Skip to content
2000
Volume 2, Issue 3
  • ISSN: 2666-0016
  • E-ISSN: 2666-0008

Abstract

Herbal plant-based products and their derived phytochemicals have been used in the complementary and alternative systems of medicine for the treatment of human disorders. Vegetables, fruits, seeds, nuts, coffee, tea, and wine contain significant amounts of coumarin class phytochemicals. Coumarin is found to be present in cassia leaf oil, cinnamon bark oil, lavender oil, and microorganism-derived drugs.

Scientific databases, such as Google Scholar, Science Direct, Scopus, and PubMed, have been searched to collect the scientific information regarding meranzin and meranzin hydrate in the present work in order to know their medicinal importance and pharmacological activities in the medicine. Pharmacological activity data of meranzin and meranzin hydrates has been thoroughly studied from scientific databases and analyzed in the present work to evaluate their biological potential against human disorders. Analytical data on meranzin and meranzin hydrates have been also collected and analyzed in the present work to know the importance of analytical techniques for the standardization of plant material.

Scientific data analysis revealed the biological potential of meranzin and meranzin hydrates against human health complications. Meranzin was found to be present in the , and . Scientific data analysis revealed the biological potential of meranzin and meranzin hydrates in the medicine due to their anti-depressant, anti-fibrotic, anti-proliferative, anti-atherosclerosis, and anti-bacterial activities. Further scientific data analysis revealed the biological effectiveness of meranzin and meranzin hydrates on neuroinflammation, intestinal motility, and various forms of enzymes. Furthermore, pharmacokinetic parameters for meranzin and meranzin hydrates were also investigated in the present work. Chromatography techniques used for the analysis were also summarized and discussed to examine the importance of isolation, separation, and quantification of meranzin and meranzin hydrates.

Present study will facilitate scientists in the development of effective medicine from meranzin and meranzin hydrates against the various human health complications.

Loading

Article metrics loading...

/content/journals/ccchem/10.2174/2666001602666220524140540
2022-08-18
2025-03-17
Loading full text...

Full text loading...

