Skip to content
2000
image of Synthesis of CuOQDs/g-C3N4/C Composites Via Stem Template Induction and their Photocatalytic Properties

Abstract

Introduction

gC3N4/C

Method

resulting in the formation of a greater number of reactive sites.

Results

The type-Z heterojunction formed between the CuOQDs and g-C3N4/C reduced the energy required for electron transition, thereby facilitating the separation of photo-generated electron-hole pairs. The highest photocatalytic degradation efficiency of g-C3N4/C for (TC) was 65.1%, which was 3.3 times that of pure g-C3N4.

Conclusion

In the photocatalytic process, the main reactive species is O2−. The g-C3N4/C synthesized by stem induction in multi-phase heterojunction form has a stable microstructure to improve the charge separation efficiency. Further, it represents practical photocatalytic environmental protection.

Loading

Article metrics loading...

/content/journals/photocat/10.2174/012665976X334005241021062812
2024-11-01
2024-11-23
Loading full text...

Full text loading...

References

  1. Guo J. Shen C.H. Sun J. Xu X-J. Li X-Y. Fei Z-H. Liu Z-T. Wen X-J. Highly efficient activation of peroxymonosulfate by Co3O4/Bi2MoO6 p-n heterostructure composites for the degradation of norfloxacin under visible light irradiation. Separ. Purif. Tech. 2021 259 118109 10.1016/j.seppur.2020.118109
    [Google Scholar]
  2. Shen C.H. Chen Y. Xu X.J. Li X.Y. Wen X.J. Liu Z.T. Xing R. Guo H. Fei Z.H. Efficient photocatalytic H2 evolution and Cr(VI) reduction under visible light using a novel Z-scheme SnIn4S8/CeO2 heterojunction photocatalysts. J. Hazard. Mater. 2021 416 126217 10.1016/j.jhazmat.2021.126217 34492974
    [Google Scholar]
  3. Hasija V. Singh P. Thakur S. Nguyen V.H. Van Le Q. Ahamad T. Alshehri S.M. Raizada P. Matsagar B.M. Wu K.C.W. O and S co-doping induced N-vacancy in graphitic carbon nitride towards photocatalytic peroxymonosulfate activation for sulfamethoxazole degradation. Chemosphere 2023 320 138015 10.1016/j.chemosphere.2023.138015 36746247
    [Google Scholar]
  4. Liang C. Wei D. Zhang S. Ren Q. Shi J. Liu L. Removal of antibiotic resistance genes from swine wastewater by membrane filtration treatment. Ecotoxicol. Environ. Saf. 2021 210 111885 10.1016/j.ecoenv.2020.111885 33421714
    [Google Scholar]
  5. Wu S. Li X. Tian Y. Lin Y. Hu Y.H. Excellent photocatalytic degradation of tetracycline over black anatase-TiO2 under visible light. Chem. Eng. J. 2021 406 126747 10.1016/j.cej.2020.126747
    [Google Scholar]
  6. Zheng S. Wang Y. Chen C. Zhou X. Liu Y. Yang J. Geng Q. Chen G. Ding Y. Yang F. Current progress in natural degradation and enhanced removal techniques of antibiotics in the environment: A Review. Int. J. Environ. Res. Public Health 2022 19 17 10919 10.3390/ijerph191710919 36078629
    [Google Scholar]
  7. Kusiak-Nejman E. Czyżewski A. Wanag A. Dubicki M. Sadłowski M. Wróbel R.J. Morawski A.W. Photocatalytic oxidation of nitric oxide over AgNPs/TiO2-loaded carbon fiber cloths. J. Environ. Manage. 2020 262 110343 10.1016/j.jenvman.2020.110343 32250819
    [Google Scholar]
  8. Qu J. Zhang W. Bi F. Yan S. Miao X. Zhang B. Wang Y. Ge C. Zhang Y. Two-step ball milling-assisted synthesis of N-doped biochar loaded with ferrous sulfide for enhanced adsorptive removal of Cr(Ⅵ) and tetracycline from water. Environ. Pollut. 2022 306 119398 10.1016/j.envpol.2022.119398 35525521
    [Google Scholar]
  9. Wang S. Song D. Liao L. Li M. Li Z. Zhou W. Surface and interface engineering of BiOCl nanomaterials and their photocatalytic applications. Adv. Colloid Interface Sci. 2024 324 103088 10.1016/j.cis.2024.103088 38244532
    [Google Scholar]
  10. Fan D. Wang Z. Yin M. Li H. Hu H. Guo F. Feng Z. Li J. Zhang D. Zhu M. Li Z. Forming of organic/inorganic material heterojunction: Effectively improve the carrier separation rate and solar energy utilization rate. Physica B 2024 673 415486 10.1016/j.physb.2023.415486
    [Google Scholar]
