Skip to content
2000
Volume 20, Issue 2
  • ISSN: 1574-8855
  • E-ISSN: 2212-3903

Abstract

Background

Over 10 million people worldwide are affected by the chronic neurodegenerative condition of Parkinson's disease. Dopaminergic neurons in the Substantia Nigra area of the brain are gradually lost as a result. Herbal medicine, which have its roots in ancient cultures, uses medicinal herbs to treat illnesses and advance general health. There is considerable interest in researching the possibilities of herbal medicine for treating neurodegenerative diseases like Parkinson's disease because they are thought to be safer than synthetic medications.

Objective

The objective of this article is to investigate the potential of herbal medications as a treatment option for Parkinsonism, and to provide a clear understanding of the current state of research on this topic.

Conclusion

This review focuses on herbal treatments and components that have demonstrated promise in Parkinson's disease and animal models. This information can be used to identify prospective traditional medicine prescription therapies. New therapeutic treatments for Parkinson's disease may result from further study of pharmaceutical components with well-established therapeutic potential.

Loading

Article metrics loading...

/content/journals/cdth/10.2174/0115748855260576231116145448
2024-01-12
2024-12-28
Loading full text...

Full text loading...

References

  1. ZhangH. TongR. BaiL. ShiJ. OuyangL. Emerging targets and new small molecule therapies in Parkinson’s disease treatment.Bioorg. Med. Chem.20162471419143010.1016/j.bmc.2016.02.03026935940
    [Google Scholar]
  2. DavieC.A. A review of Parkinson’s disease.Br. Med. Bull.200886110912710.1093/bmb/ldn01318398010
    [Google Scholar]
  3. PahwaR. LyonsK. KollerW.C. JankovicJ. Pathophysiology and assessment of parkinsonian symptoms and signs. PahwaR. LyonsK. KollerW.C. Handbook of Parkinson’s disease.New York200779104
    [Google Scholar]
  4. SamiiA. NuttJ.G. RansomB.R. Parkinson’s disease.Lancet200436394231783179310.1016/S0140‑6736(04)16305‑815172778
    [Google Scholar]
  5. ToulouseA. SullivanA.M. Progress in Parkinson’s disease-where do we stand?Prog. Neurobiol.200885437639210.1016/j.pneurobio.2008.05.00318582530
    [Google Scholar]
  6. HuangL. ZhaoH. HuangB. ZhengC. PengW. QinL. Acanthopanax senticosus: Review of botany, chemistry and pharmacology.Pharmazie2011662839721434569
    [Google Scholar]
  7. ZhangQ. ZhengY. HuX. Ethnopharmacological uses, phytochemistry, biological activities, and therapeutic applications of Alpinia oxyphylla Miquel: A review.J. Ethnopharmacol.201822414916810.1016/j.jep.2018.05.00229738847
    [Google Scholar]
  8. AnL.J. GuanS. ShiG.F. BaoY.M. DuanY.L. JiangB. Protocatechuic acid from Alpinia oxyphylla against MPP+-induced neurotoxicity in PC12 cells.Food Chem. Toxicol.200644343644310.1016/j.fct.2005.08.01716223555
    [Google Scholar]
  9. KimI.S. KoH.M. KoppulaS. KimB.W. ChoiD.K. Protective effect of Chrysanthemum indicum Linne against 1-methyl-4-phenylpridinium ion and lipopolysaccharide-induced cytotoxicity in cellular model of Parkinson’s disease.Food Chem. Toxicol.201149496397310.1016/j.fct.2011.01.00221219959
    [Google Scholar]
