Skip to content
2000
Volume 2, Issue 2
  • ISSN: 2666-0016
  • E-ISSN: 2666-0008

Abstract

Metal-organic frameworks (MOFs) regarded as three-dimensional analogues of coordination polymers (CPs) find utility in varied applications sensing of ions and molecules, gas/small molecule absorption/separation, catalysis, gas storage, membranes and drug delivery system. In recent years, their applications as photocatalyst for the photodegradation of aromatic dyes have been explored. In addition, computational studies have been employed to complement the experiments, which provided new insight on MOFs/CPs to understand mechanistic pathways of photocatalysis.

This perspective presents the designing strategies and structures of photoactive MOFs and plausible mechanistic pathways using photocatalysed degradation of organic dyes, a lethal component present in wastewater discharge from industries.

The presentation study suggested that using appropriate rigid, semi-rigid and flexible organic ligands with appropriate antennae and suitable co-ligand on coordination to the main group, transition and inner transition metal centers could engender targeted MOFs that can display superior photocatalytic properties.

Loading

Article metrics loading...

/content/journals/ccchem/10.2174/2666001602666220128112624
2022-03-18
2025-03-16
Loading full text...

Full text loading...

References

  1. LiX. WangB. CaoY. ZhaoS. WangH. FengX. ZhouJ. MaX. Water contaminant elimination based on metal–organic frameworks and perspective on their industrial applications.ACS Sustain. Chem. Eng.201974548456310.1021/acssuschemeng.8b05751
    [Google Scholar]
  2. ZengT. WangL. FengL. XuH. ChengQ. PanZ. Two novel organic phosphorous-based MOFs: synthesis, characterization and photocatalytic properties.Dalton Trans.201948252353410.1039/C8DT04106G30523351
    [Google Scholar]
  3. ShiL. WangT. ZhangH. ChangK. MengX. LiuH. YeJ. An amine-functionalized iron(III) metal–organic framework as efficient visible-light photocatalyst for Cr(VI) reduction.Adv. Sci. (Weinh.)201523, 1500006.10.1002/advs.20150000627980927
    [Google Scholar]
  4. AbdollahiN. Akbar RazaviS.A. MorsaliA. HuM.L. High capacity Hg(II) and Pb(II) removal using MOF-based nanocomposite: Cooperative effects of pore functionalization and surface-charge modulation.J. Hazard. Mater.2020387, 121667.10.1016/j.jhazmat.2019.12166731791860
    [Google Scholar]
  5. HuM.L. JoharianM. RazaviS.A.A. MorsaliA. WuD.Z. Azhdari TehraniA. WangJ. JunkP.C. GuoZ.F. Phenolic nitroaromatics detection by fluorinated metal-organic frameworks: Barrier elimination for selective sensing of specific group of nitroaromatics.J. Hazard. Mater.2021406, 124501.10.1016/j.jhazmat.2020.12450133321315
    [Google Scholar]
  6. SuffetI.H. MalaiyandiM. Organic Pollutants in Water.DCAmerican Chemical SocietyWashington1986214
    [Google Scholar]
  7. ShaheenS.M. KwonE.E. BiswasJ.K. TackF.M.G. OkY.S. RinklebeJ. Arsenic, chromium, molybdenum, and selenium: Geochemical fractions and potential mobilization in riverine soil profiles originating from Germany and Egypt.Chemosphere201718055356310.1016/j.chemosphere.2017.04.05428432892
    [Google Scholar]
  8. GarvasisJ. PrasadA.R. ShamsheeraK.O. JaseelaP.K. JosephA. Efficient removal of Congo red from aqueous solutions using phytogenic aluminum sulfate nano coagulant.Mater. Chem. Phys.2020251, 123040.10.1016/j.matchemphys.2020.123040