  11. Yao G. Liu Y. Liu J. Xu Y. Facile synthesis of porous g-C3N4 with enhanced visible-light photoactivity. Molecules 2022 27 6 1754 10.3390/molecules27061754 35335118
    [Google Scholar]
  12. Fito J. Kefeni K.K. Nkambule T.T.I. The potential of biochar-photocatalytic nanocomposites for removal of organic micropollutants from wastewater. Sci. Total Environ. 2022 829 154648 10.1016/j.scitotenv.2022.154648 35306069
    [Google Scholar]
  13. Zhao C. Ran F. Dai L. Li C. Zheng C. Si C. Cellulose-assisted construction of high surface area Z-scheme C-doped g-C3N4/WO3 for improved tetracycline degradation. Carbohydr. Polym. 2021 255 117343 10.1016/j.carbpol.2020.117343 33436186
    [Google Scholar]
  14. Zhao J. Ge S. Liu L. Shao Q. Mai X. Zhao C.X. Hao L. Wu T. Yu Z. Guo Z. Microwave solvothermal fabrication of zirconia hollow microspheres with different morphologies using pollen templates and their dye adsorption removal. Ind. Eng. Chem. Res. 2018 57 1 231 241 10.1021/acs.iecr.7b04000
    [Google Scholar]
  15. Tang F. Liu C. Chen F. Qian J. Qiu Y. Meng X. Chen Z. Preparation of CdS-g-C3N4/C composites via hollyhock stem biotemplate and its photocatalytic property. Ceram. Int. 2022 48 19 28614 28621 10.1016/j.ceramint.2022.06.175
    [Google Scholar]
  16. Liu C. Mao D. Pan J. Qian J. Zhang W. Chen F. Chen Z. Song Y. Fabrication of highly efficient heterostructured Ag-CeO2/g-C3N4 hybrid photocatalyst with enhanced visible-light photocatalytic activity. J. Rare Earths 2019 37 12 1269 1278 10.1016/j.jre.2018.12.018
    [Google Scholar]
  17. Jin T. Liu C. Chen F. Qian J. Qiu Y. Meng X. Chen Z. Synthesis of g-C3N4/CQDs composite and its photocatalytic degradation property for Rhodamine B. Carbon Letters 2022 32 6 1451 1462 10.1007/s42823‑022‑00382‑2
    [Google Scholar]
  18. Garg Solanki R. Rajaram P. Theoretical analysis of XRD data by X-ray peak profile analysis for estimation of lattice strain and crystallite size and study of the effect of growth temperature in CdS nanoparticles. Mater. Today Proc. 2021 47 18 6384 6388 10.1016/j.matpr.2021.08.172
    [Google Scholar]
  19. Wang M. Jin C. Kang J. Liu J. Tang Y. Li Z. Li S. CuO/g-C3N4 2D/2D heterojunction photocatalysts as efficient peroxymonosulfate activators under visible light for oxytetracycline degradation: Characterization, efficiency and mechanism. Chem. Eng. J. 2021 416 128118 10.1016/j.cej.2020.128118
    [Google Scholar]
  20. Cadan F.M. Ribeiro C. Azevedo E.B. Improving g-C3N4:WO3 Z-scheme photocatalytic performance under visible light by multivariate optimization of g-C3N4 synthesis. Appl. Surf. Sci. 2021 537 147904 10.1016/j.apsusc.2020.147904
    [Google Scholar]
  21. Zhan X. Zhang Z. Lin J. Xu J. Wang X. Hong B. Xia Y. Zeng Y. Surface atom rearrangement enabling graphitic carbon nitride/sodium alginate gel monolith for ultrafast completely photodegrading ciprofloxacin under visible light. Chem. Eng. J. 2024 489 151218 10.1016/j.cej.2024.151218
    [Google Scholar]
  22. Li Y. Cheng C. Yang Y. Dun X.J. Gao J. Jin X-J. A novel electrochemical sensor based on CuO/H-C3N4/rGO nanocomposite for efficient electrochemical sensing nitrite. J. Alloys Compd. 2019 798 25 764 772 10.1016/j.jallcom.2019.05.137
    [Google Scholar]
  23. Zhang Z. Gong L. Zhan X. Hong B. Wang X. Xia Y. Zeng Y. Complete photodegradation of tetracycline induced by surface microenvironment of graphitic carbon nitride/silver phosphate. J. Environ. Chem. Eng. 2024 12 3 112583 10.1016/j.jece.2024.112583
    [Google Scholar]
  24. Alenazi T.N. Alsharief H.H. Almahri A. Al-Zahrani H.K. Katuah H.A. Shah R. Saad F.A. El-Metwaly N.M. Optimization on the heterogeneous photocatalytic degradation of Azorubine E122 dye using nanocomposite via CuO nanoparticles with sodium mordenite. J. Mol. Liq. 2024 396 123926 10.1016/j.molliq.2023.123926
    [Google Scholar]
