Skip to content
2000
Volume 2, Issue 2
  • ISSN: 2666-0016
  • E-ISSN: 2666-0008

Abstract

Solvent- and catalyst-free synthesis of 1,4-dihydropyridines (1,4-DHPs) under microwave radiation is directly dealt with the concept of green chemistry. They are the class of pharmacological agents and drugs used as Ca2+ channel blockers, and they behave as photoelectronic functional materials to exhibit fluorescence activity because of the electron-donating and withdrawing groups present in them.

An efficient and rapid microwave-assisted synthesis of 4-(3-bromo-4-hydroxy-5-methoxyphenyl)-3,5-dicarbmethoxy-2,6-dimethyl-1,4-dihydropyridine has been achieved under solvent- and catalyst-free conditions using three components 3-bromo-4-hydroxy-5-methoxy benzaldehyde, 3-oxobutanoic acid methyl ester, and ammonium carbonate in 25 minutes, which was then subjected to spectroscopic characterization, single-crystal X-ray, and fluorescence study.

The characterization methods were 1H and 13C NMR, FT-IR, LC-MS, and elemental analysis. The single crystal structure was developed using a mixture of Methanol: Tetrahydrofuran and was determined by the single-crystal X-ray diffraction method. The fluorescence study was accomplished in a spectrofluorometer by taking cresyl violet as a reference with two organic solvents, methanol and chloroform.

The crystal structure is monoclinic, space group P2/n with a = 11.0557(3) Å, b = 7.3544(2) Å, c = 22.4852(7) Å and β = 104.107(2)°. The used single-crystal size is 0.200 × 0.200 × 0.200 mm3. The NH⋅⋅⋅⋅O type intermolecular hydrogen bond is observed between N(1) and O(2) atoms. The absorption and fluorescence spectra were found to depend on the chemical nature of the substituents available on C(4), C(2), and C(3) atoms of the 1,4-DHP ring and solvent properties.

The X-ray study shows flattened boat conformation of the 1,4-DHP ring and the presence of intermolecular hydrogen bonding, a major cause of the Ca2+ channel antagonist. More fluorescence has been shown in methanol than chloroform, and the fluorescence nature of the compound may find potential application in the field of biology and chemical sensor.

Loading

Article metrics loading...

/content/journals/ccchem/10.2174/2666001601666210506151517
2021-05-06
2025-03-16
Loading full text...

Full text loading...