  10. De AndradeD.V.G. Madureira de OliveriaD. BarretoG. Effects of the extract of Anemopaegma mirandum (Catuaba) on Rotenone-induced apoptosis in human neuroblastomas SH-SY5Y cells.Brain Res.2008119818819610.1016/j.brainres.2008.01.00618241847
    [Google Scholar]
  11. IttiyavirahS.P. HameedJ. Herbs treating Parkinson’s disease.Biomed. Aging Pathol.20144436937610.1016/j.biomag.2014.08.003
    [Google Scholar]
  12. SimpsonT. PaseM. StoughC. Bacopa Monnieri as an anti-oxidant therapy to reduce oxidative stress in the aging brain.Evid. Based Complement. Alternat. Med.201520151910.1155/2015/61538426413126
    [Google Scholar]
  13. AkbarS. Centella asiatica (L.) Urban (Apiaceae/Umbelliferae). LimT.K. Handbook of 200 Medicinal Plants.Springer202057358810.1007/978‑3‑030‑16807‑0_61
    [Google Scholar]
  14. LimT.K. Clausena lansium. LimT.K. Edible Medicinal and Non-Medicinal Plants.Springer201287188310.1007/978‑94‑007‑4053‑2_100
    [Google Scholar]
  15. SharmaN. BafnaP. Effect of Cynodon dactylon on rotenone induced Parkinson’s disease.Orient. Pharm. Exp. Med.201212316717510.1007/s13596‑012‑0075‑1
    [Google Scholar]
  16. AuddyB. FerreiraM. BlasinaF. Screening of antioxi-dant activity of three Indian medicinal plants, traditionally used for the management of neurodegenerative diseases.J. Ethnopharmacol.2003842-313113810.1016/S0378‑8741(02)00322‑712648805
    [Google Scholar]
  17. ZbarskyV. DatlaK.P. ParkarS. RaiD.K. AruomaO.I. DexterD.T. Neuroprotective properties of the natural phenolic anti-oxidants curcumin and naringenin but not quercetin and fisetin in a 6-OHDA model of Parkinson’s disease.Free Radic. Res.200539101119112510.1080/1071576050023311316298737
    [Google Scholar]
  18. RajeswariA. SabesanM. Inhibition of monoamine oxidase-B by the polyphenolic compound, curcumin and its metabolite tetrahydrocurcumin, in a model of Parkinson’s disease induced by MPTP neurodegeneration in mice.Inflammopharmacology2008162969910.1007/s10787‑007‑1614‑018408903
    [Google Scholar]
  19. OjhaR.P. RastogiM. DeviB.P. AgrawalA. DubeyG.P. Neuroprotective effect of curcuminoids against inflammation-mediated dopaminergic neurodegeneration in the MPTP model of Parkinson’s disease.J. Neuroimmune Pharmacol.20127360961810.1007/s11481‑012‑9363‑222527634
    [Google Scholar]
  20. ChenJ. TangX.Q. ZhiJ.L. Curcumin protects PC12 cells against 1-methyl-4-phenylpyridinium ion-induced apoptosis by bcl-2-mitochondria-ROS-iNOS pathway.Apoptosis200611694395310.1007/s10495‑006‑6715‑516547587
    [Google Scholar]
  21. JagathaB. MythriR.B. ValiS. BharathM.M.S. Curcumin treatment alleviates the effects of glutathione depletion in vitro and in vivo: Therapeutic implications for Parkinson’s disease explained via in silico studies.Free Radic. Biol. Med.200844590791710.1016/j.freeradbiomed.2007.11.01118166164
    [Google Scholar]
  22. MythriR.B. JagathaB. PradhanN. AndersenJ. BharathM.M.S. Mitochondrial complex I inhibition in Parkinson’s disease: How can curcumin protect mitochondria?Antioxid. Redox Signal.20079339940810.1089/ars.2006.147917184173
    [Google Scholar]
  23. PandeyN. StriderJ. NolanW.C. YanS.X. GalvinJ.E. Curcumin inhibits aggregation of α-synuclein.Acta Neuropathol.2008115447948910.1007/s00401‑007‑0332‑418189141