References

  1. PatelK. KumarV. RahmanM. VermaA. PatelD.K. Rhamnazin: A systematic review on ethnopharmacology, pharmacology and analytical aspects of an important phytomedicine.Curr. Tradit. Med.20184212012710.2174/2215083804666180416124949
    [Google Scholar]
  2. PatelK. KumarV. VermaA. RahmanM. PatelD.K. β-sitosterol: Bioactive compounds in foods, their role in health promotion and disease prevention “a concise report of its phytopharmaceutical importance.”.Curr. Tradit. Med.20173316817710.2174/2215083803666170615111759
    [Google Scholar]
  3. PatelK. KumarV. VermaA. RahmanM. Kumar PatelD. Health benefits of furanocoumarins ‘psoralidin’ an active phytochemical of psoralea corylifolia: The present, past and future scenario.Curr. Bioact. Compd.201915436937610.2174/1573407214666180511153438
    [Google Scholar]
  4. PatelK. PatelD.K. Medicinal importance, pharmacological activities, and analytical aspects of hispidulin: A concise report.J. Tradit. Complement. Med.20167336036610.1016/j.jtcme.2016.11.00328725632
    [Google Scholar]
  5. KasmiR. HadajiE. ChedadiO. El AissouqA. BouachrineM. OuammouA. 2D-QSAR and docking study of a series of coumarin derivatives as inhibitors of CDK (anticancer activity) with an application of the molecular docking method.Heliyon202068e0451410.1016/j.heliyon.2020.e0451432817887
    [Google Scholar]
  6. YuanJ. WeiF. LuoX. ZhangM. QiaoR. ZhongM. ChenH. YangW. Multi-component comparative pharmacokinetics in rats after oral administration of Fructus aurantii extract, naringin, neohesperidin, and naringin-neohesperidin.Front. Pharmacol.20201193310.3389/fphar.2020.0093332636752
    [Google Scholar]
  7. XingZ.H. PengW-J. HuangW. HuangX. LiuW.P. Analysis of major constituents in Fructus aurantii-Magnolia bark decoction by UPLC-PDA.J. Chromatogr. Sci.201452882683010.1093/chromsci/bmt12223934039
    [Google Scholar]
  8. XieW. QiuX. HuangX. XieY. WuK. WangY. JiH. HeJ. RenP. Comparison between the pharmacokinetics of meranzin hydrate in a rat model of chronic depression and in controls following the oral administration of Chaihu-Shugan-San.Exp. Ther. Med.20136491391810.3892/etm.2013.122924137289
    [Google Scholar]
  9. TanN. Yazıcı-TütünişS. BilginM. TanE. MiskiM. Antibacterial activities of pyrenylated coumarins from the roots of prangos hulusii.Molecules2017227109810.3390/molecules2207109828671568
    [Google Scholar]
  10. HeY. ZhuS. WuC. LuY. TangQ. Bioactivity-guided separation of potential D2 dopamine receptor antagonists from aurantii fructus based on molecular docking combined with high-speed counter-current chromatography.Molecules20182312313510.3390/molecules23123135
    [Google Scholar]
  11. SaiedS. NizamiS.S. AnisI. Two new coumarins from Murraya paniculata.J. Asian Nat. Prod. Res.2008105-651551910.1080/1028602080196729218470803
    [Google Scholar]
  12. DondonR. BourgeoisP. Fery-ForguesS. A new bicoumarin from the leaves and stems of Triphasia trifolia. Fitoterapia200677212913310.1016/j.fitote.2005.11.00616431036
    [Google Scholar]
  13. NegiN. Abou-DoughA.M. KurosawaM. KitajiY. SaitoK. OchiA. UshijimaK. KusakabeE. KitaguchiY. JingujiY. TeshimaN. Ju-ichiM. ItoC. Coumarins from Murraya exotica collected in Egypt.Nat. Prod. Commun.201510461762010.1177/1934578X150100042025973490
    [Google Scholar]
  14. WangZ-C. FengD-Q. KeC-H. Coumarins from the herb cnidium monnieri and chemically modified derivatives as antifoulants against Balanus albicostatus and Bugula neritina larvae.Int. J. Mol. Sci.20131411197120610.3390/ijms1401119723303279
    [Google Scholar]
  15. ZhengR-R. YaJ. WangW-J. YangH-B. ZhangQ-W. ZhangX-Q. YeW.C. Chemical studies on roots of Ficus hirta.Zhongguo Zhongyao Zazhi201338213696370124494557
    [Google Scholar]
  16. FengB.M. ShaY. PeiY.H. HuaH.M. LiW. Structure determination of the constituents from Citrus grandis Osbeck.Zhongguo Zhongyao Zazhi2001261176476512776348
    [Google Scholar]