    [Google Scholar]
  9. MohanS.V. BabuV.L. SarmaP.N. Anaerobic biohydrogen production from dairy wastewater treatment in sequencing batch reactor (AnSBR): Effect of organic loading rate.Enzyme Microb. Technol.20074150651510.1016/j.enzmictec.2007.04.007
    [Google Scholar]
  10. WangG-L. WangJ. ZhouL. ZhouM. WangX. ZhouS-H. LuL. TrivediM. KumarA. Structural diversity in four Zn(II)/Cd(II) coordination polymers tuned by flexible pentacarboxylate and N-donor coligands: Photocatalysts for enhanced degradation of dyes.Dyes Pigments2021195, 109695.10.1016/j.dyepig.2021.109695
    [Google Scholar]
  11. WangJ. ZhouS. ChenC. LuL. LiB. HuW. KumarA. MuddassirM. Two new uncommon 3D cobalt-based metal organic frameworks: Temperature induced syntheses and enhanced photocatalytic properties against aromatic dyes.Dyes and Pigm.2021187, 109068.10.1016/j.dyepig.2020.109068
    [Google Scholar]
  12. KungM.C. YeJ. KungH.H. 110th Anniversary: A perspective on catalytic oxidative processes for sustainable water remediation.Ind. Eng. Chem. Res.201958173251733710.1021/acs.iecr.9b04581
    [Google Scholar]
  13. XieX. HuangX. LinW. ChenY. LangX. WangY. GaoL. ZhuH. ChenJ. Selective adsorption of cationic dyes for stable metal–organic framework ZJU-48.ACS Omega2020523135951360010.1021/acsomega.0c0038532566824
    [Google Scholar]
  14. GuptaV.K. AliI. SalehT.A. NayakA. AgarwalS. Chemical treatment technologies for waste-water recycling—an overview.RSC Advances201226380638810.1039/c2ra20340e
    [Google Scholar]
  15. DuttaA. PanY. LiuJ.Q. KumarA. Multicomponent isoreticular metal-organic frameworks: Principles, current status and challenges.Coord. Chem. Rev.2021445, 214074.10.1016/j.ccr.2021.214074
    [Google Scholar]
  16. International Union of Pure and Applied ChemistryCompendium of Chemical Terminology, Gold Book.2012Available from: https://goldbook.iupac.org/
    [Google Scholar]
  17. LiuR. SunZ. SongX. ZhangY. XuL. XiL. Toward non-precious nanocomposite photocatalyst: An efficient ternary photoanode TiO2 nanotube/Co9S8/polyoxometalate for photoelectrochemical water splitting.Appl. Catal. A201754413714410.1016/j.apcata.2017.07.020
    [Google Scholar]
  18. Al-MeerS. GhouriZ.K. ElsaidK. EasaA. Al-QahtaniM.T. AkhtarM.S. Engineering of magnetically separable ZnFe2O4@TiO2 nanofibers for dye-sensitized solar cells and removal of pollutant from water.J. Alloys Compd.201772347748310.1016/j.jallcom.2017.06.211
    [Google Scholar]
  19. CaoS. YuJ. g-C3N4-based photocatalysts for hydrogen generation.J. Phys. Chem. Lett.20145122101210710.1021/jz500546b26270499
    [Google Scholar]
  20. LongR. LiY. LiuY. ChenS. ZhengX. GaoC. HeC. ChenN. QiZ. SongL. JiangJ. ZhuJ. XiongY. Isolation of Cu atoms in Pd lattice: Forming highly selective sites for photocatalytic conversion of CO2 to CH4.J. Am. Chem. Soc.2017139124486449210.1021/jacs.7b0045228276680
    [Google Scholar]
  21. SinghA. SinghA.K. LiuJ.Q. KumarA. Syntheses, design strategies, and photocatalytic charge dynamics of metal–organic frameworks (MOFs): A catalyzed photo-degradation approach towards organic dyes.Catal. Sci. Technol.2021113946398910.1039/D0CY02275F
    [Google Scholar]
