Skip to content
2000
Volume 2, Issue 2
  • ISSN: 2666-0016
  • E-ISSN: 2666-0008

Abstract

Magnetic nanoparticles are attracting much attention toward easy operation and size controllable synthesis methods. We develop a method to synthesize MnO, Co, CoO, and Ni nanoparticles by thermal decomposition of metal 2,4-pentanedionates in the presence of oleylamine (OLA), oleic acid (OA), and 1‐octadecene (ODE).

Similar experimental conditions are used to prepare nanoparticles except for the metal starting materials (manganese 2,4-pentanedionate, nickel 2,4-pentanedionate, and cobalt 2,4-pentanedionate), leading to different products. For the manganese 2,4-pentanedionate starting material, MnO nanoparticles are always obtained as the reaction is controlled with different temperatures, precursor concentrations, ligand ratios, and reaction time. For the cobalt 2,4-pentanedionate starting material, only three experimental conditions can produce pure phase CoO and Co nanoparticles. For the nickel 2,4-pentanedionate starting material, only three experimental conditions lead to the production of pure phase Ni nanoparticles.

The nanoparticle sizes increase with the increase of reaction temperatures. It is observed that the reaction time affects nanoparticle growth. The nanoparticles are studied by XRD, TEM, and magnetic measurements.

This work presents a facile method to prepare nanoparticles with different sizes, which provides a fundamental understanding of nanoparticle growth in solution.

Loading

Article metrics loading...

/content/journals/ccchem/10.2174/2666001601666211110093947
2021-12-14
2025-03-16
Loading full text...

Full text loading...