  17. TsujimotoT. YoshitomiT. MaruyamaT. YamamotoY. HakamatsukaT. UchiyamaN. High-resolution liquid chromatography-mass spectrometry-based metabolomic discrimination of Citrus-type crude drugs and comparison with nuclear magnetic resonance spectroscopy-based metabolomics.J. Nat. Prod.20198282116212310.1021/acs.jnatprod.8b0097731322883
    [Google Scholar]
  18. LiG-J. WuH-J. WangY. HungW-L. RouseffR.L. Determination of citrus juice coumarins, furanocoumarins and methoxylated flavones using solid phase extraction and HPLC with photodiode array and fluorescence detection.Food Chem.2019271293810.1016/j.foodchem.2018.07.13030236679
    [Google Scholar]
  19. TengW-Y. ChenC-C. ChungR-S. HPLC comparison of supercritical fluid extraction and solvent extraction of coumarins from the peel of Citrus maxima fruit.Phytochem. Anal.200516645946210.1002/pca.87016315491
    [Google Scholar]
  20. DoQ-T. LamyC. RenimelI. SauvanN. AndréP. HimbertF. Morin-AlloryL. BernardP. Reverse pharmacognosy: Identifying biological properties for plants by means of their molecule constituents: Application to meranzin.Planta Med.200773121235124010.1055/s‑2007‑99021617853346
    [Google Scholar]
  21. DugoP. RussoM. SaròM. CarnovaleC. BonaccorsiI. MondelloL. Multidimensional liquid chromatography for the determination of chiral coumarins and furocoumarins in Citrus essential oils.J. Sep. Sci.201235141828183610.1002/jssc.20120007822807365
    [Google Scholar]
  22. LeiY. WangY. SunZ. LinM. CaiX. HuangD. LuoK. TanS. ZhangY. YanJ. XiaX. Quantitative analysis of multicomponents by single marker combined with HPLC fingerprint qualitative analyses for comprehensive evaluation of Aurantii Fructus.J. Sep. Sci.20204371382139210.1002/jssc.20190119331981302
    [Google Scholar]
  23. YanR. ShenJ. LiuX. ZouY. XuX. Preparative isolation and purification of hainanmurpanin, meranzin, and phebalosin from leaves of Murraya exotica L. using supercritical fluid extraction combined with consecutive high-speed countercurrent chromatography.J. Sep. Sci.20184192092210110.1002/jssc.20170142329385309
    [Google Scholar]
  24. ZaherA.M. MoharramA.M. DavisR. PanizziP. MakboulM.A. CalderónA.I. Characterisation of the metabolites of an antibacterial endophyte Botryodiplodia theobromae Pat. of Dracaena draco L. by LC-MS/MS.Nat. Prod. Res.201529242275228110.1080/14786419.2015.101271525693860
    [Google Scholar]
  25. LiZ-H. ChenH-F. LuoL-P. YangB. WeiY. YuanJ-B. GongQ.F. YangW.L. Determination of the active constituents in aurantii fructus from Jiangxi province at different harvest time by HPLC.Zhong Yao Cai2013361283123750404
    [Google Scholar]
  26. DuanL. GuoL. DouL.L. YuK-Y. LiuE-H. LiP. Comparison of chemical profiling and antioxidant activities of fruits, leaves, branches, and flowers of Citrus grandis ‘Tomentosa’.J. Agric. Food Chem.20146246111221112910.1021/jf503635525335649
    [Google Scholar]
  27. ChenH-F. ZhangW-G. YuanJ-B. LiY-G. YangS-L. YangW-L. Simultaneous quantification of polymethoxylated flavones and coumarins in Fructus aurantii and Fructus aurantii immaturus using HPLC-ESI-MS/MS.J. Pharm. Biomed. Anal.201259909510.1016/j.jpba.2011.10.01322071443
    [Google Scholar]
  28. LiG. ChengY. ZhangT. LiY. HanL. LiangG. Characterization of oxygenated heterocyclic compounds and in vitro antioxidant activity of pomelo essential oil.Drug Des. Devel. Ther.20211593794710.2147/DDDT.S29967833688168
    [Google Scholar]
  29. ChengY. MaX. ZhaoQ. WangC. YanD. LiF. Metabolic profile of C-prenyl coumarins using mass spectrometry-based metabolomics.Molecules20212621655810.3390/molecules2621655834770967
    [Google Scholar]
  30. LiuX. ZhouJ. ZhangT. ChenK. XuM. WuL. LiuJ. HuangY. NieB. ShenX. RenP. HuangX. Meranzin hydrate elicits antidepressant effects and restores reward circuitry.Behav. Brain Res.202139811289810.1016/j.bbr.2020.11289832905810
    [Google Scholar]
  31. XieY. HuangX. HuS.Y. QiuX.J. ZhangY.J. RenP. WangY. JiH. ZhangC.H. XieW.B. HeJ. XieM.Z. HuangH.Y. LiuZ.Q. ZhouH.H. Meranzin hydrate exhibits anti-depressive and prokinetic-like effects through regulation of the shared α2-adrenoceptor in the brain-gut axis of rats in the forced swimming test.Neuropharmacology20136731832510.1016/j.neuropharm.2012.10.00323063894