References

  1. (a) StriessnigJ. GrabnerM. MitterdorferJ. HeringS. SinneggerM.J. GlossmannH. Structural basis of drug binding to L Ca2+ channels.Trends Pharmacol. Sci.199819310811510.1016/S0165‑6147(98)01171‑79584627
    [Google Scholar]
  2. (b) StoutD.M. MeyersA.I. Recent advances in the chemistry of dihydropyridines.Chem. Rev.19828222324310.1021/cr00048a004
    [Google Scholar]
  3. (a) NakayamaH. KasoakaY. Chemical identification of binding sites for calcium channel antagonists.Heterocycles19964290190910.3987/REV‑95‑SR4
    [Google Scholar]
  4. (b) JanisR.A. TriggleD.J. New developments in Ca2+ channel antagonists.J. Med. Chem.198326677578510.1021/jm00360a0016304312
    [Google Scholar]
  5. (a) EdrakiN. MehdipourA.R. KhoshneviszadehM. MiriR. Dihydropyridines: Evaluation of their current and future pharmacological applications.Drug Discov. Today20091421-221058106610.1016/j.drudis.2009.08.00419729074
    [Google Scholar]
  6. (b) SinghK. AroraD. SinghK. SinghS. Genesis of dihydropyrimidinone(psi) calcium channel blockers: Recent progress in structure-activity relationships and other effects.Mini Rev. Med. Chem.2009919510610.2174/13895570978700168619149663
    [Google Scholar]
  7. (c) CosconatiS. MarinelliL. LavecchiaA. NovellinoE. Characterizing the 1,4-dihydropyridines binding interactions in the L-type Ca2+ channel: Model construction and docking calculations.J. Med. Chem.20075071504151310.1021/jm061245a17335186
    [Google Scholar]
  8. (d) BarandaA.B. MuellerC.A. AlonsoR.M. JiménezR.M. WeinmannW. Quantitative determination of the calcium channel antagonists amlodipine, lercanidipine, nitrendipine, felodipine, and lacidipine in human plasma using liquid chromatography-tandem mass spectrometry.Ther. Drug Monit.2005271445210.1097/00007691‑200502000‑0001015665746
    [Google Scholar]
  9. (e) PontremoliR. LeonciniG. ParodiA. Use of nifedipine in the treatment of hypertension.Expert Rev. Cardiovasc. Ther.200531435010.1586/14779072.3.1.4315723574
    [Google Scholar]
  10. (f) GilpinP.K. PachlaL.A. Pharmaceuticals and related drugs.Anal. Chem.19997121723310.1021/a1990008k
    [Google Scholar]
  11. (g) TestaR. LeonardiA. TajanaA. RiscassiE. MaglioccaR. SartaniA. Lercanidipine (Rec 15/2375): a novel 1,4-dihydropyridine calcium antagonist for hypertension.Cardiovasc. Drug Rev.19971518721910.1111/j.1527‑3466.1997.tb00331.x
    [Google Scholar]
  12. (h) BossertF. MeyerH. WehingerE. 4-Aryldihydropyridines, a new class of highly active calcium antagonists.Angew. Chem. Int. Ed. Engl.19812076276910.1002/anie.198107621
    [Google Scholar]
  13. (i) LoveB. GoodmanM. SnaderK.M. TedeschiR. MackoE. Hantzsch-type dihydropyridine hypotensive agents.J. Med. Chem.19741795696510.1021/jm00255a0104859592
    [Google Scholar]
  14. (a) ZhouX.F. ZhangL. TsengE. Scott-RamsayE. SchentagJ.J. CoburnR.A. MorrisM.E. New 4-aryl-1,4-dihydropyridines and 4-arylpyridines as P-glycoprotein inhibitors.Drug Metab. Dispos.200533332132810.1124/dmd.104.00208915585608
    [Google Scholar]
  15. (b) PeriR. PadmanabhanS. RutledgeA. SinghS. TriggleD.J. Permanently charged chiral 1,4-dihydropyridines: molecular probes of L-type calcium channels. Synthesis and pharmacological characterization of methyl(omega-trimethylalkylammonium) 1,4-dihydro-2,6-dimethyl-4-(3-nitrophenyl)-3,5-pyridinedicarboxylate iodide, calcium channel antagonists.J. Med. Chem.200043152906291410.1021/jm000028l10956198
    [Google Scholar]
  16. (c) KrauzeA. GermaneS. EberlinsO. SturmsI. KlusaV. DubursG. Derivatives of 3-cyano-6-phenyl-4-(3`-pyridyl)-pyridine-2(1H)-thione and their neurotropic activity.Eur. J. Med. Chem.19993430131010.1016/S0223‑5234(99)80081‑6
