Skip to content
2000
Volume 3, Issue 1
  • ISSN: 2666-1217
  • E-ISSN: 2666-1225

Abstract

Introduction

Approximately 90% of reported and identified cases of snakebites in Brazil are caused by species belonging to the genus. These snakes have clinical relevance due to their venom composition, which contains substances capable of triggering local and systemic effects, leading to morbidities and/or mortality.

Objective

The objective of this study was to evaluate the toxic and toxinological effects of snake venom on zebrafish embryos and larvae.

Methods

The stability of . snake venom under the conditions used in the toxicity experiments in zebrafish embryos and larvae was evaluated on citrated human plasma. Zebrafish embryos and/or larvae mortality, morphological alterations, spontaneous tail movements and heartbeat caused by the venom were quantified within 96 hours. Toxicity parameters and activity of enzyme-related toxicity biomarkers were evaluated in zebrafish after 96 hours of semi-static exposure to the venom.

Results

The results indicated that the venom causes toxicity in zebrafish embryos and larvae, inducing embryonic mortality, alteration in the number of spontaneous tail movements and activity of biomarker enzymes. The results suggested that the toxic effects caused by the venom in the early stages of zebrafish development are mediated, in part, by neurotoxic action, induction of oxidative and metabolic stress caused by low molecular weight components, and proteins present in this venom.

Conclusion

Toxinological evaluations using the zebrafish as a model are scarce; however, this study presented promising results that encourage the development of future research in toxinology using this animal as a model organism.

Loading

Article metrics loading...

/content/journals/vat/10.2174/2666121703666230515122901
2023-07-12
2025-04-07
Loading full text...

Full text loading...