    [Google Scholar]
  24. YangS. ZhangD. YangZ. Curcumin protects dopamin-ergic neuron against LPS induced neurotoxicity in primary rat neuron/glia culture.Neurochem. Res.200833102044205310.1007/s11064‑008‑9675‑z18368483
    [Google Scholar]
  25. LouH. JingX. WeiX. ShiH. RenD. ZhangX. Naringenin protects against 6-OHDA-induced neurotoxicity via activation of the Nrf2/ARE signaling pathway.Neuropharmacology20147938038810.1016/j.neuropharm.2013.11.02624333330
    [Google Scholar]
  26. KandinovB. GiladiN. KorczynA.D. Smoking and tea consumption delay onset of Parkinson’s disease.Parkinsonism Relat. Disord.2009151414610.1016/j.parkreldis.2008.02.01118434232
    [Google Scholar]
  27. HuG. BidelS. JousilahtiP. AntikainenR. TuomilehtoJ. Coffee and tea consumption and the risk of Parkinson’s disease.Mov. Disord.200722152242224810.1002/mds.2170617712848
    [Google Scholar]
  28. PanT. JankovicJ. LeW. Potential therapeutic properties of green tea polyphenols in Parkinson’s disease.Drugs Aging2003201071172110.2165/00002512‑200320100‑0000112875608
    [Google Scholar]
  29. MandelS.A. AmitT. KalfonL. ReznichenkoL. YoudimM. Targeting multiple neurodegenerative diseases etiologies with multimodalacting green tea catechins.J. Nutr.200813881578S1583S10.1093/jn/138.8.1578S18641210
    [Google Scholar]
  30. ChaturvediR.K. ShuklaS. SethK. Neuroprotective and neurorescue effect of black tea extract in 6-hydroxydopamine-lesioned rat model of Parkinson’s disease.Neurobiol. Dis.200622242143410.1016/j.nbd.2005.12.00816480889
    [Google Scholar]
  31. GuoS. YanJ. YangT. YangX. BezardE. ZhaoB. Protective effects of green tea polyphenols in the 6-OHDA rat model of Parkinson’s disease through inhibition of ROS-NO pathway.Biol. Psychiatry200762121353136210.1016/j.biopsych.2007.04.02017624318
    [Google Scholar]
  32. GuoS. BezardE. ZhaoB. Protective effect of green tea poly-phenols on the SH-SY5Y cells against 6-OHDA induced apoptosis through ROS–NO pathway.Free Radic. Biol. Med.200539568269510.1016/j.freeradbiomed.2005.04.02216085186
    [Google Scholar]
  33. LevitesY. AmitT. YoudimM.B.H. MandelS. Involvement of protein kinase C activation and cell survival/ cell cycle genes in green tea polyphenol (-)-epigallocatechin 3-gallate neuroprotective action.J. Biol. Chem.200227734305743058010.1074/jbc.M20283220012058035
    [Google Scholar]
  34. AnandhanA. TamilselvamK. RadhigaT. RaoS. EssaM.M. ManivasagamT. Theaflavin, a black tea polyphenol, protects nigral dopaminergic neurons against chronic MPTP/probenecid induced Parkinson’s disease.Brain Res.2012143310411310.1016/j.brainres.2011.11.02122138428
    [Google Scholar]
  35. ZhaoD.L. ZouL.B. LinS. ShiJ.G. ZhuH.B. 6,7-di-O-glucopyranosyl-esculetin protects SH-SY5Y cells from dopamine-induced cytotoxicity.Eur. J. Pharmacol.2008580332933810.1016/j.ejphar.2007.11.05718177636
    [Google Scholar]
  36. ChoiH. ZhaoT. ShinK. Anxiolytic effects of herbal ethanol extract from Gynostemma pentaphyllum in mice after exposure to chronic stress.Molecules20131844342435610.3390/molecules1804434223584055
    [Google Scholar]
  37. WangP. NiuL. GuoX.D. Gypenosides protects dopa-minergic neurons in primary culture against MPP+-induced oxidative injury.Brain Res. Bull.201083526627110.1016/j.brainresbull.2010.06.01420615455