  25. Zeng Y. Zhan X. Hong B. Xia Y. Ding Y. Cai T. Yin K. Wang X. Yang L. Luo S. Surface atom rearrangement on carbon nitride for enhanced photocatalysis degradation of antibiotics under visible light. Chem. Eng. J. 2023 452 139434 10.1016/j.cej.2022.139434
    [Google Scholar]
  26. Yang J. Liu Z. Wang Y. Tang X. Construction of a rod-like Bi 2 O 4 modified porous g-C 3 N 4 nanosheets heterojunction photocatalyst for the degradation of tetracycline. New J. Chem. 2020 44 23 9725 9735 10.1039/D0NJ01922D
    [Google Scholar]
  27. Hu C. He J. Liang J. Lin T. Liu Q. Heterogeneous photo-Fenton catalyst α-Fe2O3@g-C3N4@NH2-MIL-101(Fe) with dual Z-Scheme heterojunction for degradation of tetracycline. Environ. Res. 2023 231 Pt 3 116313 10.1016/j.envres.2023.116313 37270080
    [Google Scholar]
  28. Manikandan V.S. Harish S. Archana J. Navaneethan M. Fabrication of novel hybrid Z-Scheme WO3@g-C3N4@MWCNT nanostructure for photocatalytic degradation of tetracycline and the evaluation of antimicrobial activity. Chemosphere 2022 287 Pt 3 132050 10.1016/j.chemosphere.2021.132050 34583295
    [Google Scholar]
  29. Wang Z. Wang H. Wang Z. Huang D. Qin H. He Y. Chen M. Zeng G. Xu P. Ferrocene modified g-C3N4 as a heterogeneous catalyst for photo-assisted activation of persulfate for the degradation of tetracycline. Colloids Surf. A Physicochem. Eng. Asp. 2021 626 127024 10.1016/j.colsurfa.2021.127024
    [Google Scholar]
  30. Huang L. Liu H. Zhang T.C. Wang Y. Yuan S. Peroxymonosulfate-Assisted BiVO 4 /Exfoliated g-C 3 N 4 heterojunction for high-performance photodegradation of tetracycline induced by visible light. Ind. Eng. Chem. Res. 2022 61 44 16418 16430 10.1021/acs.iecr.2c02458
    [Google Scholar]
  31. Wagner C.D. Gale L.H. Raymond R.H. Two-dimensional chemical state plots: A standardized data set for use in identifying chemical states by x-ray photoelectron spectroscopy. Anal. Chem. 1979 51 4 466 482 10.1021/ac50040a005
    [Google Scholar]
  32. Zhan X. Zeng Y. Xu J. Xia Y. Wang X. Tao F. Ouyang J. Li H. Yang L. Luo S. Hong B. Tailoring the three-phase microenvironment surface to induce carbon nitride oxide generating ·O2– with 100% selectivity for ultrafast photodegradation tetracycline under visible light. Chem. Eng. J. 2023 464 142564 10.1016/j.cej.2023.142564
    [Google Scholar]
  33. Karthik P. Naveen Kumar T.R. Neppolian B. Redox couple mediated charge carrier separation in g-C3N4/CuO photocatalyst for enhanced photocatalytic H2 production. Int. J. Hydrogen Energy 2020 45 13 7541 7551 10.1016/j.ijhydene.2019.06.045
    [Google Scholar]
  34. Zhang H. Zeng Y. Wang X. Zhan X. Xu J. Jin A. Hong B. Sea-Urchin carbon nitride with carbon vacancies (C-v) and oxygen substitution (O-s) for photodegradation of Tetracycline: Performance, mechanism insight and pathways. Chem. Eng. J. 2022 446 137053 10.1016/j.cej.2022.137053
    [Google Scholar]
  35. Kadi M.W. Mohamed R.M. Ismail A.A. Bahnemann D.W. Soft and hard templates assisted synthesis mesoporous CuO/g-C3N4 heterostructures for highly enhanced and accelerated Hg(II) photoreduction under visible light. J. Colloid Interface Sci. 2020 580 223 233 10.1016/j.jcis.2020.07.001 32683119
    [Google Scholar]
  36. Li N. Liu X. Zhou J. Chen W. Liu M. Encapsulating CuO quantum dots in MIL-125(Ti) coupled with g-C3N4 for efficient photocatalytic CO2 reduction. Chem. Eng. J. 2020 399 125782 10.1016/j.cej.2020.125782
    [Google Scholar]
  37. Zhan X. Zeng Y. Zhang H. Wang X. Jin D. Jin H. Luo S. Yang L. Hong B. The coral-like carbon nitride array: Rational design for efficient photodegradation of tetracycline under visible light. J. Environ. Chem. Eng. 2023 11 1 109201 10.1016/j.jece.2022.109201
    [Google Scholar]
/content/journals/photocat/10.2174/012665976X334005241021062812
Loading
/content/journals/photocat/10.2174/012665976X334005241021062812
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: copper oxide quantum dots ; biological template method ; tetracycline ; g-C3N4
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test