References

  1. Paixão-JúniorO.B. SilvaD.P. FerreiraS.S. Comparative protein composition and biological effects caused by Bothrops Jararacussu and B. moojeni crude venoms.Venoms Toxins202111678410.2174/2666121701999200618102634
    [Google Scholar]
  2. SilvaJ.L. SivaA.M. AmaralG.L.G. OrtegaG.P. MonteiroW.M. BernardeP.S. The deadliest snake according to ethnobiological perception of the population of the Alto Juruá region, western Brazilian Amazonia.Rev. Soc. Bras. Med. Trop.202053e2019030510.1590/0037‑8682‑0305‑201931859953
    [Google Scholar]
  3. SuraweeraW. WarrellD. WhitakerR. Trends in snakebite deaths in India from 2000 to 2019 in a nationally representative mortality study.eLife20209e5407610.7554/eLife.5407632633232
    [Google Scholar]
  4. GutiérrezJ.M. CalveteJ.J. HabibA.G. HarrisonR.A. WilliamsD.J. WarrellD.A. Correction: Snakebite envenoming.Nat. Rev. Dis. Primers2017311707910.1038/nrdp.2017.79
    [Google Scholar]
  5. CasewellN.R. JacksonT.N.W. LaustsenA.H. SunagarK. Causes and consequences of snake venom variation.Trends Pharmacol. Sci.202041857058110.1016/j.tips.2020.05.00632564899
    [Google Scholar]
  6. WilliamsD. Snakebite. World Health Organization.2023Available From: https://www.who.int/health-topics/snakebite#tab=tab_1
  7. Brasil, Ministério da Saúde. Acidente por animais peçonhentos - Notificações registradas no sistema de informação de agravos de notificação – Sinan Net.Banco de dados do Sistema Único de Saúde-DATASUS2023Available From: http://tabnet.datasus.gov.br/cgi/deftohtm.exe?sinannet/animaisp/bases/animaisbrnet.def
    [Google Scholar]
  8. OliveiraS.S. AlvesE.C. SantosA.S. Factors associated with systemic bleeding in Bothrops envenomation in a tertiary hospital in the Brazilian Amazon.Toxins20191112210.3390/toxins1101002230621001
    [Google Scholar]
  9. LarréchéS. ChippauxJ.P. ChevillardL. Bleeding and thrombosis: Insights into pathophysiology of Bothrops venom-related hemostasis disorders.Int. J. Mol. Sci.20212217964310.3390/ijms2217964334502548
    [Google Scholar]
  10. AlbuquerqueP.L.M.M. JacintoC.N. SilvaG.B. Junior, Lima JB, Veras MDSB, Daher EF. Lesão renal aguda causada pelo veneno das cobras Crotalus e Bothrops: Revisão da epidemiologia, das manifestações clínicas e do tratamento.Rev. Inst. Med. Trop. São Paulo201355529530110.1590/S0036‑4665201300050000124037282
    [Google Scholar]
  11. Renally Santos de MoraesRCA Costa e SilvaR Cav-alcante SantosE. Aspectos Epidemiológicos Dos Acidentes Ofídicos na Região Nordeste no Período Entre 2016-2019.Revista interdisciplinar emsaúde20218Único22623810.35621/23587490.v8.n1.p226‑238
    [Google Scholar]
  12. SpolaoreB. FernándezJ. LomonteB. MassiminoM.L. TonelloF. Enzymatic labelling of snake venom phospholipase A2 toxins.Toxicon20191709910710.1016/j.toxicon.2019.09.01931563525
    [Google Scholar]
  13. SilvaG.M. SouzaD.H.B. WaitmanK.B. Design, synthesis, and evaluation of Bothrops venom serine protease peptidic inhibitors.J. Venom. Anim. Toxins Incl. Trop. Dis.202127e2020006610.1590/1678‑9199‑jvatitd‑2020‑006633488681
    [Google Scholar]
  14. MarcussiS. BernardesC.P. Santos-FilhoN.A. Molecular and functional characterization of a new non-hemorrhagic metalloprotease from Bothrops Jararacussu snake venom with antiplatelet activity.Peptides200728122328233910.1016/j.peptides.2007.10.01018006118
    [Google Scholar]
  15. BarbosaL.G. CostaT.R. BorgesI.P. A comparative study on the leishmanicidal activity of the L-amino acid oxidases BjussuLAAO-II and BmooLAAO-II isolated from Brazilian Bothrops snake venoms.Int. J. Biol. Macromol.202116716726727810.1016/j.ijbiomac.2020.11.14633242552