  22. WangJ. ZhouL.Y. RaoC.Y. WangG.L. JiangF. SinghA. KumarA. LiuJ.Q. Two 3D supramolecular isomeric Zn(II)-MOFs as photocatalysts for photodegradation of methyl violet dye.Dyes and Pigm.2021190, 109285.10.1016/j.dyepig.2021.109285
    [Google Scholar]
  23. HuM-L. SafarifardV. DoustkhahE. RostamniaS. MorsaliA. NouruziN. BeheshtiS. AkhbariK. Taking organic reactions over metal-organic frameworks as heterogeneous catalysis.Micropor. Mespor. Mat.201825611112710.1016/j.micromeso.2017.07.057
    [Google Scholar]
  24. LiuK-G. RouhaniF. GaoX-M. Abbasi-AzadM. LiJ-Z. HuX-D. WangW. HuM-L. MorsaliA. Bilateral photocatalytic mechanism of dye degradation by a designed ferrocene-functionalized cluster under natural sunlight.Catal. Sci. Technol.20201075776710.1039/C9CY02003A
    [Google Scholar]
  25. LiuJ. YangG.P. JinJ. WuD. MaL.F. WangY.Y. A first new porous d-p HMOF material with multiple active sites for excellent CO2 capture and catalysis.Chem. Commun. (Camb.)202056162395239810.1039/C9CC09664G32009135
    [Google Scholar]
  26. LiZ-Q. QiuL-G. XuT. WuY. WangW. WuZ-Y. JiangX. Ultrasonic synthesis of the microporous metal–organic framework Cu3(BTC)2 at ambient temperature and pressure: An efficient and environmentally friendly method.Mater. Lett.200963788010.1016/j.matlet.2008.09.010
    [Google Scholar]
  27. SubudhiS. TripathyS.P. ParidaK.M. Highlights of the characterization techniques on inorganic, organic (COF) and hybrid (MOF) photocatalytic semiconductors.Catal. Sci. Technol.20211139241510.1039/D0CY02034F
    [Google Scholar]
  28. SubudhiS. RathD. ParidaK.M. A mechanistic approach towards the photocatalytic organic transformations over functionalised metal organic frameworks: A review.Catal. Sci. Technol.2018867969610.1039/C7CY02094E
    [Google Scholar]
  29. BagP.P. SahooP. Designing metal-organic frameworks based photocatalyst for specific photocatalytic reactions: A crystal engineering approachGreen photocatalysts for energy and environmental process, environmental chemistry for a sustainable world RajendranS. NaushadM. PonceL.C. LichtfouseE. Springer NatureSwitzerland AG20203614118610.1007/978‑3‑030‑17638‑9_6
    [Google Scholar]
  30. HendonC.H. TianaD. FontecaveM. SanchezC. D’arrasL. SassoyeC. RozesL. Mellot-DraznieksC. WalshA. Engineering the optical response of the titanium-MIL-125 metal-organic framework through ligand functionalization.J. Am. Chem. Soc.201313530109421094510.1021/ja405350u23841821
    [Google Scholar]
  31. WangJ. RaoC.Y. LuL. ZhangS.L. MuddassirM. LiuJ.Q. Efficient photocatalytic degradation of methyl violet using two new 3D MOFs directed by different carboxylate spacers.CrystEngComm20212374174710.1039/D0CE01632B
    [Google Scholar]
  32. HuW. LiuD. SinghA. GosaviS.W. ChahuanR. SakiyamaH. MuddassirM. A new 3D supramolecular 2-fold interpenetrating Ag(I)-based coordination polymer as photocatalyst for aromatic dye degradation.J. Mol. Struct.20221248, 131510.10.1016/j.molstruc.2021.131510
    [Google Scholar]
  33. DuL. LuL. ShiC. Wang, H-Y.; Wang, J.; Singh, J.; Kumar, A. New Cd(ii) coordination polymers bearing Y-shaped tricarboxylate ligands as photocatalysts for dye degradation.CrystEngComm2021236400640810.1039/D1CE00640A
    [Google Scholar]
  34. LiuJ. LiuG. GuC. LiuW. XuJ. LiB. WangW. Rational synthesis of a novel 3,3,5-c polyhedral metal–organic framework with high thermal stability and hydrogen storage capability.J. Mater. Chem. A Mater. Energy Sustain.20164116301163410.1039/C6TA03675A