    [Google Scholar]
  38. TanakaK. GaldurózR.F.S. GobbiL.T.B. GaldurózJ.C.F. Ginkgo biloba extract in an animal model of Parkinson’s disease: A systematic review.Curr. Neuropharmacol.201311443043510.2174/1570159X1131104000624381532
    [Google Scholar]
  39. AhmadM. SaleemS. AhmadA.S. Ginkgo biloba affords dosedependent protection against 6‐hydroxydopamine‐induced parkinsonism in rats: Neurobehavioural, neurochemical and immunohistochemical evidences.J. Neurochem.20059319410410.1111/j.1471‑4159.2005.03000.x15773909
    [Google Scholar]
  40. ZhaoY. GongX.J. ZhouX. KangZ.J. Relative bioavailability of gastrodin and parishin from extract and powder of Gastrodiae rhizoma in rat.J. Pharm. Biomed. Anal.201410030931510.1016/j.jpba.2014.08.01725194344
    [Google Scholar]
  41. KimI.S. ChoiD.K. JungH.J. Neuroprotective effects of vanillyl alcohol in Gastrodia elata Blume through suppression of oxidative stress and anti-apoptotic activity in toxin-induced dopaminergic MN9D cells.Molecules20111675349536110.3390/molecules1607534921705974
    [Google Scholar]
  42. NagashayanaN. SankarankuttyP. NampoothiriM.R.V. MohanP.K. MohanakumarK.P. Association of l-DOPA with recovery following Ayurveda medication in Parkinson’s disease.J. Neurol. Sci.2000176212412710.1016/S0022‑510X(00)00329‑410930594
    [Google Scholar]
  43. BrownJ.H. TaylorP. Muscarinic receptor agonists and antagonists.10th ed HardmanJ.G. LimbirdL.E. GilmanA.G. Goodman and Gilman’s the pharmacological basis of therapeutics.New YorkMcGraw-Hill2001163182
    [Google Scholar]
  44. RezakM. Current pharmacotherapeutic treatment options in Parkinson’s disease.Dis. Mon.200753421422210.1016/j.disamonth.2007.05.00217586328
    [Google Scholar]
  45. GilaniA.H. KhanA. RaoofM. Gastrointestinal, selective airways and urinary bladder relaxant effects of Hyoscyamus niger are mediated through dual blockade of muscarinic receptors and Ca 2+ channels.Fundam. Clin. Pharmacol.2008221879910.1111/j.1472‑8206.2007.00561.x18251725
    [Google Scholar]
  46. SenguptaT. VinayagamJ. NagashayanaN. GowdaB. Jai-sankarP. MohanakumarK.P. Antiparkinsonian effects of aqueous methanolic extract of Hyoscyamus niger seeds result from its monoamine oxidase inhibitory and hydroxyl radical scavenging potency.Neurochem. Res.201136117718610.1007/s11064‑010‑0289‑x20972705
    [Google Scholar]
  47. Sánchez-ReusM.I. Gómez del RioM.A. IglesiasI. ElorzaM. SlowingK. BenedíJ. Standardized Hypericum perforatum reduces oxidative stress and increases gene expression of antioxidant enzymes on rotenone-exposed rats.Neuropharmacology200752260661610.1016/j.neuropharm.2006.09.00317070561
    [Google Scholar]
  48. MohanasundariM. SrinivasanM.S. SethupathyS. SabesanM. Enhanced neuroprotective effect by combination of bromo-criptine and Hypericum perforatum extract against MPTP-induced neurotoxicity in mice.J. Neurol. Sci.2006249214014410.1016/j.jns.2006.06.01816876826
    [Google Scholar]
  49. SuM.Y. HuangH.Y. LiL. LuY.H. Protective effects of 2′,4′-dihydroxy-6′-methoxy-3′,5′-dimethylchalcone to PC12 cells against cytotoxicity induced by hydrogen peroxide.J. Agric. Food Chem.201159252152710.1021/jf104408d21186823