    [Google Scholar]
  16. PiresW.L. KayanoA.M. de CastroO.B. Lectin isolated from Bothrops Jararacussu venom induces IL-10 release by TCD4+ cells and TNF-α release by monocytes and natural killer cells.J. Leukoc. Biol.2019106359560510.1002/JLB.MA1118‑463R31087703
    [Google Scholar]
  17. KashimaS. RobertoP.G. SoaresA.M. Analysis of Bothrops Jararacussu venomous gland transcriptome focusing on structural and functional aspects: I--gene expression profile of highly expressed phospholipases A2.Biochimie200486321121910.1016/j.biochi.2004.02.00215134836
    [Google Scholar]
  18. Correa-NettoC. Teixeira-AraujoR. AguiarA.S. Immunome and venome of Bothrops Jararacussu: A proteomic approach to study the molecular immunology of snake toxins.Toxicon20105571222123510.1016/j.toxicon.2009.12.01820060013
    [Google Scholar]
  19. JorgeR.J.B. MonteiroH.S.A. Gonçalves-MachadoL. Venomics and antivenomics of Bothrops erythromelas from five geographic populations within the Caatinga ecoregion of northeastern Brazil.J. Proteomics20151149311410.1016/j.jprot.2014.11.01125462430
    [Google Scholar]
  20. SeguraÁ. HerreraM. VargasM. Preclinical efficacy against toxic activities of medically relevant Bothrops sp. (Serpentes: Viperidae) snake venoms by a polyspecific antivenom produced in Mexico.Rev. Biol. Trop.201665134535010.15517/rbt.v65i1.1890829466649
    [Google Scholar]
  21. GarciaSoares Stockand, Stockand JD. Mohamed Abd El-Aziz. Snake venoms in drug discovery: Valuable therapeutic tools for life saving.Toxins2019111056410.3390/toxins1110056431557973
    [Google Scholar]
  22. LazaroviciP. MarcinkiewiczC. LelkesP.I. From snake venom’s disintegrins and C-type lectins to anti-platelet drugs.Toxins201911530310.3390/toxins1105030331137917
    [Google Scholar]
  23. LinF. ReidP.F. QinZ. Cobrotoxin could be an effective therapeutic for COVID-19.Acta Pharmacol. Sin.20204191258126010.1038/s41401‑020‑00501‑732843715
    [Google Scholar]
  24. AndersenM.L. WinterL.M.F. Animal models in biological and biomedical research - experimental and ethical concerns.An. Acad. Bras. Cienc.201991Suppl. 1e2017023810.1590/0001‑376520172017023828876358
    [Google Scholar]
  25. FernandesM.R. PedrosoA.R. Animal experimentation: A look into ethics, welfare and alternative methods.Rev. Assoc. Med. Bras.2017631192392810.1590/1806‑9282.63.11.92329451652
    [Google Scholar]
  26. HickmanD.L. JohnsonJ. VemulapalliT.H. CrislerJ.R. ShepherdR. Commonly used animal models, principles of animal research for graduate and undergraduate students.CambridgeAcademic Press2017117175
    [Google Scholar]
  27. CoghlanA. Just 2.5% of DNA turns mice into men.New Scientist2002Available From: https://www.newscientist.com/article/dn2352-just-2-5-of-dna-turns-mice-into-men/#ixzz7LUxxMiEO
    [Google Scholar]
  28. ZonL.I. PetersonR.T. In vivo drug discovery in the zebrafish.Nat. Rev. Drug Discov.200541354410.1038/nrd160615688071
    [Google Scholar]
  29. BailoneR.L. FukushimaH.C.S. Ventura FernandesB.H. Zebrafish as an alternative animal model in human and animal vaccination research.Lab. Anim. Res.20203611310.1186/s42826‑020‑00042‑432382525
    [Google Scholar]
  30. AliS. MilH.G.J. RichardsonM.K. Large-scale assessment of the zebrafish embryo as a possible predictive model in toxicity testing.PLoS One201166e2107610.1371/journal.pone.002107621738604
    [Google Scholar]