    [Google Scholar]
  32. XieY. HuangX. HuS.Y. ZhangY.J. WangY. QiuX.J. RenP. FanR. ZhangC.H. XieW.B. JiH. HeJ. ChenX. XieL. LiuZ.Q. ZhouH.H. The involvement of AMPA-ERK1/2-BDNF pathway in the mechanism of new antidepressant action of prokinetic meranzin hydrate.Amino Acids201344241342210.1007/s00726‑012‑1347‑222782214
    [Google Scholar]
  33. XiaZ. ZhangC. DuY. HuangW. XingZ. CaoH. NieK. WangY. XiongX. YangB. The effect of traditional chinese medicine zhike-houpu herbal pair on depressive behaviors and hippocampal serotonin 1A receptors in rats after chronic unpredictable mild stress.Psychosom. Med.201981110010910.1097/PSY.000000000000063930216226
    [Google Scholar]
  34. ShinE. LeeC. SungS.H. KimY.C. HwangB.Y. LeeM.K. Antifibrotic activity of coumarins from Cnidium monnieri fruits in HSC-T6 hepatic stellate cells.J. Nat. Med.201165237037410.1007/s11418‑010‑0485‑721082271
    [Google Scholar]
  35. RiviereC. GoossensL. PommeryN. FourneauC. DelelisA. HenichartJ.P. Antiproliferative effects of isopentenylated coumarins isolated from Phellolophium madagascariense Baker.Nat. Prod. Res.2006201090991610.1080/1478641050027778716854718
    [Google Scholar]
  36. LiL. YuA-L. WangZ-L. ChenK. ZhengW. ZhouJ-J. XieQ. YanH.B. RenP. HuangX. Chaihu-Shugan-San and absorbed meranzin hydrate induce anti-atherosclerosis and behavioral improvements in high-fat diet ApoE-/- mice via anti-inflammatory and BDNF-TrkB pathway.Biomed. Pharmacother.201911510889310.1016/j.biopha.2019.10889331022598
    [Google Scholar]
  37. DuanF. LiY. ZhaoM. HuT. PanX. FengY. MaF. QiuS. ZhengY. Screening of anti-inflammatory components of Qin Jin Hua Tan Tang by a multivariate statistical analysis approach for spectrum-effect relationships.J. Anal. Methods Chem.20212021634897910.1155/2021/634897934426776
    [Google Scholar]
  38. RosselliS. MaggioA. BelloneG. FormisanoC. BasileA. CicalaC. AlfieriA. MascoloN. BrunoM. Antibacterial and anticoagulant activities of coumarins isolated from the flowers of Magydaris tomentosa. Planta Med.200773211612010.1055/s‑2006‑95177217128388
    [Google Scholar]
  39. Adhikari-DevkotaA. KurauchiY. YamadaT. KatsukiH. WatanabeT. DevkotaH.P. Anti-neuroinflammatory activities of extract and polymethoxyflavonoids from immature fruit peels of Citrus ‘Hebesu’.J. Food Biochem.2019436e1281310.1111/jfbc.1281331353615
    [Google Scholar]
  40. HuangW. HuangX. XingZ. QiuX. WangY. FanR. LiuW. RenP. LiuZ. ZhouH. Meranzin hydrate induces similar effect to Fructus Aurantii on intestinal motility through activation of H1 histamine receptors.J. Gastrointest. Surg.2011151879610.1007/s11605‑010‑1374‑921061180
    [Google Scholar]
  41. HuangX. GuoY. HuangW.H. ZhangW. TanZ.R. PengJ.B. WangY.C. HuD.L. OuyangD.S. XiaoJ. WangY. LuoM. ChenY. Searching the cytochrome p450 enzymes for the metabolism of meranzin hydrate: A prospective antidepressant originating from Chaihu-Shugan-San.PLoS One2014911e11381910.1371/journal.pone.011381925427198
    [Google Scholar]
  42. WangY.K. ZhouZ.M. DaiM.Y. MaX.F. XiaoX.R. ZhangS.W. LiuH.N. LiF. Discovery and validation of quality markers of Fructus Aurantii against acetylcholinesterase using metabolomics and bioactivity assays.J. Sep. Sci.202144112189220510.1002/jssc.20200119033784419
    [Google Scholar]
  43. QiuX-J. HuangX. ChenZ-Q. RenP. HuangW. QinF. HuS.H. HuangJ. HeJ. LiuZ.Q. ZhouH.H. Pharmacokinetic study of the prokinetic compounds meranzin hydrate and ferulic acid following oral administration of Chaihu-Shugan-San to patients with functional dyspepsia.J. Ethnopharmacol.2011137120521310.1016/j.jep.2011.05.00921605652
    [Google Scholar]
  44. WangW. ZhaoL. HuangH. YaoJ. ZhouL. WangD. QiuX. Development of an ultra-high performance liquid chromatography method for simultaneous determination of six active compounds in Fructus aurantii and rat plasma and its application to a comparative pharmacokinetic study in rats administered with different doses.J. Anal. Methods Chem.20182018757913610.1155/2018/757913629862124
    [Google Scholar]
