Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1574-8928
  • E-ISSN: 2212-3970

Abstract

Background

Recent studies reported that terminal nucleotidyltransferase 5A (TENT5A) is highly expressed in glioblastoma and associated with poor prognosis. In this work, we aim to specify the expression level of TENT5A in different grades of glioma and explore its role in glioma progression.

Methods

GEPIA online tools were used to perform the bioinformatic analysis. qRT-PCR, Western blot, and Immunohistochemistry were performed in glioma cells or tissues. Furthermore, CCK8, colony formation, transwell, flow cytometry and scratch assays were performed.

Results

TENT5A was highly expressed in glioma and its level was associated with the pathological grade of glioma. Knockdown of TENT5A suppressed cell proliferation, colony formation ability, cell invasion and migration. Overexpression of TENT5A was lethal to the glioma cells.

Conclusion

Our data showed that the expression of TENT5A is associated with the pathological grade of glioma. Knockdown of TENT5A decreased the ability of proliferation, invasion and migration of glioma cells. High levels of TENT5A in glioma cells are lethal. Therefore, TENT5A could be a new target for glioma treatment.

Loading

Article metrics loading...

/content/journals/pra/10.2174/0115748928280901231206102637
2024-01-09
2025-01-04
Loading full text...

Full text loading...

References

  1. ThakkarJ.P. DolecekT.A. HorbinskiC. Epidemiologic and molecular prognostic review of glioblastoma.Cancer Epidemiol. Biomarkers Prev.201423101985199610.1158/1055‑9965.EPI‑14‑0275 25053711
    [Google Scholar]
  2. LouisD.N. OhgakiH. WiestlerO.D. The 2007 WHO classification of tumours of the central nervous system.Acta Neuropathol.200711429710910.1007/s00401‑007‑0243‑4 17618441
    [Google Scholar]
  3. WellerM. WickW. AldapeK. Glioma.Nat. Rev. Dis. Primers2015111501710.1038/nrdp.2015.17 27188790
    [Google Scholar]
  4. OstromQ.T. CBTRUS statistical report: Primary brain and central nervous system tumors diagnosed in the United States in.Neuro-Oncol.20132156
    [Google Scholar]
  5. KoshyM. VillanoJ.L. DolecekT.A. Improved survival time trends for glioblastoma using the SEER 17 population-based registries.J. Neurooncol.2012107120721210.1007/s11060‑011‑0738‑7 21984115
    [Google Scholar]
  6. StuppR. HegiM.E. MasonW.P. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial.Lancet Oncol.200910545946610.1016/S1470‑2045(09)70025‑7 19269895
    [Google Scholar]
  7. NaborsL.B. PortnowJ. AhluwaliaM. Central nervous system cancers, version 3.2020, NCCN clinical practice guidelines in oncology.J. Natl. Compr. Canc. Netw.202018111537157010.6004/jnccn.2020.0052 33152694
    [Google Scholar]
  8. StuppR. TaillibertS. KannerA. Effect of tumor-treating fields plus maintenance temozolomide vs maintenance temozolomide alone on survival in patients with glioblastoma.JAMA2017318232306231610.1001/jama.2017.18718 29260225
    [Google Scholar]
  9. GhiaseddinA.P. ShinD. MelnickK. TranD.D. Tumor treating fields in the management of patients with malignant gliomas.Curr. Treat. Options Oncol.20202197610.1007/s11864‑020‑00773‑5 32734509
    [Google Scholar]
  10. YangT. KongZ. MaW. PD-1/PD-L1 immune checkpoint inhibitors in glioblastoma: Clinical studies, challenges and potential.Hum. Vaccin. Immunother.202117254655310.1080/21645515.2020.1782692 32643507