  31. CassarS. AdattoI. FreemanJ.L. Use of zebrafish in drug discovery toxicology.Chem. Res. Toxicol.20203319511810.1021/acs.chemrestox.9b0033531625720
    [Google Scholar]
  32. ChoiT.Y. ChoiT.I. LeeY.R. ChoeS.K. KimC.H. Zebrafish as an animal model for biomedical research.Exp. Mol. Med.202153331031710.1038/s12276‑021‑00571‑533649498
    [Google Scholar]
  33. DucharmeN.A. ReifD.M. GustafssonJ.A. BondessonM. Comparison of toxicity values across zebrafish early life stages and mammalian studies: Implications for chemical testing.Reprod. Toxicol.20155531010.1016/j.reprotox.2014.09.00525261610
    [Google Scholar]
  34. PolakaS. KoppisettiH.P. PandeS. TekadeM. SharmaM.C. TekadeR.K. Zebrafish models for toxicological screening.Pharmacokinetics and toxicokinetic considerations.1st edCambridgeAcademic Press2022Vol. II22124010.1016/B978‑0‑323‑98367‑9.00011‑1
    [Google Scholar]
  35. BauerB. MallyA. LiedtkeD. Zebrafish embryos and larvae as alternative animal models for toxicity testing.Int. J. Mol. Sci.202122241341710.3390/ijms22241341734948215
    [Google Scholar]
  36. LieschkeG.J. CurrieP.D. Animal models of human disease: Zebrafish swim into view.Nat. Rev. Genet.20078535336710.1038/nrg209117440532
    [Google Scholar]
  37. HoweK. ClarkM.D. TorrojaC.F. The zebrafish reference genome sequence and its relationship to the human genome.Nature2013496744649850310.1038/nature1211123594743
    [Google Scholar]
  38. VieiraL.R. HissaD.C. SouzaT.M. Proteomics analysis of zebrafish larvae exposed to 3,4dichloroaniline using the fish embryo acute toxicity test.Environ. Toxicol.202035884986010.1002/tox.2292132170993
    [Google Scholar]
  39. LangovaV. ValesK. HorkaP. HoracekJ. The role of zebrafish and laboratory rodents in schizophrenia research.Front. Psychiatry20201170310.3389/fpsyt.2020.0070333101067
    [Google Scholar]
  40. SousaI.D.L. BarbosaA.R. SalvadorG.H.M. Secondary hemostasis studies of crude venom and isolated proteins from the snake Crotalus durissus terrificus.Int. J. Biol. Macromol.201913112713310.1016/j.ijbiomac.2019.03.05930867125
    [Google Scholar]
  41. YunB. Korea and the OECD: The past 20 years and beyond.OECD2017Available From: https://www.oecd-ilibrary.org/docserver/a1eea7cd-en.pdf?expires=1679084009&id=id&accname=guest&checksum=F5D82C6DD231E82FE5328875CA957194
    [Google Scholar]
  42. FinneyD.J. Probit analysis: A statistical treatment of the sigmoid response curve.CambridgeUniversity Press1952
    [Google Scholar]
  43. MunizM.S. HalbachK. Alves ArarunaI.C. Moxidectin toxicity to zebrafish embryos: Bioaccumulation and biomarker responses.Environ. Pollut.202128311709610.1016/j.envpol.2021.11709633866217
    [Google Scholar]
  44. BradfordM.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.Anal. Biochem.1976721-224825410.1016/0003‑2697(76)90527‑3942051
    [Google Scholar]
  45. EllmanG.L. CourtneyK.D. AndresV.Jr FeatherstoneR.M. A new and rapid colorimetric determination of acetylcholinesterase activity.Biochem. Pharmacol.196172889510.1016/0006‑2952(61)90145‑913726518
    [Google Scholar]
  46. ClaiborneA. Catalase Activity. Handbook of methods for oxygen radical research.Boca RatonCRC Press1985283284
    [Google Scholar]
  47. DominguesI. GravatoC. Oxidative stress assessment in zebrafish larvae.Methods Mol. Biol.2018179747748610.1007/978‑1‑4939‑7883‑0_2629896710
    [Google Scholar]
  48. SchneiderM.C. MinK. HamrickP.N. Overview of snakebite in Brazil: Possible drivers and a tool for risk mapping.PLoS Negl. Trop. Dis.2021151e000904410.1371/journal.pntd.000904433513145
