stem cell therapy, scaffolds for the treatment of diabetes mellitus.Diabetes Metab. Syndr.20181261133113910.1016/j.dsx.2018.06.02130168429
    [Google Scholar]
  81. WangR. ZhouY. ZhangY. LiS. PanR. ZhaoY. A three-gene-based type 1 diabetes diagnostic signature.Curr. Pharm. Des.202127242827283310.2174/138161282666620121714340333334280
    [Google Scholar]
  82. de Medeiros FernandesT.A.A. de AzevedoJ.C.V. CavalcanteG.A. Biology and natural history of type 1 diabetes mellitus.Curr. Pediatr. Rev.202319325327510.2174/157339631866622040900195536045526
    [Google Scholar]
  83. PapaetisG.S. Empagliflozin and the diabetic kidney: Pathophysiological concepts and future challenges.Endocr. Metab. Immune Disord. Drug Targets20212191555158910.2174/187153032199920121423342133319678
    [Google Scholar]
  84. KarangelisD. MazerC.D. StakosD. Cardio-protective effects of sodium-glucose co-transporter 2 inhibitors: Focus on heart failure.Curr. Pharm. Des.20212781051106010.2174/138161282666620110312281333143620
    [Google Scholar]
  85. PapazafiropoulouA.K. MelidonisA. AntonopoulosS. Effects of glucagon-like peptide-1 receptor agonists and sodium-glucose cotransporter 2 inhibitors on cardiorenal and metabolic outcomes in people without diabetes.Curr. Pharm. Des.20212781035104210.2174/138161282666620090914212632912116
    [Google Scholar]
  86. BanerjeeD. RosanoG. HerzogC.A. Management of heart failure patient with CKD.Clin. J. Am. Soc. Nephrol.20211671131113910.2215/CJN.1418092033495289
    [Google Scholar]
  87. TrujilloH. Caravaca-FontánF. CaroJ. MoralesE. PragaM. The forgotten antiproteinuric properties of diuretics.Am. J. Nephrol.202152643544910.1159/00051702034233330
    [Google Scholar]
  88. LvP. CaiY. LuoJ. ChenK. Recent advances in the design and synthesis of small molecule carbonic anhydrase IX in-hibitors.Curr. Top. Med. Chem.202222755056010.2174/156802662266622021510431235168506
    [Google Scholar]
  89. SchulzeP.C. BogovikuJ. WestphalJ. Effects of early empagliflozin initiation on diuresis and kidney function in patients with acute decompensated heart failure (EMPAG-HF).Circulation2022146428929810.1161/CIRCULATIONAHA.122.05903835766022
    [Google Scholar]
  90. PuglisiS. RossiniA. PoliR. Effects of SGLT2 inhibitors and GLP-1 receptor agonists on renin-angiotensin-aldosterone system.Front. Endocrinol.20211273884810.3389/fendo.2021.73884834745006
    [Google Scholar]
  91. AnanG. HiroseT. KikuchiD. Inhibition of sodium-glucose cotransporter 2 suppresses renal stone formation.Pharmacol. Res.202218610652410.1016/j.phrs.2022.10652436349594
    [Google Scholar]
  92. AfifyH. Gonzalez-MoralesU. AsmarA. AlvarezC.A. MansiI.A. Association of thiazide diuretics with diabetes progression, kidney disease progression, cardiovascular outcomes, and death among patients with diabetes who initiate statins.Am. J. Cardiol.202320327428410.1016/j.amjcard.2023.07.05737516035
    [Google Scholar]
  93. WeedaE.R. CassarlyC. BrintonD.L. ShirleyD.W. SimpsonK.N. Loop diuretic use among patients with heart failure and type 2 diabetes treated with sodium glucose cotransporter-2 inhibitors.J. Diabetes Complications201933856757110.1016/j.jdiacomp.2019.05.00131176543
    [Google Scholar]
  94. DomingoM. Ruiz-CuetoM. TeisA. LupónJ. AlonsoN. Bayés-GenísA. SGLT2i and loop diuretic withdrawal or downtitration in heart failure.Rev. Esp. Cardiol.2023761194394510.1016/j.rec.2023.06.00237331585
    [Google Scholar]
  95. WatsonK.E. DhaliwalK. RobertshawS. Consensus recommendations for sick day medication guidance for people with diabetes, kidney, or cardiovascular disease: A modified delphi process.Am. J. Kidney Dis.202381556457410.1053/j.ajkd.2022.10.01236470530
    [Google Scholar]
  96. ShaoS.C. SuY.C. LaiE.C.C. Association between sodium glucose co-transporter 2 inhibitors and incident glaucoma in patients with type 2 diabetes: A multi-institutional cohort study in Taiwan.Diabetes Metab.202248110131810.1016/j.diabet.2022.10131835017100
    [Google Scholar]
  97. SvensenC. Electrolytes and diuretics. In: Pharmacology and Physiology for Anesthesia.Elsevier201981483510.1016/B978‑0‑323‑48110‑6.00042‑9
    [Google Scholar]
  98. FelkerG.M. EllisonD.H. MullensW. Diuretic therapy for patients with heart failure: JACC state-of-the-art review.Journal of the American College of Cardiology202075101178119510.1016/j.gloepi.2020.100025
    [Google Scholar]
  99. CharkosT.G. LiuY. YangS. Thiazide diuretics and risk of hip fracture: A Bayesian meta-analysis of cohort studies.Global Epidemiology20202100025
    [Google Scholar]
  100. WernyD. TaplinC. BennettJ.T. Disorders of carbohydrate metabolism. In: In Avery’s Diseases of the Newborn.Elsevier20181403141610.1016/B978‑0‑323‑40139‑5.00099‑1
    [Google Scholar]
  101. VanBaakK.D. NallyL.M. FiniganR.T. Wilderness Medical Society clinical practice guidelines for diabetes management.Wilderness Environ. Med.2019304S121S14010.1016/j.wem.2019.10.00331753543
    [Google Scholar]
  102. van BaarM.J.B. ScholtesR.A. van RaalteD.H. SGLT2 inhibitors’ interaction with other renoactive drugs in type 2 diabetes patients: Still a lot to learn.Kidney Int.201996228328610.1016/j.kint.2019.03.03231331468
    [Google Scholar]
  103. LaliberteB. ReedB.N. DevabhakthuniS. Observation of patients transitioned to an oral loop diuretic before discharge and risk of readmission for acute decompensated heart failure.J. Card. Fail.2017231074675210.1016/j.cardfail.2017.06.00828688888
    [Google Scholar]
  104. KasamaS. ToyamaT. KurabayashiM. Comparative effects of long and short-acting loop diuretics on mortality in patients with chronic heart failure.Int. J. Cardiol.201724424224410.1016/j.ijcard.2017.06.01028645802
    [Google Scholar]
/content/journals/cdth/10.2174/0115748855282746231208072819
Loading
/content/journals/cdth/10.2174/0115748855282746231208072819
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Covid-19; diabetes mellitus; Diuretics; glaucoma; hypertension; novel class of diuretics
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test