    [Google Scholar]
  11. XuS. TangL. LiX. FanF. LiuZ. Immunotherapy for glioma: Current management and future application.Cancer Lett.202047611210.1016/j.canlet.2020.02.002 32044356
    [Google Scholar]
  12. LagaliP.S. KakukL.E. GriesingerI.B. WongP.W. AyyagariR. Identification and characterization of C6orf37, a novel candidate human retinal disease gene on chromosome 6q14.Biochem. Biophys. Res. Commun.2002293135636510.1016/S0006‑291X(02)00228‑0 12054608
    [Google Scholar]
  13. BarragánI. BorregoS. Abd El-AzizM.M. Genetic analysis of FAM46A in spanish families with autosomal recessive retinitis pigmentosa: Characterisation of novel VNTRs.Ann. Hum. Genet.2008721263410.1111/j.1469‑1809.2007.00393.x 17803723
    [Google Scholar]
  14. KuchtaK. KnizewskiL. WyrwiczL.S. RychlewskiL. GinalskiK. Comprehensive classification of nucleotidyltransferase fold proteins: identification of novel families and their representatives in human.Nucleic Acids Res.200937227701771410.1093/nar/gkp854 19833706
    [Google Scholar]
  15. KuchtaK. MuszewskaA. KnizewskiL. FAM46 proteins are novel eukaryotic non-canonical poly(A) polymerases.Nucleic Acids Res.20164483534354810.1093/nar/gkw222 27060136
    [Google Scholar]
  16. WatanabeT YamamotoT TsukanoK HiranoS HorikawaA MichiueT. Fam46a regulates BMP-dependent pre-placodal ectoderm differentiation in Xenopus.Development 201814520dev.16671010.1242/dev.166710 30291163
    [Google Scholar]
  17. LinH.H. LoY.L. WangW.C. HuangK.Y. i KY, Chang GW. Overexpression of FAM46A, a Non-canonical Poly(A) polymerase, promotes hemin-induced hemoglobinization in K562 Cells.Front. Cell Dev. Biol.2020841410.3389/fcell.2020.00414 32528962
    [Google Scholar]
  18. DoyardM. BacrotS. HuberC. FAM46A mutations are responsible for autosomal recessive osteogenesis imperfecta.J. Med. Genet.201855427828410.1136/jmedgenet‑2017‑104999 29358272
    [Google Scholar]
  19. LiuS. ZhengF. CaiY. ZhangW. DunY. Effect of Long-Term Exercise Training on lncRNAs Expression in the Vascular Injury of Insulin Resistance.J. Cardiovasc. Transl. Res.201811645946910.1007/s12265‑018‑9830‑0 30302742
    [Google Scholar]
  20. CarayolJP United states.US20200224195A12020
  21. CarayolJP United states. US20210236593A12021
  22. CarayolJ. ChabertC. Di CaraA. Protein quantitative trait locus study in obesity during weight-loss identifies a leptin regulator.Nat. Commun.201781208410.1038/s41467‑017‑02182‑z 29234017
    [Google Scholar]
  23. BianchiC.M. MariottiF. VergerE.O. HuneauJ.F. United states.PLoS One2016113e014985810.1371/journal.pone.0149858 26959492
    [Google Scholar]
  24. CuiJ. WangW. LaiM.D. Identification of a novel VNTR polymorphism in C6orf37 and its association with colorectal cancer risk in Chinese population.Clin. Chim. Acta20063681-215515910.1016/j.cca.2005.12.043 16545789
    [Google Scholar]
  25. EtokebeG.E. ZienolddinyS. KupanovacZ. Association of the FAM46A gene VNTRs and BAG6 rs3117582 SNP with non small cell lung cancer (NSCLC) in Croatian and Norwegian populations.PLoS One2015104e012265110.1371/journal.pone.0122651 25884493
    [Google Scholar]
  26. DongZ. WangJ. ZhanT. XuS. Identification of prognostic risk factors for esophageal adenocarcinoma using bioinformatics analysis.OncoTargets Ther.2018114327433710.2147/OTT.S156716 30100738
    [Google Scholar]