    [Google Scholar]
  17. (d) VoD. MatoweW.C. RameshM. IqbalN. WolowykM.W. HowlettS.E. KnausE.E. Synthesis, calcium channel agonist-antagonist modulation activities, and voltage-clamp studies of isopropyl 1,4-dihydro-2,6-dimethyl-3-nitro-4-pyridinylpyridine-5-carboxylate racemates and enantiomers.J. Med. Chem.199538152851285910.1021/jm00015a0077543577
    [Google Scholar]
  18. (e) MalaiseW.J. MathiasP.C.F. Stimulation of insulin release by an organic calcium agonist.Diabetologia1985281531563888757
    [Google Scholar]
  19. (f) ChapmanR.W. DankoG. SiegelM.I. Effect of extra- and intracellular calcium blockers on histamine and antigen-induced bronchospasms in guinea pigs and rats.Pharmacology198429528229110.1159/0001380246494237
    [Google Scholar]
  20. (g) TsuruoT. IidaH. NojiriM. TsukagoshiS. SakuraiY. Circumvention of vincristine and Adriamycin resistance in vitro and in vivo by calcium influx blockers.Cancer Res.1983436290529106850602
    [Google Scholar]
  21. (a) WeiX.Y. RutledgeA. TriggleD.J. Pharmacologic and radioligand binding analysis of the actions of 1,4-dihydropyridine activator-antagonist pairs in smooth muscle.J. Mol. Pharmacol.198935541552
    [Google Scholar]
  22. (b) StoutD.M. MeyersA.I. Recent advances in the chemistry of dihydropyridines.Chem. Rev.19828222310.1021/cr00048a004
    [Google Scholar]
  23. (c) KillR.J. WiddowsonD.A. Reaction of N-benzyl-1, 4-dihydronicotinamide with geminal bromo-nitro compounds.J. Chem. Soc. Chem. Commun.197819755756
    [Google Scholar]
  24. (a) HenriksonJ.C. EllisT.K. KingJ.B. CichewiczR.H. Reappraising the structures and distribution of metabolites from black aspergilli containing uncommon 2-benzyl-4H-pyran-4-one and 2-benzylpyridin-4(1H)-one systems.J. Nat. Prod.20117491959196410.1021/np200454z21854017
    [Google Scholar]
  25. (b) YeY.H. ZhuH.L. SongY.C. LiuJ.Y. TanR.X. Structural revision of aspernigrin A, reisolated from Cladosporium herbarum IFB-E002.J. Nat. Prod.20056871106110810.1021/np050059p16038560
    [Google Scholar]
  26. (c) HiortJ. MaksimenkaK. ReichertM. Perovic´-OttstadtS. LinW.H. WrayV. SteubeK. SchaumannK. WeberH. ProkschP. EbelR. MüllerW.E.G. BringmannG.J. New natural products from the sponge-derived fungus Aspergillus niger.Nat. Prod.2004671532154310.1021/np030551d
    [Google Scholar]
  27. (d) MaatooqaG.T. HoffmannJ.J.Z. Pyridine alkaloids from A parthenium hybrid.Naturforsch. C20025721121510.1515/znc‑2002‑3‑40212064715
    [Google Scholar]
  28. MahmoudianM. RichardsW.G. QSAR of binding of dihydropyridine-type calcium antagonists to their receptor on ileal smooth muscle preparations.J. Pharm. Pharmacol.198638427227610.1111/j.2042‑7158.1986.tb04565.x2872290
    [Google Scholar]
  29. SeidelW. MeyerH. BornL. KazdaS. DomportW. Proceedings of the 5th Eur. Symp. On QSAR, Bad Segeberg1984366
    [Google Scholar]
  30. TriggleA.M. ShefterE. TriggleD.J. Crystal structures of calcium channel antagonists: 2,6-dimethyl-3,5-dicarbomethoxy-4-[2-nitro-, 3-cyano-, 4-(dimethylamino)-, and 2,3,4,5,6-pentafluorophenyl]-1,4-dihydropyridine.J. Med. Chem.198023121442144510.1021/jm00186a0296256552
    [Google Scholar]
  31. RodenkirchenR. BayerR. SteinerR. BossertF. MeyerH. MöllerE. Structure-activity studies on nifedipine in isolated cardiac muscle.Naunyn Schmiedebergs Arch. Pharmacol.19793101697810.1007/BF00499876530314
    [Google Scholar]
  32. LoveB. GoodmanM.M. SnaderK.M. TedeschiR. MackoE. Hantzsch-type dihydropyridine hypotensive agents.J. Med. Chem.19741795696510.1021/jm00255a0104859592
    [Google Scholar]
  33. ChallaC. JohnM. LankalapalliR.S. Cascade synthesis of 1,2-dihydropyridine from dienaminodioate and an imine: a three-component approach.Tetrahedron Lett.2013543810381210.1016/j.tetlet.2013.05.037