References

  1. RobinsonI. VolkM. TungL.D. CaruntuG. KayN. ThanhN.T. Synthesis of Co nanoparticles by pulsed laser irradiation of Cobalt Carbonyl in organic solution.J. Phys. Chem. C2009113229497950110.1021/jp9014564
    [Google Scholar]
  2. TodaT. IgarashiH. UchidaH. WatanabeM. Enhancement of the electroreduction of Oxygen on Pt Alloys with Fe, Ni, and Co.J. Electrochem. Soc.199914610375010.1149/1.1392544
    [Google Scholar]
  3. SunH. LeeS.Y. LeeC.S. Physical chemistry research articles published in the bulletin of the Korean Chemical Society: 2003-2007.Bull. Korean Chem. Soc.2008292450462
    [Google Scholar]
  4. JordanA. ScholzR. WustP. FählingH. FelixR. Magnetic fluid hyperthermia (MFH): Cancer treatment with AC magnetic field induced excitation of biocompatible superparamagnetic nanoparticles.J. Magn. Magn. Mater.19992011-341341910.1016/S0304‑8853(99)00088‑8
    [Google Scholar]
  5. TartajP.M. a del P. Morales, S. Veintemillas-Verdaguer, T.G. lez-Carre o, C.J. Serna, The preparation of magnetic nanoparticles for applications in biomedicine.J. Phys. Appl. Phys.20033613R182R19710.1088/0022‑3727/36/13/202
    [Google Scholar]
  6. HoehnM. KüstermannE. BlunkJ. WiedermannD. TrappT. WeckerS. FöckingM. ArnoldH. HeschelerJ. FleischmannB.K. SchwindtW. BührleC. Monitoring of implanted stem cell migration in vivo: A highly resolved in vivo magnetic resonance imaging investigation of experimental stroke in ratProc. Natl. Acad. Sci. USA20029925162671627210.1073/pnas.24243549912444255
    [Google Scholar]
  7. TodorovicM. SchultzS. WongJ. SchererA. Writing and reading of single magnetic domain per bit perpendicular patterned media.Appl. Phys. Lett.199974172516251810.1063/1.123885
    [Google Scholar]
  8. VerelstM. ElyT.O. AmiensC. SnoeckE. LecanteP. MossetA. RespaudM. BrotoJ.M. ChaudretB. Synthesis and characterization of CoO, Co3O4, and mixed Co/CoO nanoparticules.Chem. Mater.1999111027022708
    [Google Scholar]
  9. YeY. YuanF. LiS. Synthesis of CoO nanoparticles by esterification reaction under solvothermal conditions.Mater. Lett.20066025-263175317810.1016/j.matlet.2006.02.062
    [Google Scholar]
  10. SunX. ZhangY-W. SiR. YanC-H. Metal (Mn, Co, and Cu) oxide nanocrystals from simple formate precursors.Small20051111081108610.1002/smll.20050011917193400
    [Google Scholar]
  11. MurrayC.B. SunS. GaschlerDoyle, H. BetleyT.A. KaganC.R. Colloidal synthesis of nanocrystals and nanocrystal superlattices.IBM J. Res. Dev.20014514756
    [Google Scholar]
  12. LuL.T. TungL.D. RobinsonI. UngD. TanB. LongJ. CooperA.I. FernigD.G. ThanhN.T.K. Size and shape control for water-soluble magnetic cobalt nanoparticles using polymer ligands.J. Mater. Chem.200818212453245810.1039/b801800f
    [Google Scholar]
  13. JiaoJ. SeraphinS. WangX. WithersJ.C. Preparation and properties of ferromagnetic carbon-coated Fe, Co, and Ni nanoparticles.J. Appl. Phys.19968010310310810.1063/1.362765
    [Google Scholar]
  14. LiD. KomarneniS. Microwave-assisted polyol process for synthesis of Ni nanoparticles.J. Am. Ceram. Soc.20068951510151710.1111/j.1551‑2916.2006.00925.x
    [Google Scholar]
  15. TzitziosV. BasinaG. GjokaM. AlexandrakisV. GeorgakilasV. NiarchosD. BoukosN. PetridisD. Chemical synthesis and characterization of hcp Ni nanoparticles.Nanotechnology200617153750375510.1088/0957‑4484/17/15/023
    [Google Scholar]
  16. JeonY.T. MoonJ.Y. LeeG.H. ParkJ. ChangY. Comparison of the magnetic properties of metastable hexagonal close-packed Ni nanoparticles with those of the stable face-centered cubic Ni nanoparticles.J. Phys. Chem. B200611031187119110.1021/jp054608b16471662
    [Google Scholar]
  17. ChandraS. KumarA. TomarP.K. Synthesis of Ni nanoparticles and their characterizations.J. Saudi Chem. Soc.201418543744210.1016/j.jscs.2011.09.008
    [Google Scholar]
  18. DaiQ. TangJ. The optical and magnetic properties of CoO and Co nanocrystals prepared by a facile technique.Nanoscale20135167512751910.1039/c3nr01971c23832010
    [Google Scholar]
  19. DaiQ. TangJ. Magnetic properties of CoO nanocrystals prepared with a controlled reaction atmosphere.RSC Advances20133249228923310.1039/c3ra40834e
    [Google Scholar]
  20. MadrasG. McCoyB.J. Temperature effects on the transition from nucleation and growth to Ostwald ripening.Chem. Eng. Sci.200459132753276510.1016/j.ces.2004.03.022
    [Google Scholar]