    [Google Scholar]
  49. SilvaF.S. IbiapinaH.N.S. NevesJ.C.F. Severe tissue complications in patients of Bothrops snakebite at a tertiary health unit in the Brazilian Amazon: Clinical characteristics and associated factors.Rev. Soc. Bras. Med. Trop.202154e0374e202010.1590/0037‑8682‑0374‑202033656146
    [Google Scholar]
  50. PaivaD.D.A.M.R.D. Serpentes de interesse em saúde.Revista Científica Multidisciplinar Núcleo do Conhecimento20207414417010.32749/nucleodoconhecimento.com.br/biologia/interesse‑em‑saude
    [Google Scholar]
  51. SilvaE.O. PardalP.P.O. Envenenamento por serpente Bothrops no município de Afuá, Ilha de Marajó, estado do Pará, Brasil.Rev. Panamazonica Saude201893576210.5123/S2176‑62232018000300007
    [Google Scholar]
  52. SousaL. ZdenekC. DobsonJ. Coagulotoxicity of Bothrops (lancehead pit-vipers) venoms from Brazil: Differential biochemistry and antivenom efficacy resulting from prey-driven venom variation.Toxins2018101041110.3390/toxins1010041130314373
    [Google Scholar]
  53. KiniR.M. RaoV.S. JosephJ.S. Procoagulant proteins from snake venoms.Haemostasis2001313-621822411910188
    [Google Scholar]
  54. KiniR. KohC. Metalloproteases affecting blood coagulation, fibrinolysis and platelet aggregation from snake venoms: Definition and nomenclature of interaction sites.Toxins201681028410.3390/toxins810028427690102
    [Google Scholar]
  55. CarvalhoB.M.A. SantosJ.D.L. XavierB.M. Snake venom PLA2s inhibitors isolated from Brazilian plants: Synthetic and natural molecules.BioMed Res. Int.2013201315304510.1155/2013/15304524171158
    [Google Scholar]
  56. SinghS. DodtJ. VolkersP. Structure functional insights into calcium binding during the activation of coagulation factor XIII A.Sci. Rep.2019911132410.1038/s41598‑019‑47815‑z31383913
    [Google Scholar]
  57. BarmoreW. BajwaT. BurnsB. Biochemistry, Clotting Factors.StatPearls.Treasure Island, FLStatPearls Publishing2022Available From: https://www.ncbi.nlm.nih.gov/books/NBK507850/
    [Google Scholar]
  58. MetaironS. ZamboniC.B. SuzukiM.F. da SilvaL.F.F.L. RizzuttoM.A. Inorganic elements in blood of mice immunized with snake venom using NAA and XRF techniques.J. Radioanal. Nucl. Chem.20163091596410.1007/s10967‑016‑4770‑0
    [Google Scholar]
  59. BortoletoR.K. MurakamiM.T. WatanabeL. SoaresA.M. ArniR.K. Purification, characterization and crystallization of Jararacussin-I, a fibrinogen-clotting enzyme isolated from the venom of Bothrops Jararacussu.Toxicon20024091307131210.1016/S0041‑0101(02)00140‑X12220716
    [Google Scholar]
  60. MazziM.V. MarcussiS. CarlosG.B. A new hemorrhagic metalloprotease from Bothrops Jararacussu snake venom: Isolation and biochemical characterization.Toxicon200444221522310.1016/j.toxicon.2004.06.00215246772
    [Google Scholar]
  61. Sant’AnaC.D. BernardesC.P. IzidoroL.F.M. Molecular characterization of BjussuSP-I, a new thrombin-like enzyme with procoagulant and kallikrein-like activity isolated from Bothrops Jararacussu snake venom.Biochimie200890350050710.1016/j.biochi.2007.10.00517996740
    [Google Scholar]
  62. HammJ. CegerP. AllenD. Characterizing sources of variability in zebrafish embryo screening protocols.Altern. Anim. Exp.201936110312010.14573/altex.180416230415271
    [Google Scholar]
  63. AliM.K. SaberS.P. TaiteD.R. EmadiS. IrvingR. The Protective Layer of Zebrafish Embryo Changes Continuously with Advancing Ages of Embryo Development (AGED).J Toxicol Pharmacol201712e009
    [Google Scholar]