    [Google Scholar]
  35. ZhongY. LiX. ChenJ. WangX. WeiL. FangL. KumarA. ZhuangS. LiuJ. Recent advances in MOF-based nanoplatforms generating reactive species for chemodynamic therapy.Dalton Trans.20204932110451105810.1039/D0DT01882A32756684
    [Google Scholar]
  36. XiaoJ-D. JiangH-L. Metal-organic frameworks for photocatalysis and photothermal catalysis.Acc. Chem. Res.201952235636610.1021/acs.accounts.8b0052130571078
    [Google Scholar]
  37. KinikF.P. Ortega-GuerreroA. OngariD. IrelandC.P. SmitB. Pyrene-based metal organic frameworks: From synthesis to applications.Chem. Soc. Rev.20215053143317710.1039/D0CS00424C33475661
    [Google Scholar]
  38. DeriaP. MondlochJ.E. KaragiaridiO. BuryW. HuppJ.T. FarhaO.K. Beyond post-synthesis modification: Evolution of metal-organic frameworks via building block replacement.Chem. Soc. Rev.201443165896591210.1039/C4CS00067F24723093
    [Google Scholar]
  39. YinH-Q. WangX-Y. YinX-B. Rotation restricted emission and antenna effect in single metal-organic frameworks.J. Am. Chem. Soc.201914138151661517310.1021/jacs.9b0675531492054
    [Google Scholar]
  40. ZhaoY. LiD. Lanthanide-functionalized metal–organic frameworks as ratiometric luminescent sensors.J. Mater. Chem. C Mater. Opt. Electron. Devices20208127391275410.1039/D0TC03430D
    [Google Scholar]
  41. AkimovA.V. AsahiR. JinnouchiR. PrezhdoO.V. What makes the photocatalytic CO2 reduction on N-doped Ta2O5 efficient: Insights from nonadiabatic molecular dynamics.J. Am. Chem. Soc.201513735115171152510.1021/jacs.5b0745426287500
    [Google Scholar]
  42. AbrahamssonM. JohanssonP.G. ArdoS. KopeckyA. GaloppiniE. MeyerG.J. Decreased interfacial charge recombination rate constants with N3-type sensitizers.J. Phys. Chem. Lett.201011725172810.1021/jz100546y
    [Google Scholar]
  43. KarnahlM. KuhntC. MaF. YartsevA. SchmittM. DietzekB. RauS. PoppJ. Tuning of photocatalytic hydrogen production and photoinduced intramolecular electron transfer rates by regioselective bridging ligand substitution.ChemPhysChem201112112101210910.1002/cphc.20110024521681884
    [Google Scholar]
  44. GaoC. WangJ. XuH. XiongY. Coordination chemistry in the design of heterogeneous photocatalysts.Chem. Soc. Rev.201746102799282310.1039/C6CS00727A28368055
    [Google Scholar]
  45. BediaJ. Muelas-RamosV. Peñas-GarzónM. Gómez-AvilésA. RodríguezJ.J. BelverC. A review on the synthesis and characterization of metal organic frameworks for photocatalytic water purification.Catalysts201995210.3390/catal9010052
    [Google Scholar]
  46. KlinowskiJ. PazF.A.A. SilvaP. RochaJ. Microwave-assisted synthesis of metal-organic frameworks.Dalton Trans.201140232133010.1039/C0DT00708K20963251
    [Google Scholar]
  47. SonW-J. KimJ. KimJ. AhnW-S. Sonochemical synthesis of MOF-5.Chem. Commun. (Camb.)2008476336633810.1039/b814740j19048147
    [Google Scholar]
  48. VaitsisC. SourkouniG. ArgirusisC. Metal Organic Frameworks (MOFs) and ultrasound: A review.Ultrason. Sonochem.20195210611910.1016/j.ultsonch.2018.11.00430477790
    [Google Scholar]
  49. JoaristiA.M. Juan-AlcañizJ. Serra-CrespoP. KapteijnF. GasconJ. Electrochemical synthesis of some archetypical Zn2+, Cu2+, and Al3+ metal organic frameworks.Cryst. Growth Des.2012123489349810.1021/cg300552w