    [Google Scholar]
  34. SuekiS. TakeiR. ZaitsuY. AbeJ. FukudaA. SetoK. FurukawaY. ShimizuI. Synthesis of 1,4-dihydropyridines and their fluorescence properties.Eur. J. Org. Chem.201420145281530110.1002/ejoc.201402426
    [Google Scholar]
  35. AffeldtR.F. IglesiasR.S. RodembuschF.S. RussowskyD. Photophysical properties of a series of 4-aryl substituted 1,4-dihydropyridines.J. Phys. Org. Chem.20122576977710.1002/poc.2916
    [Google Scholar]
  36. LakowiczJ.R. Principles of fluorescence spectroscopy.Springer Science + Business Media, LLCBaltimore2006
    [Google Scholar]
  37. JimenezA.J. FagnoniM. MellaM. AlbiniA. Photoinduced electron and energy transfer in aryldihydropyridines.J. Org. Chem.200974176615662210.1021/jo901081619642692
    [Google Scholar]
  38. (a) FasaniE. AlbiniA. MellaM. Photochemistry of Hantzsch 1,4-dihydropyridines and pyridines.Tetrahedron200864319010.1016/j.tet.2008.01.104
    [Google Scholar]
  39. (b) PizarroN. GuntherG. Nunez-VergaraL.J. Photophysical and photochemical behavior of nimodipine and felodipine.J. Photochem. Photobiol. Chem.2007189232910.1016/j.jphotochem.2007.01.003
    [Google Scholar]
  40. (c) FasaniE. DondiD. RicciA. AlbiniA. Photochemistry of 4-(2-nitrophenyl)-1,4-dihydropyridines. Evidence for electron transfer and formation of an intermediate.Photochem. Photobiol.200682122523010.1562/2005‑06‑01‑RA‑56116038581
    [Google Scholar]
  41. (d) FasaniE. FagnoniM. DondiD. AlbiniA. Intramolecular electron transfer in the photochemistry of some nitrophenyl dihydropyridines.J. Org. Chem.20067152037204510.1021/jo052463z16496991
    [Google Scholar]
  42. (a) HantzschA. Ueber die Synthese pyridinartiger Verbindungen aus Acetessigäther und Aldehydammoniak.Justus Liebigs Ann. Chem.188221518210.1002/jlac.18822150102
    [Google Scholar]
  43. (b) HantzschA. Condensationsprodukte aus Aldehydammoniak und ketonartigen Verbindungen.Chem. Ber.1881141637163810.1002/cber.18810140214
    [Google Scholar]
  44. (a) SharmaM.G. ValaR.M. PatelD.M. LagunesI. FernandesM.X. PadrónJ.M. RamkumarV. GardasR.L. PatelH.M. Anti-proliferative 1,4-dihydropyridine and pyridine derivatives synthesized through a catalyst-free, one-pot multi-component reaction.ChemistrySelect20183121631216810.1002/slct.201802537
    [Google Scholar]
  45. (b) PhamD.D. LeN.T. Vo-ThanhG. Fast and efficient Hantzsch synthesis using acid-activated and cation-exchanged montmorillonite catalysts under solvent-free microwave irradiation conditions.ChemistrySelect20172120411204510.1002/slct.201702681
    [Google Scholar]
  46. SharmaM.G. RajaniD.P. PatelH.M. Green approach for synthesis of bioactive Hantzsch 1,4-dihydropyridine derivatives based on thiophene moiety via multicomponent reaction.R. Soc. Open Sci.201746, 170006.10.1098/rsos.17000628680664
    [Google Scholar]
  47. ShockraviA. KamaliM. SharifiN. NategholeslamM. MoghanloS.P. One-pot and solvent-free synthesis of 1,4-dihydropyridines and 3,4-dihydropyrimidine-2-ones using new synthetic recyclable catalyst via Biginelli and Hantzsch reactions.Synth. Commun.2013431477148310.1080/00397911.2011.642923
    [Google Scholar]
  48. DattaB. PashaM.A. Silica sulfuric acid: an efficient heterogeneous catalyst for the one-pot synthesis of 1,4-dihydropyridines under mild and solvent-free conditions.Chin. J. Catal.2011321180118410.1016/S1872‑2067(10)60252‑5
    [Google Scholar]
  49. LiJ. LiuQ. XingR.G. ShenX.X. LiuZ.G. BoZ. Microwave-assisted one-pot synthesis of 3-substituted-3,4-dihydrocoumarins via tendem Konevenagel and Hantzsch reactions.Chin. Chem. Lett.200920252810.1016/j.cclet.2008.10.007