  64. ChenZ.Y. LiN.J. ChengF.Y. The effect of the chorion on size-dependent acute toxicity and underlying mechanisms of amine-modified silver nanoparticles in zebrafish embryos.Int. J. Mol. Sci.2020218286410.3390/ijms2108286432325940
    [Google Scholar]
  65. Alberto-SilvaC. PortaroF.C.V. KodamaR.T. Novel neuroprotective peptides in the venom of the solitary scoliid wasp Scolia decorata ventralis.J. Venom. Anim. Toxins Incl. Trop. Dis.20212727e2020017110.1590/1678‑9199‑jvatitd‑2020‑017134194483
    [Google Scholar]
  66. da Silva CaldeiraC.A. Diniz-SousaR. PimentaD.C. Antimicrobial peptidomes of Bothrops atrox and Bothrops Jararacussu snake venoms.Amino Acids202153101635164810.1007/s00726‑021‑03055‑y34482475
    [Google Scholar]
  67. XuX. LiB. ZhuS. RongR. Hypotensive peptides from snake venoms: Structure, function and mechanism.Curr. Top. Med. Chem.201515765866910.2174/156802661566615021711383525686732
    [Google Scholar]
  68. ScianiJ.M. PimentaD.C. The modular nature of bradykinin-potentiating peptides isolated from snake venoms.J. Venom. Anim. Toxins Incl. Trop. Dis.20172314510.1186/s40409‑017‑0134‑729090005
    [Google Scholar]
  69. Pinheiro-JúniorE.L. Boldrini-FrançaJ. de Campos AraújoL.M.P. LmrBPP9: A synthetic bradykinin-potentiating peptide from Lachesis muta rhombeata venom that inhibits the angiotensin-converting enzyme activity in vitro and reduces the blood pressure of hypertensive rats.Peptides20181021710.1016/j.peptides.2018.01.01529410030
    [Google Scholar]
  70. LegradiJ.B. Di PaoloC. KraakM.H.S. An ecotoxicological view on neurotoxicity assessment.Environ. Sci. Eur.20183014610.1186/s12302‑018‑0173‑x30595996
    [Google Scholar]
  71. ZindlerF. BeedgenF. BrandtD. Analysis of tail coiling activity of zebrafish (Danio rerio) embryos allows for the differentiation of neurotoxicants with different modes of action.Ecotoxicol. Environ. Saf.201918610975410.1016/j.ecoenv.2019.10975431606639
    [Google Scholar]
  72. González-FragaJ. Dipp-AlvarezV. BardullasU. Quantification of spontaneous tail movement in zebrafish embryos using a novel open-source MATLAB Application.Zebrafish201916221421610.1089/zeb.2018.168830615594
    [Google Scholar]
  73. KiperK.G. FreemanJ.L. Zebrafish as a tool to assess developmental neurotoxicity.Cell culture techniques neuromethods.New YorkHumana Press Inc.2019Vol. 14516919310.1007/978‑1‑4939‑9228‑7_9
    [Google Scholar]
  74. KnoglerL.D. RyanJ. Saint-AmantL. DrapeauP. A hybrid electrical/chemical circuit in the spinal cord generates a transient embryonic motor behavior.J. Neurosci.201434299644965510.1523/JNEUROSCI.1225‑14.201425031404
    [Google Scholar]
  75. OginoK. HirataH. Defects of the glycinergic synapse in zebrafish.Front. Mol. Neurosci.201695010.3389/fnmol.2016.0005027445686
    [Google Scholar]
  76. de OliveiraA. BriganteT. OliveiraD. Tail coiling assay in zebrafish (Danio rerio) embryos: Stage of development, promising positive control candidates, and selection of an appropriate organic solvent for screening of developmental neurotoxicity (DNT).Water202113211910.3390/w13020119
    [Google Scholar]
  77. MunawarA. AliS. AkremA. BetzelC. Snake venom peptides: Tools of biodiscovery.Toxins2018101147410.3390/toxins1011047430441876
    [Google Scholar]
  78. GiertenJ. PylatiukC. HammoudaO.T. Automated high-throughput heartbeat quantification in medaka and zebrafish embryos under physiological conditions.Sci. Rep.2020101204610.1038/s41598‑020‑58563‑w32029752
    [Google Scholar]