  27. LongJ. ZhangB. SignorelloL.B. Evaluating genome-wide association study-identified breast cancer risk variants in African-American women.PLoS One201384e5835010.1371/journal.pone.0058350 23593120
    [Google Scholar]
  28. FarukiH.D. Lai-goldman, Myla (Durham, NC, US), Mayhew, Greg (Durham, NC, US), Serody, Jonathan (Duham, NC, US), Perou, Charles (Carrboro, NC, US), Hayes, David Neil (Chapel Hill, NC, US) Methods for subtyping of lung squamous cell carcinoma.US11041214B2 2021
  29. LiangS. LiuY. HeJ. GaoT. LiL. HeS. Family with sequence similarity 46 member a confers chemo-resistance to ovarian carcinoma via TGF-β/Smad2 signaling.Bioengineered2022134106291063910.1080/21655979.2022.2064652 35465837
    [Google Scholar]
  30. TsaoD.A. ChangH.J. LinC.Y. Gene expression profiles for predicting the efficacy of the anticancer drug 5-fluorouracil in breast cancer.DNA Cell Biol.201029628529310.1089/dna.2009.1006 20482226
    [Google Scholar]
  31. GaoW. ChanJ.Y.W. WongT.S. Long non-coding RNA deregulation in tongue squamous cell carcinoma.BioMed Res. Int.2014201411010.1155/2014/405860 25045670
    [Google Scholar]
  32. WangY. CaiR. WangP. HuangC. ZhangC. LiuZ. FAM46A expression is elevated in glioblastoma and predicts poor prognosis of patients.Clin. Neurol. Neurosurg.202120110642110.1016/j.clineuro.2020.106421 33370626
    [Google Scholar]
  33. ChenT.Y. LiuY. ChenL. LuoJ. ZhangC. ShenX.F. Identification of the potential biomarkers in patients with glioma: A weighted gene co-expression network analysis.Carcinogenesis202041674375010.1093/carcin/bgz194 31761927
    [Google Scholar]
  34. XiangC. LiuX. ZhouD. ZhouY. WangX. ChenF. Identification of a glioma functional network from gene fitness data using machine learning.J. Cell. Mol. Med.20222641253126310.1111/jcmm.17182 35044082
    [Google Scholar]
  35. WuW.T. LiY.J. FengA.Z. Data mining in clinical big data: The frequently used databases, steps, and methodological models.Mil. Med. Res.2021814410.1186/s40779‑021‑00338‑z 34380547
    [Google Scholar]
  36. KeenJ. MooreH. The genotype-tissue expression (GTEx) Project: Linking clinical data with molecular analysis to advance personalized medicine.J. Pers. Med.201551222910.3390/jpm5010022 25809799
    [Google Scholar]
  37. LiuZ-H. HuJ-L. LiangJ-Z. Far upstream element-binding protein 1 is a prognostic biomarker and promotes nasopharyngeal carcinoma progression.Cell Death Dis.2015610e192010.1038/cddis.2015.258 26469968
    [Google Scholar]
  38. WirschingH.G. GalanisE. WellerM. Glioblastoma.Handb. Clin. Neurol.201613438139710.1016/B978‑0‑12‑802997‑8.00023‑2 26948367
    [Google Scholar]
  39. YangK. WuZ. ZhangH. Glioma targeted therapy: Insight into future of molecular approaches.Mol. Cancer20222113910.1186/s12943‑022‑01513‑z 35135556
    [Google Scholar]
  40. LouisD.N. PerryA. ReifenbergerG. The 2016 world health organization classification of tumors of the central nervous system: A summary.Acta Neuropathol.2016131680382010.1007/s00401‑016‑1545‑1 27157931
    [Google Scholar]
  41. BurkhardC. Di PatreP.L. SchülerD. A population-based study of the incidence and survival rates in patients with pilocytic astrocytoma.J. Neurosurg.20039861170117410.3171/jns.2003.98.6.1170 12816259
    [Google Scholar]
  42. OhbaS. [Genomic and epigenomic abnormalities in gliomas]. No Shinkei Geka2021493466475[Genomic and Epigenomic Abnormalities in Gliomas]. 34092551