    [Google Scholar]
  50. ChhillarA.K. AryaP. MukherjeeC. KumarP. YadavY. SharmaA.K. YadavV. GuptaJ. DaburR. JhaH.N. WattersonA.C. ParmarV.S. PrasadA.K. SharmaG.L. Microwave-assisted synthesis of antimicrobial dihydropyridines and tetrahydropyrimidin-2-ones: Novel compounds against aspergillosis.Bioorg. Med. Chem.200614497398110.1016/j.bmc.2005.09.01416214352
    [Google Scholar]
  51. BreitenbucherJ.G. FigliozziG. Solid-phase synthesis of 4-aryl-1,4-dihydropyridines via the Hantzsch three component condensation.Tetrahedron Lett.2000414311431510.1016/S0040‑4039(00)00660‑2
    [Google Scholar]
  52. (a) WangL.M. ShengJ. ZhangL. HanJ.W. FanZ.Y. TianH. QianC.T. Facile Yb(OTf)3 promoted one-pot synthesis of polyhydroquinoline derivatives through Hantzsch reaction.Tetrahedron2005611539154310.1016/j.tet.2004.11.079
    [Google Scholar]
  53. (b) MoreauJ. DubocA. HubertC. HurvoisaJ.P. RenaudJ.L. Metal-free Brønsted acids catalyzed synthesis of functional 1,4-dihydropyridines.Tetrahedron Lett.2007488647865010.1016/j.tetlet.2007.10.040
    [Google Scholar]
  54. (c) KoS. SastryM.N.V. LinC. YaoC.F. Molecular iodinecatalyzed one-pot synthesis of 4-substituted-1,4-dihydropyridine derivatives via Hantzsch reaction.Tetrahedron Lett.2005465771577410.1016/j.tetlet.2005.05.148
    [Google Scholar]
  55. (d) SabithaG. ReddyG.S.K.K. ReddyC.S. YadavJ.S. A novel TMSI-mediated synthesis of Hantzsch 1,4-dihydropyridines at ambient temperature.Tetrahedron Lett.2003444129413110.1016/S0040‑4039(03)00813‑X
    [Google Scholar]
  56. (e) SridharR. PerumalP.T. A new protocol to synthesize 1,4-dihydropyridines by using 3,4,5-trifluorobenzeneboronic acid as a catalyst in ionic liquid: synthesis of novel 4-(3-carboxyl-1Hpyrazol-4-yl)-1,4-dihydropyridines.Tetrahedron2005612465247010.1016/j.tet.2005.01.008
    [Google Scholar]
  57. (f) TewariN. DwivediN. TripathiR.P. Tetrabutylammonium hydrogen sulfate catalyzed eco-friendly and efficient synthesis of glycosyl 1,4-dihydropyridines.Tetrahedron Lett.2004459011901410.1016/j.tetlet.2004.10.057
    [Google Scholar]
  58. (g) LeeJ.H. Synthesis of Hantsch 1,4-dihydropyridines by fermenting bakers’ yeast.Tetrahedron Lett.2005467329733010.1016/j.tetlet.2005.08.137
    [Google Scholar]
  59. (h) KoS. YaoC.F. Ceric Ammonium Nitrate (CAN) catalyzes the one-pot synthesis of polyhydroquinoline via the Hantzsch reaction.Tetrahedron2006627293729910.1016/j.tet.2006.05.037
    [Google Scholar]
  60. (i) KhadikarB.M. GaikarV.G. ChitnavisA.A. Aqueous hydrotrope solution as a safer medium for microwave enhanced hantzsch dihydropyridine ester synthesis.Tetrahedron Lett.1995368083808610.1016/0040‑4039(95)01680‑G
    [Google Scholar]
  61. (j) AgarwalA. ChauhanP.M.S. Solid supported synthesis of structurally diverse dihydropyrido[2,3-d]pyrimidines using microwave irradiation.Tetrahedron Lett.2005461345134810.1016/j.tetlet.2004.12.109
    [Google Scholar]
  62. (k) SapkalS.B. ShelkeK.F.B. ShingateB. ShingareM.S. Nickel nanoparticle-catalyzed facile and efficient one-pot synthesis of polyhydroquinoline derivatives via Hantzsch condensation under solvent-free conditions.Tetrahedron Lett.2009501754175610.1016/j.tetlet.2009.01.140
    [Google Scholar]
  63. (l) MirelaF.L. MladenL. VladimirV. An efficient, metal-free, room temperature aromatization of Hantzsch-1,4-dihydropyridines with urea–hydrogen peroxide adduct, catalyzed by molecular iodine.Tetrahedron2008645649565610.1016/j.tet.2008.04.040
    [Google Scholar]
  64. (a) KumarA. MauryaR.A. Efficient synthesis of Hantzsch esters and polyhydroquinoline derivatives in aqueous micelles.Synlett2008688388510.1055/s‑2008‑1042908
    [Google Scholar]