  79. SifuentesD.N. El-KikC.Z. RicardoH.D. Ability of suramin to antagonize the cardiotoxic and some enzymatic activities of Bothrops Jararacussu venom.Toxicon2008511283610.1016/j.toxicon.2007.07.00218023464
    [Google Scholar]
  80. RicardoH.D. MartinsV.V. Monteiro-MachadoM. Ability of polyanions to antagonize the cardiotoxic effect of the Bothrops Jararacussu venom.Toxicon201260220520610.1016/j.toxicon.2012.04.21622178782
    [Google Scholar]
  81. EissaM.A. HashimY.Z.H.Y. Mohd NasirM.H. Fabrication and characterization of Agarwood extract-loaded nanocapsules and evaluation of their toxicity and anti-inflammatory activity on RAW 264.7 cells and in zebrafish embryos.Drug Deliv.20212812618263310.1080/10717544.2021.201230734894947
    [Google Scholar]
  82. DalzochioT. RodriguesG.Z.P. PetryI.E. GehlenG. da SilvaL.B. The use of biomarkers to assess the health of aquatic ecosystems in Brazil: A review.Int. Aquatic Research20168428329810.1007/s40071‑016‑0147‑9
    [Google Scholar]
  83. McHardyS.F. WangH.Y.L. McCowenS.V. ValdezM.C. Recent advances in acetylcholinesterase Inhibitors and Reactivators: An update on the patent literature (2012-2015).Expert Opin. Ther. Pat.2017274455476
    [Google Scholar]
  84. KoenigJ.A. DaoT.L. KanR.K. ShihT.M. Zebrafish as a model for acetylcholinesterase-inhibiting organophosphorus agent exposure and oxime reactivation.Ann. N. Y. Acad. Sci.201613741687710.1111/nyas.1305127123828
    [Google Scholar]
  85. MassarskyA. KozalJ.S. Di GiulioR.T. Glutathione and zebrafish: Old assays to address a current issue.Chemosphere201716870771510.1016/j.chemosphere.2016.11.00427836271
    [Google Scholar]
  86. HuangY MaJ MengY Exposure to Oxadiazon-Butachlor causes cardiac toxicity in zebrafish embryos.Environ Pollut2020265Pt A11477510.1016/j.envpol.2020.11477532504889
    [Google Scholar]
  87. SinghR.R. ReindlK.M. Glutathione S-Transferases in Cancer.Antioxidants202110570110.3390/antiox1005070133946704
    [Google Scholar]
  88. Al-AsmariA. AnvarbatchaR. Al-ShahraniM. IslamM. Snake venom causes apoptosis by increasing the reactive oxygen species in colorectal and breast cancer cell lines.OncoTargets Ther.201696485649810.2147/OTT.S11505527799796
    [Google Scholar]
  89. TangH. ChenJ. NieL. YaoS. KuangY. Electrochemical oxidation of glutathione at well-aligned carbon nanotube array electrode.Electrochim. Acta200651153046305110.1016/j.electacta.2005.08.038
    [Google Scholar]
  90. MachadoA.R.T. AissaA.F. RibeiroD.L. Cytotoxic, genotoxic, and oxidative stress-inducing effect of an l-amino acid oxidase isolated from Bothrops Jararacussu venom in a co-culture model of HepG2 and HUVEC cells.Int. J. Biol. Macromol.201912742543210.1016/j.ijbiomac.2019.01.05930654040
    [Google Scholar]
  91. AbdelglilM.I. AbdallahS.O. El-DesoukyM.A. AlfaifiM.Y. ElbehairiS.E.I. MohamedA.F. Evaluation of the anticancer potential of crude, irradiated Cerastes cerastes snake venom and propolis ethanolic extract & related biological alterations.Molecules20212622705710.3390/molecules2622705734834153
    [Google Scholar]
  92. ToyamaM.H. CostaC.R.C. BelchorM.N. Evaluation of Thiol-dependent Enzymes on the Pharmacological Effects Induced by the Catalytically Active PLA2 from Bothrops Jararacussu.Preprints20212021050012
    [Google Scholar]
  93. KleinR. NagyO. TóthováC. ChovanováF. Clinical and diagnostic dignificance of Lactate Dehydrogenase and its isoenzymes in Animals.Vet. Med. Int.20202020534648310.1155/2020/534648332607139
    [Google Scholar]