    [Google Scholar]
  50. AlKutubiH. GasconJ. SudhölterE.J.R. RassaeiL. Electrosynthesis of metal–organic frameworks: Challenges and opportunities.ChemElectroChem2015246247410.1002/celc.201402429
    [Google Scholar]
  51. KlimakowM. KlobesP. ThünemannA.F. RademannK. EmmerlingF. Mechanochemical synthesis of metal−organic frameworks: A fast and facile approach toward quantitative yields and high specific surface areas.Chem. Mater.2010225216522110.1021/cm1012119
    [Google Scholar]
  52. StolarT. UžarevićK. Mechanochemistry: an efficient and versatile toolbox for synthesis, transformation, and functionalization of porous metal–organic frameworks.CrystEngComm2020224511452510.1039/D0CE00091D
    [Google Scholar]
  53. SzczęśniakB. BorysiukS. ChomaJ. JaroniecM. Mechanochemical synthesis of highly porous materials.Mater. Horiz.202071457147310.1039/D0MH00081G
    [Google Scholar]
  54. ChenD. ZhaoJ. ZhangP. DaiS. Mechanochemical synthesis of metal–organic frameworks.Polyhedron2019162596410.1016/j.poly.2019.01.024
    [Google Scholar]
  55. BianY. XiongN. ZhuG. Technology for the remediation of water pollution: A review on the fabrication of metal organic frameworks.Processes (Basel)2018612210.3390/pr6080122
    [Google Scholar]
  56. ParnhamE.R. MorrisR.E. Ionothermal synthesis of zeolites, metal-organic frameworks, and inorganic-organic hybrids.Acc. Chem. Res.200740101005101310.1021/ar700025k17580979
    [Google Scholar]
  57. Garzón-TovarL. Cano-SarabiaM. Carné-SánchezA. CarbonellC. ImazI. MaspochD. A spray-drying continuous-flow method for simultaneous synthesis and shaping of microspherical high nuclearity MOF beads.React. Chem. Eng.2016153353910.1039/C6RE00065G
    [Google Scholar]
  58. Rubio-MartinezM. Avci-CamurC. ThorntonA.W. ImazI. MaspochD. HillM.R. New synthetic routes towards MOF production at scale.Chem. Soc. Rev.201746113453348010.1039/C7CS00109F28530737
    [Google Scholar]
  59. LinC.L. ChenY.F. QiuL.J. ZhuB.L. WangX. LuoS.P. ShiW.Y. YangT.H. Synthesis, structure and photocatalytic properties of coordination polymers based on pyrazole carboxylic acid ligands.CrystEngComm2020226847685510.1039/D0CE01054E
    [Google Scholar]
  60. LiuX-W. SunT-J. HuJ-L. WangS-D. Composites of metal–organic frameworks and carbon-based materials: Preparations, functionalities and applications.J. Mater. Chem. A Mater. Energy Sustain.201643584361610.1039/C5TA09924B
    [Google Scholar]
  61. WuY.P. TianJ.W. LiuS. LiB. ZhaoJ. MaL.F. LiD.S. LanY.Q. BuX. Bi-microporous metal–organic frameworks with cubane [M4(OH)4] (M=Ni, Co) clusters and pore-space partition for electrocatalytic methanol oxidation reaction.Angew. Chem. Int. Ed. Engl.20195835121851218910.1002/anie.20190713631286629
    [Google Scholar]
  62. ChengY.J. WangR. WangS. XiX.J. MaL.F. ZangS.Q. Encapsulating [Mo3S13]2- clusters in cationic covalent organic frameworks: Enhancing stability and recyclability by converting a homogeneous photocatalyst to a heterogeneous photocatalyst.Chem. Commun. (Camb.)20185496135631356610.1039/C8CC07784C30444238
    [Google Scholar]
  63. ZhaiZ.M. YangX.G. YangZ.T. LuX.M. MaL.F. Trinuclear Ni(ii) oriented highly dense packing and π -conjugation degree of metal–organic frameworks for efficient water oxidation.CrystEngComm2019215862586610.1039/C9CE00944B