  65. (b) OhbergL. WestmanJ. An efficient and fast procedure for the hantzsch dihydropyridine synthesis under microwave conditions.Synlett20011296129810.1055/s‑2001‑16043
    [Google Scholar]
  66. (c) DebacheA. BoulcinaR. BelfaitahA. RhouatiS. CarboniB. One-pot synthesis of 1,4-dihydropyridines via a phenylboronic acid catalyzed Hantzsch three-component reaction.Synlett200850951210.1055/s‑2008‑1032093
    [Google Scholar]
  67. (d) BrunnerB. StogaitisN. LautensM. Synthesis of 1,2-dihydropyridines using vinyloxiranes as masked dienolates in imino-aldol reactions.Org. Lett.20068163473347610.1021/ol061086p16869638
    [Google Scholar]
  68. (e) VohraR.K. BruneauC. RenaudJ.L. Lewis acid-catalyzed sequential transformations: straightforward preparation of functional dihydropyridines.Adv. Synth. Catal.20063482571257410.1002/adsc.200600343
    [Google Scholar]
  69. (f) SinghL. IsharM.P.S. ElangoM. SubramanianV. GuptaV. KanwalP. Synthesis of unsymmetrical substituted 1,4-dihydropyridines through thermal and microwave assisted [4+2] cycloadditions of 1-azadienes and allenic esters.J. Org. Chem.20087362224223310.1021/jo702548b18269292
    [Google Scholar]
  70. (g) MotamedM. BunnelleE.M. SingaramS.W. SarpongR. Pt(II)-catalyzed synthesis of 1,2-dihydropyridines from aziridinyl propargylic esters.Org. Lett.20079112167217010.1021/ol070658i17451249
    [Google Scholar]
  71. (h) BridgwoodK.L. VeitchG.E. LeyS.V. Magnesium nitride as a convenient source of ammonia: preparation of dihydropyridines.Org. Lett.200810163627362910.1021/ol801399w18642824
    [Google Scholar]
  72. (i) ColbyD.A. BergmanR.G. EllmanJ.A. Synthesis of dihydropyridines and pyridines from imines and alkynes via C-H activation.J. Am. Chem. Soc.2008130113645365110.1021/ja710478418302381
    [Google Scholar]
  73. (j) ManningJ.R. DaviesH.M.L. One-pot synthesis of highly functionalized pyridines via a rhodium carbenoid induced ring expansion of isoxazoles.J. Am. Chem. Soc.2008130278602860310.1021/ja803139k18549206
    [Google Scholar]
  74. CorreaW.H. ScottJ.L. Solvent-free, two-step synthesis of some unsymmetrical 4-aryl-1,4-dihydropyridines.Green Chem.20013629630110.1039/b106397a
    [Google Scholar]
  75. EvdokimovN.M. MagedovI.V. KireevA.S. KornienkoA. One-step, three-component synthesis of pyridines and 1,4-dihydropyridines with manifold medicinal utility.Org. Lett.20068589990210.1021/ol052994+16494469
    [Google Scholar]
  76. SridharanV. PerumalP.T. AvendaňoC. MenéndezJ.C. A new three-component domino synthesis of 1,4-dihydropyridines.Tetrahedron2007634407441310.1016/j.tet.2007.03.092
    [Google Scholar]
  77. ShashiR. PrasadN.L. BegumN.S. One-pot synthesis of 1,4-dihydropyridine derivatives and their X-ray crystal structures: role of fluorine in weak interactions.J. Struct. Chem.202061693894710.1134/S0022476620060141
    [Google Scholar]
  78. PengJ. LiuY. WangM. HuangS. LiuM. ZhouY. GaoW. HuangX. WuH. Synthesis, crystal structures, and mechanochromic properties of bulky trialkylsilylacetylene-substituted aggregation-induced-emission-active 1,4-dihydropyridine derivatives.Dyes Pigm.2020174, 108094.10.1016/j.dyepig.2019.108094
    [Google Scholar]
  79. MaruM.S. AntharjanamP.K.S. KhanN.H. Catalyst-free solid phase microwave-assisted synthesis of 1,4-dihydropyridine derivatives and their single crystal structure determination.ChemistrySelect2019477478210.1002/slct.201803559
    [Google Scholar]
  80. (a) MaruM.S. Microwave assisted solid phase catalyst-free Biginelli synthesis of 3,4-dihydropyrimidin-2(1H)-one and 3,4-dihydropyrimidin-2(1H)-thione: A green approach, characterization and molecular crystal structures.Mol. Cryst. Liq. Cryst. (Phila. Pa.)2016641536210.1080/15421406.2016.1235928