  45. LiuY. WangW. ChenY. YanH. WuD. XuJ. ShiS. ShenX. HuangX. Simultaneous quantification of nine components in the plasma of depressed rats after oral administration of Chaihu-Shugan-San by ultra-performance liquid chromatography/quadrupole-time-of-flight mass spectrometry and its application to pharmacokinetic studies.J. Pharm. Biomed. Anal.202018611331010.1016/j.jpba.2020.11331032348951
    [Google Scholar]
  46. ZhangX. HanL. LiuJ. XuQ. GuoY. ZhengW. WangJ. HuangX. RenP. Pharmacokinetic study of 7 compounds following oral administration of fructus aurantii to depressive rats.Front. Pharmacol.2018913110.3389/fphar.2018.0013129556193
    [Google Scholar]
  47. YangY-F. ZhangL. ZhangY-B. YangX-W. Simultaneous assessment of absorption characteristics of coumarins from Angelicae pubescentis Radix: In vitro transport across Caco-2 cell and in vivo pharmacokinetics in rats after oral administration.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.2017106030831510.1016/j.jchromb.2017.06.02028654868
    [Google Scholar]
  48. ShiS. YanH. ChenY. LiuY. ZhangX. XieY. XuJ. WuL. ChenK. ShenX. RenP. HuangX. Pharmacokinetic study of precisely representative antidepressant, prokinetic, anti-inflammatory and anti-oxidative compounds from Fructus aurantii and Magnolia Bark.Chem. Biol. Interact.202031510885110.1016/j.cbi.2019.10885131614129
    [Google Scholar]
  49. YangY.F. ZhangL. YangX.W. Distribution assessments of coumarins from Angelicae pubescentis Radix in rat cerebrospinal fluid and brain by liquid chromatography tandem mass spectrometry analysis.Molecules201823122510.3390/molecules2301022529361720
    [Google Scholar]
  50. SanchesK. DiasR.V.R. da SilvaP.H. FosseyM.A. CarusoÍ.P. de SouzaF.P. de OliveiraL.C. de MeloF.A. Grb2 dimer interacts with coumarin through SH2 domains: A combined experimental and molecular modeling study.Heliyon2019511e0286910.1016/j.heliyon.2019.e0286931844748
    [Google Scholar]
  51. OstrowskaK. Coumarin-piperazine derivatives as biologically active compounds.Saudi Pharm. J.202028222023210.1016/j.jsps.2019.11.02532042262
    [Google Scholar]
  52. YangG. ShiL. PanZ. WuL. FanL. WangC. XuC. LiangJ. The synthesis of coumarin thiazoles containing a trifluoromethyl group and their antifungal activities.Arab. J. Chem.202114110288010.1016/j.arabjc.2020.10.027
    [Google Scholar]
  53. TapanyiğitO. DemirkolO. GülerE. ErşatırM. ÇamM.E. GirayE.S. Synthesis and investigation of anti-inflammatory and anticonvulsant activities of novel coumarin-diacylated hydrazide derivatives.Arab. J. Chem.202013129105911710.1016/j.arabjc.2020.10.034
    [Google Scholar]
  54. Al-AbbasN.S. ShaerN.A. Combination of coumarin and doxorubicin induces drug-resistant acute myeloid leukemia cell death.Heliyon202173e0625510.1016/j.heliyon.2021.e0625533786386
    [Google Scholar]
  55. ShkoorM. MehannaH. ShabanaA. FarhatT. Bani-YaseenA.D. Experimental and DFT/TD-DFT computational investigations of the solvent effect on the spectral properties of nitro substituted pyridino[3,4-c]coumarins.J. Mol. Liq.202031311350910.1016/j.molliq.2020.113509
    [Google Scholar]
  56. MacklinL.J. SchwansJ.P. Synthesis, biochemical evaluation, and molecular modeling of organophosphate-coumarin hybrids as potent and selective butyrylcholinesterase inhibitors.Bioorg. Med. Chem. Lett.2020301312721310.1016/j.bmcl.2020.12721332381396
    [Google Scholar]
  57. MangasuliS.N. Synthesis of novel coumarin-thiazolidine-2,4-dione derivatives: An approach to computational studies and biological evaluation.Results Chem2021310010510.1016/j.rechem.2021.100105
    [Google Scholar]
  58. NagarajaO. BodkeY.D. PushpavathiI. Ravi KumarS. Synthesis, characterization and biological investigations of potentially bioactive heterocyclic compounds containing 4-hydroxy coumarin.Heliyon202066e0424510.1016/j.heliyon.2020.e0424532637685
    [Google Scholar]
/content/journals/ccchem/10.2174/2666001602666220524140540
Loading
/content/journals/ccchem/10.2174/2666001602666220524140540
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test