    [Google Scholar]
  43. TouatM. LiY.Y. BoyntonA.N. Mechanisms and therapeutic implications of hypermutation in gliomas.Nature2020580780451752310.1038/s41586‑020‑2209‑9 32322066
    [Google Scholar]
  44. Carrasco-GarciaE. SampronN. AldazP. Therapeutic strategies targeting glioblastoma stem cells.Recent Patents Anticancer Drug Discov.20138321622710.2174/15748928113089990002 23607282
    [Google Scholar]
  45. HuJ.L. LiangH. ZhangH. FAM46B is a prokaryotic-like cytoplasmic poly(A) polymerase essential in human embryonic stem cells.Nucleic Acids Res.20204852733274810.1093/nar/gkaa049 32009146
    [Google Scholar]
  46. ZhangJ. YangP.L. GrayN.S. Targeting cancer with small molecule kinase inhibitors.Nat. Rev. Cancer200991283910.1038/nrc2559 19104514
    [Google Scholar]
  47. CruzaleguiF. Protein kinases: From targets to anti-cancer drugs.Ann. Pharm. Fr.201068425425910.1016/j.pharma.2010.03.007 20637357
    [Google Scholar]
  48. BarbieriI. KouzaridesT. Role of RNA modifications in cancer.Nat. Rev. Cancer202020630332210.1038/s41568‑020‑0253‑2 32300195
    [Google Scholar]
  49. JonkhoutN. TranJ. SmithM.A. SchonrockN. MattickJ.S. NovoaE.M. The RNA modification landscape in human disease.RNA201723121754176910.1261/rna.063503.117 28855326
    [Google Scholar]
  50. SuzukiT. The expanding world of tRNA modifications and their disease relevance.Nat. Rev. Mol. Cell Biol.202122637539210.1038/s41580‑021‑00342‑0 33658722
    [Google Scholar]
  51. SloanK.E. WardaA.S. SharmaS. EntianK.D. LafontaineD.L.J. BohnsackM.T. Tuning the ribosome: The influence of rRNA modification on eukaryotic ribosome biogenesis and function.RNA Biol.20171491138115210.1080/15476286.2016.1259781 27911188
    [Google Scholar]
  52. ZhaoB.S. RoundtreeI.A. HeC. Post-transcriptional gene regulation by mRNA modifications.Nat. Rev. Mol. Cell Biol.2017181314210.1038/nrm.2016.132 27808276
    [Google Scholar]
  53. SheltonS.B. ReinsboroughC. XhemalceB. Who Watches the Watchmen: Roles of RNA Modifications in the RNA Interference Pathway.PLoS Genet.2016127e100613910.1371/journal.pgen.1006139 27441695
    [Google Scholar]
  54. EstellerM. PandolfiP.P. The epitranscriptome of noncoding RNAs in cancer.Cancer Discov.20177435936810.1158/2159‑8290.CD‑16‑1292 28320778
    [Google Scholar]
  55. SullengerB.A. NairS. From the RNA world to the clinic.Science201635262921417142010.1126/science.aad8709 27313039
    [Google Scholar]
  56. Esteve-PuigR. Bueno-CostaA. EstellerM. Writers, readers and erasers of RNA modifications in cancer.Cancer Lett.202047412713710.1016/j.canlet.2020.01.021 31991154
    [Google Scholar]
  57. DelaunayS. FryeM. RNA modifications regulating cell fate in cancer.Nat. Cell Biol.201921555255910.1038/s41556‑019‑0319‑0 31048770
    [Google Scholar]
  58. OrsolicI. CarrierA. EstellerM. Genetic and epigenetic defects of the RNA modification machinery in cancer.Trends Genet.2023391748810.1016/j.tig.2022.10.004 36379743
    [Google Scholar]
  59. DongZ. CuiH. The emerging roles of RNA modifications in glioblastoma.Cancers202012373610.3390/cancers12030736 32244981
    [Google Scholar]
  60. YanY. WeiW. LongS. The role of RNA modification in the generation of acquired drug resistance in glioma.Front. Genet.202213103228610.3389/fgene.2022.1032286 36437944
    [Google Scholar]
  61. ZhangY. GengX. LiQ. m6A modification in RNA: Biogenesis, functions and roles in gliomas.J. Exp. Clin. Cancer Res.202039119210.1186/s13046‑020‑01706‑8 32943100