    [Google Scholar]
  64. LiuY. LiuZ.F. HuangD.L. ChengM. ZengG.M. LaiC. ZhangC. ZhouC.Y. WangW.J. JiangD.N. Wang, Han, Shao, B. B., Metal or metal-containing nanoparticle@MOF nanocomposites as a promising type of photocatalyst.Coord. Chem. Rev.2019388637810.1016/j.ccr.2019.02.031
    [Google Scholar]
  65. WuZ.B. YuanX.Z. ZhangJ. WangH.M. JiangL.B. ZengG.M. Photocatalytic decontamination of wastewater containing organic dyes by metal–organic frameworks and their derivatives.ChemCatChem20179416410.1002/cctc.201600808
    [Google Scholar]
  66. PanY. DingQ. XuH. ShiC. SinghA. KumarA. LiuJ. A new Zn(II)-based 3D metal-organic framework with uncommon sev topology and its photocatalytic properties for the degradation of organic dyes.CrystEngComm2019214578458510.1039/C9CE00759H
    [Google Scholar]
  67. DingQ. PanY. LuoY. ZhouM. GuanY. LiB. TrivediM. KumarA. LiuJ. Photocatalytic and ferric ion sensing properties of a new three-dimensional metal–organic framework based on cuboctahedral secondary building units.ACS Omega201946107751078310.1021/acsomega.9b0100831460175
    [Google Scholar]
  68. MaA. WuJ. HanY. ChenF. LiB. CaiS. HuangH. SinghA. KumarA. LiuJ. Rational synthesis of a luminescent uncommon (3,4,6)-c connected Zn(ii) MOF: a dual channel sensor for the detection of nitroaromatics and ferric ions.Dalton Trans.201847299627963310.1039/C8DT01923A29969125
    [Google Scholar]
  69. WangQ. GaoQ.Y. Al-EniziA.M. NafadyA. MaS.Q. Recent advances in MOF-based photocatalysis: environmental remediation under visible light.Inorg. Chem. Front.2020730033910.1039/C9QI01120J
    [Google Scholar]
  70. WangC.C. LiJ.R. LvX.L. ZhangY.Q. GuoG.S. Photocatalytic organic pollutants degradation in metal–organic frameworks.Energy Environ. Sci.201472831286710.1039/C4EE01299B
    [Google Scholar]
  71. LiY. XuH. OuyangS. YeJ. Metal-organic frameworks for photocatalysis.Phys. Chem. Chem. Phys.201618117563757210.1039/C5CP05885F26535907
    [Google Scholar]
  72. ShayeganH. AliG.A.M. SafarifardV. Recent progress in the removal of heavy metal ions from water using metal-organic frameworks.Chem. Select20205112414610.1002/slct.201904107
    [Google Scholar]
  73. ChakrabortyP. NagA. ChakrabortyA. PradeepT. Approaching materials with atomic precision using supramolecular cluster assemblies.Acc. Chem. Res.201952121110.1021/acs.accounts.8b0036930507167
    [Google Scholar]
  74. ShayeganH. AliG.A.M. SafarifardV. Amide-functionalized metal–organic framework for high efficiency and fast removal of pb(ii) from aqueous solution.J. Inorg. Orgmetal. Poly. Mater2020303170317810.1007/s10904‑020‑01474‑0
    [Google Scholar]
  75. YounisS.A. KwonE.E. QasimM. KimK.H. KimT. KukkarD. DouX.M. AliI. Metal-organic framework as a photocatalyst: Progress in modulation strategies and environmental/energy applications.Pror. Energy Combust. Sci.202081, 100870.10.1016/j.pecs.2020.100870
    [Google Scholar]
  76. RozvehZ.S. KazemiS. KarimiM. AliG.A.M. SafarifardV. Effect of functionalization of metal-organic frameworks on anion sensing.Polyhedron202018311451411451410.1016/j.poly.2020.114514
    [Google Scholar]
/content/journals/ccchem/10.2174/2666001602666220128112624
Loading
/content/journals/ccchem/10.2174/2666001602666220128112624
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test