  94. DarO.I. SharmaS. SinghK. SharmaA. BhardwajR. KaurA. Biomarkers for the toxicity of sublethal concentrations of triclosan to the early life stages of carps.Sci. Rep.20201011732210.1038/s41598‑020‑73042‑y33057045
    [Google Scholar]
  95. QuintaneiroC. PatrícioD. NovaisS.C. SoaresA.M.V.M. MonteiroM.S. Endocrine and physiological effects of linuron and S-metolachlor in zebrafish developing embryos.Sci. Total Environ.201758639040010.1016/j.scitotenv.2016.11.15328209406
    [Google Scholar]
  96. YoungA. OldfordC. MaillouxR.J. Lactate dehydrogenase supports lactate oxidation in mitochondria isolated from different mouse tissues.Redox Biol.20202810133910.1016/j.redox.2019.10133931610469
    [Google Scholar]
  97. YuH. YinY. YiY. Targeting lactate dehydrogenase A (LDHA) exerts antileukemic effects on Tcell acute lymphoblastic leukemia.Cancer Commun. (Lond.)2020401050151710.1002/cac2.1208032820611
    [Google Scholar]
  98. SilvaL.M.G. SilvaC.A.A. SilvaA. Photobiomodulation protects and promotes differentiation of C2C12 myoblast cells exposed to snake venom.PLoS One2016114e015289010.1371/journal.pone.015289027058357
    [Google Scholar]
  99. AebiH. Catalase in vitro.Methods Enzymol.198410512112610.1016/S0076‑6879(84)05016‑36727660
    [Google Scholar]
  100. Costal-OliveiraF. StranskyS. Guerra-DuarteC. L-amino acid oxidase from Bothrops atrox snake venom triggers autophagy, apoptosis and necrosis in normal human keratinocytes.Sci. Rep.20199178110.1038/s41598‑018‑37435‑430692577
    [Google Scholar]
  101. MorásAM SteffensL NordioBE Cytotoxic mechanism of Bothrops jararaca venom mediated by mitochondrial depolarization.Adv Toxicol Toxic Eff202041001008
    [Google Scholar]
  102. BurinS.M. CacemiroM.C. CominalJ.G. Bothrops moojeni L-amino acid oxidase induces apoptosis and epigenetic modulation on Bcr-Abl+ cells.J. Venom. Anim. Toxins Incl. Trop. Dis.202026e2020012310.1590/1678‑9199‑jvatitd‑2020‑012333354202
    [Google Scholar]
  103. de Ornellas StrapazzonJ. Benedetti ParisottoE. MoratelliA.M. Systemic oxidative stress in victims of Bothrops snakebites.J. Appl. Biomed.201513216116710.1016/j.jab.2014.11.002
    [Google Scholar]
  104. AgostinettoD. TaroucoC.P. NohattoM.A. OliveiraC. FragaD.S. Metabolic activity of wheat and ryegrass plants in competition.Planta Daninha2017350e01715546310.1590/s0100‑83582017350100044
    [Google Scholar]
  105. HiuJ.J. YapM.K.K. Cytotoxicity of snake venom enzymatic toxins: Phospholipase A2 and l -amino acid oxidase.Biochem. Soc. Trans.202048271973110.1042/BST2020011032267491
    [Google Scholar]
  106. TeixeiraC. FernandesC.M. LeiguezE. Chudzinski-TavassiA.M. Inflammation induced by platelet-activating viperid snake venoms: Perspectives on thromboinflammation.Front. Immunol.201910208210.3389/fimmu.2019.0208231572356
    [Google Scholar]
  107. MoreiraV. LeiguezE. JanovitsP.M. Maia-MarquesR. FernandesC.M. TeixeiraC. Inflammatory Effects of Bothrops Phospholipases A2: Mechanisms involved in biosynthesis of lipid mediators and lipid accumulation.Toxins2021131286810.3390/toxins1312086834941706
    [Google Scholar]
  108. CaroneS.E.I. CostaT.R. BurinS.M. A new l-amino acid oxidase from Bothrops Jararacussu snake venom: Isolation, partial characterization, and assessment of pro-apoptotic and antiprotozoal activities.Int. J. Biol. Macromol.2017103253510.1016/j.ijbiomac.2017.05.02528495622
    [Google Scholar]
/content/journals/vat/10.2174/2666121703666230515122901
Loading
/content/journals/vat/10.2174/2666121703666230515122901
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test