    [Google Scholar]
  62. WangL.B. KarpovaA. GritsenkoM.A. Proteogenomic and metabolomic characterization of human glioblastoma.Cancer Cell2021394509528.e2010.1016/j.ccell.2021.01.006 33577785
    [Google Scholar]
  63. ShiH. ChaiP. JiaR. FanX. Novel insight into the regulatory roles of diverse RNA modifications: Re-defining the bridge between transcription and translation.Mol. Cancer20201917810.1186/s12943‑020‑01194‑6 32303268
    [Google Scholar]
  64. JaninM. Coll-SanMartinL. EstellerM. Disruption of the RNA modifications that target the ribosome translation machinery in human cancer.Mol. Cancer20201917010.1186/s12943‑020‑01192‑8 32241281
    [Google Scholar]
  65. van GijnM.E. SnelF. CleutjensJ.P.M. SmitsJ.F.M. BlankesteijnW.M. Overexpression of components of the Frizzled-Dishevelled cascade results in apoptotic cell death, mediated by beta-catenin.Exp. Cell Res.20012651465310.1006/excr.2001.5174 11281642
    [Google Scholar]
  66. StrovelE.T. SussmanD.J. Transient overexpression of murine dishevelled genes results in apoptotic cell death.Exp. Cell Res.1999253263764810.1006/excr.1999.4700 10585287
    [Google Scholar]
  67. ZhangH. ZhangS.H. HuJ.L. Structural and functional characterization of multiple myeloma associated cytoplasmic poly(A) polymerase FAM46C.Cancer Commun.202141761563010.1002/cac2.12163 34048638
    [Google Scholar]
  68. MassaguéJ. TGFβ in cancer.Cell2008134221523010.1016/j.cell.2008.07.001 18662538
    [Google Scholar]
  69. KrsticJ. MaslovaricI. SantibanezJ. Novel patents and cancer therapies for transforming growth factor-beta and urokinase type plasminogen activator: Potential use of their interplay in tumorigenesis.Recent Patents Anticancer Drug Discov.20149335437110.2174/1574892809666140512145535 24827562
    [Google Scholar]
  70. MassaguéJ. SheppardD. TGF-β signaling in health and disease.Cell2023186194007403710.1016/j.cell.2023.07.036 37714133
    [Google Scholar]
  71. DavidC.J. MassaguéJ. Contextual determinants of TGFβ action in development, immunity and cancer.Nat. Rev. Mol. Cell Biol.201819741943510.1038/s41580‑018‑0007‑0 29643418
    [Google Scholar]
  72. AnidoJ. Sáez-BorderíasA. Gonzàlez-JuncàA. TGF-β receptor inhibitors target the CD44high/Id1high glioma-initiating cell population in human glioblastoma.Cancer Cell201018665566810.1016/j.ccr.2010.10.023 21156287
    [Google Scholar]
  73. ChaoM. LiuN. SunZ. TGF-β Signaling promotes glioma progression through stabilizing Sox9.Front. Immunol.20211159208010.3389/fimmu.2020.592080 33613515
    [Google Scholar]
  74. NanaA.W. YangP.M. LinH.Y. Overview of transforming growth factor β superfamily involvement in glioblastoma initiation and progression.Asian Pac. J. Cancer Prev.201516166813682310.7314/APJCP.2015.16.16.6813 26514451
    [Google Scholar]
  75. ShaimH. ShanleyM. BasarR. Targeting the αv integrin/TGF-β axis improves natural killer cell function against glioblastoma stem cells.J. Clin. Invest.202113114e14211610.1172/JCI142116 34138753
    [Google Scholar]
/content/journals/pra/10.2174/0115748928280901231206102637
Loading
/content/journals/pra/10.2174/0115748928280901231206102637
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keyword(s): Glioma; invasion; lethal; migration; proliferation; TENT5A
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test