    [Google Scholar]
  50. MoreS.V. KumarH. KangS.M. SongS.Y. LeeK. ChoiD.K. Advances in neuroprotective ingredients of medicinal herbs by using cellular and animal models of Parkinson’s disease.Evid Based Complementary Altern Med201310.1155/2013/957875
    [Google Scholar]
  51. KatzenschlagerR. EvansA. MansonA. Mucuna pruri-ens in Parkinson’s disease: A double blind clinical and pharmacological study.J. Neurol. Neurosurg. Psychiatry200475121672167710.1136/jnnp.2003.02876115548480
    [Google Scholar]
  52. LorenzP. RoychowdhuryS. EngelmannM. WolfG. HornT.F.W. Oxyresveratrol and resveratrol are potent antioxidants and free radical scavengers: Effect on nitrosative and oxidative stress derived from microglial cells.Nitric Oxide200392647610.1016/j.niox.2003.09.00514623172
    [Google Scholar]
  53. ChungK.O. KimB.Y. LeeM.H. In-vitro and in-vivo anti-inflammatory effect of oxyresveratrol from Morus alba L.J. Pharm. Pharmacol.201055121695170010.1211/002235702231314738598
    [Google Scholar]
  54. ChaoJ. YuM.S. HoY.S. WangM. ChangR.C.C. Dietary oxyresveratrol prevents parkinsonian mimetic 6-hydroxydopamine neurotoxicity.Free Radic. Biol. Med.20084571019102610.1016/j.freeradbiomed.2008.07.00218675900
    [Google Scholar]
  55. ur Rasheed MS, Tripathi MK, Mishra AK, Shukla S, Singh MP. Resveratrol protects from toxin-induced parkinsonism: Plethora of proofs hitherto petty translational value.Mol. Neurobiol.20165352751276010.1007/s12035‑015‑9124‑325691456
    [Google Scholar]
  56. AhmadM. YousufS. KhanM.B. Attenuation by Nardostachys jatamansi of 6-hydroxydopamine-induced parkinsonism in rats: behavioral, neurochemical, and immunohistochemical studies.Pharmacol. Biochem. Behav.200683115016010.1016/j.pbb.2006.01.00516500697
    [Google Scholar]
  57. CohenM. Tulsi-Ocimum sanctum: A herb for all reasons.J. Ayurveda Integr. Med.20145425125910.4103/0975‑9476.14655425624701
    [Google Scholar]
  58. SampathS. MahapatraS.C. PadhiM.M. SharmaR. TalwarA. Holy basil (Ocimum sanctum Linn.) leaf extract enhances specific cognitive parameters in healthy adult volunteers: A placebo controlled study.Indian J. Physiol. Pharmacol.2015591697726571987
    [Google Scholar]
  59. SunL.Q. Information on research and application of ginseng, the king of traditional and herbal medicines.Asian J Drug Metab and Pharmacokinet20044261284
    [Google Scholar]
  60. XuH. JiangH. WangJ. XieJ. Rg1 protects the MPP+-treated MES23.5 cells via attenuating DMT1 up-regulation and cellu-lar iron uptake.Neuropharmacology201058248849410.1016/j.neuropharm.2009.09.00219744503
    [Google Scholar]
  61. LiuH.Q. ZhangW.Y. LuoX.T. YeY. ZhuX.Z. Paeoniflorin attenuates neuroinflammation and dopaminergic neurodegeneration in the MPTP model of Parkinson’s disease by activation of adenosine A 1 receptor.Br. J. Pharmacol.2006148331432510.1038/sj.bjp.070673216582933
    [Google Scholar]
  62. KimH.G. ParkG. PiaoY. Effects of the root bark of Paeonia suffruticosa on mitochondria-mediated neuroprotection in an MPTP-induced model of Parkinson’s disease.Food Chem. Toxicol.20146529330010.1016/j.fct.2013.12.03724389454
    [Google Scholar]