    [Google Scholar]
  81. (b) MaruM.S. ShahM.K. A novel 4-(4,5-dimethoxy-2-nitrophenyl)-2,6-dimethyl-3,5-dicarbethoxy-1,4-dihydropyridine (C21H26N2O8): microwave-irradiated Hantzsch ester synthesis, characterization and molecular crystal.Mol. Cryst. Liq. Cryst. (Phila. Pa.)201562321722510.1080/15421406.2015.1010907
    [Google Scholar]
  82. (c) MaruM.S. ShahM.K. Synthesis and molecular crystal structure of 4-(4,5-Dimethoxy-2-nitrophenyl)-2,6-dimethyl-3,5-dicarbmethoxy-1,4-dihydropyridine (C19H22N2O8).Mol. Cryst. Liq. Cryst. (Phila. Pa.)201357411712810.1080/15421406.2012.752308
    [Google Scholar]
  83. NoniusB. APES, SAINT and XPREP.Bruker AXS INC2013
    [Google Scholar]
  84. (a) KrauseL. Herbst-IrmerR. SheldrickG.M. StalkeD. Comparison of silver and molybdenum microfocus X-ray sources for single-crystal structure determination.J. Appl. Cryst.20154831010.1107/S1600576714022985
    [Google Scholar]
  85. (b) BlatovV.A. IUCr CompComm Newsletter2006
    [Google Scholar]
  86. (a) SheldrickG.M. A short history of SHELX.Acta Crystallogr.2008A6411212210.1107/S0108767307043930
    [Google Scholar]
  87. (b) SheldrickG.M. Phase annealing in SHELX-90: direct methods for larger structures.Acta Crystallogr.1990A4646747310.1107/S0108767390000277
    [Google Scholar]
  88. (a) SheldrickG.M. Crystal structure refinement with SHELXL.Acta Crystallogr.2015C7138
    [Google Scholar]
  89. SheldrickG.M. SHELXL-2014/7: A program for structure refinementUniversity of GöttingenGöttingen, Germany2014
    [Google Scholar]
  90. SheldrickG.M. SHELXL-2014/7: A program for structure refinementUniversity of GöttingenGöttingen, Germany2014
    [Google Scholar]
  91. SheldrickG.M. SHELXL-2014/7: A program for structure refinementUniversity of GöttingenGöttingen, Germany2014
    [Google Scholar]
  92. ZsolnaiL. ZORTEP- Molecular Graphics Program.University of Heidelberg1997
    [Google Scholar]
  93. SuarezM. Synthesis and structural study of new highly lipophilic 1,4-dihydropyridines.New J. Chem.2005291567157610.1039/b506018d
    [Google Scholar]
  94. (a) TriggleD.J. LangsD.A. JanisR.A. Ca2+ channel ligands: Structure-function relationships of the 1,4-dihydropyridines.Med. Res. Rev.19899212318010.1002/med.26100902032654521
    [Google Scholar]
  95. (b) MahmoudianM. RichardsW.C. 1986
  96. (c) FossheimR. Crystal structure of the dihydropyridine Ca2+ antagonist felodipine. Dihydropyridine binding prerequisites assessed from crystallographic data.J. Med. Chem.198629230530710.1021/jm00152a0233005572
    [Google Scholar]
  97. (d) FossheimR. X-ray analysis of Ca2+ antagonists: 3,5-bis-(methoxycarbonyl)-2,6-dimethyl-4-(2-aminophenyl)-1,4 -dihydropyridine hydrate.Acta Chem. Scand. Sen.1986B41581
    [Google Scholar]
  98. KhoshneviszadehM. EdrakiN. JavidniaK. AlborziA. PourabbasB. MardanehJ. MiriR. Synthesis and biological evaluation of some new 1,4-dihydropyridines containing different ester substitute and diethyl carbamoyl group as anti-tubercular agents.Bioorg. Med. Chem.20091741579158610.1016/j.bmc.2008.12.07019162489
    [Google Scholar]
/content/journals/ccchem/10.2174/2666001601666210506151517
Loading
/content/journals/ccchem/10.2174/2666001601666210506151517
Loading

Data & Media loading...

Supplements

The single-crystal XRD data are given in Tables -. FT-IR, 1H and 13CNMR, and LC-MS spectra are represented in Figs. (). The details of the chemicals, reagents, physical measurements, characterization techniques, experimental procedures, and complete characterization data of the compound are also provided.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test