  21. MadrasG. McCoyB.J. Temperature effects during Ostwald ripening.J. Chem. Phys.200311931683169310.1063/1.1578617
    [Google Scholar]
  22. XueX. PennR.L. LeiteE.R. HuangF. LinZ. Crystal growth by oriented attachment: kinetic models and control factors.Cryst. Eng. Comm.20141681419142910.1039/c3ce42129e
    [Google Scholar]
  23. DehsariH.S. RibeiroA.H. ErsözB. TremelW. JakobG. AsadiK. Effect of precursor concentration on size evolution of iron oxide nanoparticles.Cryst. Eng. Comm.201719446694670210.1039/C7CE01406F
    [Google Scholar]
  24. HarrisR.A. ShumbulaP.M. van der WaltH. Analysis of the interaction of surfactants oleic acid and oleylamine with iron oxide nanoparticles through molecular mechanics modeling.Langmuir201531133934394310.1021/acs.langmuir.5b0067125768034
    [Google Scholar]
  25. PandaA.B. GlaspellG. El-ShallM.S. Microwave synthesis and optical properties of uniform nanorods and nanoplates of rare earth oxides.J. Phys. Chem. C200711151861186410.1021/jp0670283
    [Google Scholar]
  26. MohamedM.B. AbouZeidK.M. AbdelsayedV. AljarashA.A. El-ShallM.S. Growth mechanism of anisotropic gold nanocrystals via microwave synthesis: Formation of dioleamide by gold nanocatalysis.ACS Nano2010452766277210.1021/nn901617920392051
    [Google Scholar]
  27. LitwinowiczA-A. TakamiS. AsahinaS. HaoX. YokoA. SeongG. TomaiT. AdschiriT. Formation dynamics of mesocrystals composed of organically modified CeO2 nanoparticles: Analogy to a particle formation model.Cryst. Eng. Comm.201921253836384310.1039/C9CE00473D
    [Google Scholar]
  28. ZulkifliZ.A. RazakK.A. RahmanW.N.W.A. Effect of hydrothermal reaction time on size of bismuth oxide nanoparticles synthesized via hydrothermal method.AIP Conf. Proc.201719011, 020011.10.1063/1.5010448
    [Google Scholar]
  29. DuanC. MengY. WangY. ZhangZ. GeY. LiX. GuoY. XiaoD. High-crystallinity and high-rate Prussian Blue analogues synthesized at the oil–water interface.Inorg. Chem. Front.2021882008201610.1039/D0QI01361G
    [Google Scholar]
  30. ChenN. ShaoC. QuY. LiS. GuW. ZhengT. YeL. YuC. Folic Acid-Conjugated MnO nanoparticles as a T1 contrast agent for magnetic resonance imaging of tiny brain gliomas.ACS Appl. Mater. Interfaces20146221985019857
    [Google Scholar]
  31. LinC-C. ChenC-J. ChiangR-K. Facile synthesis of monodisperse MnO nanoparticles from bulk MnO.J. Cryst. Growth2012338115215610.1016/j.jcrysgro.2011.10.022
    [Google Scholar]
  32. SunX. GutierrezA. YacamanM.J. DongX. JinS. Investigations on magnetic properties and structure for carbon encapsulated nanoparticles of Fe, Co, Ni.Mater. Sci. Eng. A2000286115716010.1016/S0921‑5093(00)00628‑6
    [Google Scholar]
  33. LuX. TuanH-Y. KorgelB.A. XiaY. Facile synthesis of gold nanoparticles with narrow size distribution by using AuCl or AuBr as the precursor.Chemistry20081451584159110.1002/chem.20070157018058964
    [Google Scholar]
  34. TreadwellL.J. BoyleT.J. BellN.S. Mark.A. Rodriguez, B.R. Muntifering, K. Hattar, Impact of oleylamine: Oleic acid ratio on the morphology of yttria nanomaterials.J. Mater. Sci.2017528268827910.1007/s10853‑017‑1042‑5
    [Google Scholar]
  35. Ben AissaM.A. TremblayB. Andrieux-LedierA. MaisonhauteE. RaouafiN. CourtyA. Copper nanoparticles of well-controlled size and shape: A new advance in synthesis and self-organization.Nanoscale2015773189319510.1039/C4NR06893A25615699
    [Google Scholar]
  36. LanF. BaiJ. WangH. The preparation of oleylamine modified micro-size sphere silver particles and its application in crystalline silicon solar cells.RSC Advances20188168661687210.1039/C8RA02620C
    [Google Scholar]
  37. DaiQ. PatelK. DonatelliG. RenS. Magnetic cobalt ferrite nanocrystals for an energy storage concentration cell.Angew. Chem. Int. Ed. Engl.20165535104391044310.1002/anie.20160479027440206
    [Google Scholar]
  38. ZhangY. RimalG. TangJ. DaiQ. Synthesis of NiFe2O4 nanoparticles for energy and environment applications.Mater. Res. Express20185, 025023.10.1088/2053‑1591/aaacde
    [Google Scholar]
/content/journals/ccchem/10.2174/2666001601666211110093947
Loading
/content/journals/ccchem/10.2174/2666001601666211110093947
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keyword(s): Co nanoparticles; Magnetic Nanoparticles; MnO nanoparticles; Ni nanoparticles; TEM; XRD
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test