  63. JungU.J. JeonM.T. ChoiM.S. KimS.R. Silibinin attenuates MPP+-induced neurotoxicity in the substantia nigra in vivo.J. Med. Food201417559960510.1089/jmf.2013.292624660866
    [Google Scholar]
  64. FrancoC.I.F. MoraisL.C.S.L. Quintans-JúniorL.J. AlmeidaR.N. AntoniolliA.R. CNS pharmacological effects of the hydroalcoholic extract of Sida cordifolia L. leaves.J. Ethnopharmacol.200598327527910.1016/j.jep.2005.01.00815814259
    [Google Scholar]
  65. KhuranaN. GajbhiyeA. Ameliorative effect of Sida cordifo-lia in rotenone induced oxidative stress model of Parkinson’s disease.Neurotoxicology201339576410.1016/j.neuro.2013.08.00523994302
    [Google Scholar]
  66. GirishC. Muralidhara Propensity of Selaginella delicatula aqueous extract to offset rotenone-induced oxidative dysfunctions and neurotoxicity in Drosophila melanogaster: Implications for Parkinson’s disease.Neurotoxicology201233344445610.1016/j.neuro.2012.04.00222521218
    [Google Scholar]
  67. LiF.Q. WangT. PeiZ. LiuB. HongJ.S. Inhibition of microglial activation by the herbal flavonoid baicalein attenuates inflammationmediated degeneration of dopaminergic neurons.J. Neural Transm.2005112333134710.1007/s00702‑004‑0213‑015503194
    [Google Scholar]
  68. ShangY.Z. QinB.W. ChengJ.J. MiaoH. Prevention of oxida-tive injury by flavonoids from stems and leaves of Scutellaria baicalensis georgi in PC12 cells.Phytother. Res.2006201535710.1002/ptr.180216397922
    [Google Scholar]
  69. MuX. HeG. ChengY. LiX. XuB. DuG. Baicalein exerts neuroprotective effects in 6-hydroxydopamine-induced experimental parkinsonism in vivo and in vitro.Pharmacol. Biochem. Behav.200992464264810.1016/j.pbb.2009.03.00819327378
    [Google Scholar]
  70. LiuY. ChenH.L. YangG. Extract of Tripterygium wilfordii Hook F protect dopaminergic neurons against lipopolysaccharide-induced inflammatory damage.Am. J. Chin. Med.201038480181410.1142/S0192415X1000825120626064
    [Google Scholar]
  71. ShiZ. LuZ. ZhaoY. Neuroprotective effects of aque-ous extracts of Uncaria tomentosa: Insights from 6-OHDA induced cell damage and transgenic Caenorhabditis elegans model.Neurochem. Int.201362794094710.1016/j.neuint.2013.03.00123500604
    [Google Scholar]
  72. ShimJ.S. KimH.G. JuM.S. ChoiJ.G. JeongS.Y. OhM.S. Effects of the hook of Uncaria rhynchophylla on neurotoxicity in the 6-hydroxydopamine model of Parkinson’s disease.J. Ethnopharmacol.2009126236136510.1016/j.jep.2009.08.02319703534
    [Google Scholar]
  73. RabeyJ.M. VeredY. ShabtaiH. GraffE. HarsatA. KorczynA.D. Broad bean (Vicia faba) consumption and Parkinson’s disease.Adv. Neurol.1993606816848420210
    [Google Scholar]
  74. ManjunathM.J. Muralidhara Standardized extract of Withania somnifera (Ashwagandha) markedly offsets rotenone-induced locomotor deficits, oxidative impairments and neurotoxicity in Drosophila melanogaster.J. Food Sci. Technol.20155241971198110.1007/s13197‑013‑1219‑025829577
    [Google Scholar]
  75. DarN.J. HamidA. AhmadM. Pharmacologic overview of Withania somnifera, the Indian Ginseng.Cell. Mol. Life Sci.201572234445446010.1007/s00018‑015‑2012‑126306935
    [Google Scholar]
/content/journals/cdth/10.2174/0115748855260576231116145448
Loading
/content/journals/cdth/10.2174/0115748855260576231116145448
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test