Skip to content
2000
Volume 15, Issue 2
  • ISSN: 2210-3155
  • E-ISSN: 2210-3163

Abstract

Across the globe, approximately half of the population diagnosed with diabetes use complementary medicines for the treatment of diabetes. (family Hypocrataceae), is an indigenous woody climber flowering plant commonly employed within the Ayurvedic healthcare framework for addressing diabetes and obesity. It is also known as and grows in the dry zone forests of India and Sri Lanka. It is documented to exhibit antioxidant, lipid-lowering, hypertrophy-reducing, and fibrosis-inhibiting properties and hepatoprotective activity. We critically analyze the available , animal, and clinical research supporting the utilization of in managing type 2 diabetes and obesity. Compounds that have been recognized for their ability to counteract diabetes include salacinol, kotalanol, ponkoranol, and salaprinol. Various research depicted salacia's capacity to impede intestinal alpha-glucosidase function. Furthermore, it enhances the breakdown of stored fat (lipolysis) and reduces insulin resistance by increasing the production of messenger RNA for hormone-sensitive lipase (HSL) as well as adiponectin, respectively, in the mouse mesenteric fat. treatment up-regulates the lipolysis factors while downregulating the 3T3-L1 adipocytes lipogenesis factors. Both animal studies and clinical research consistently showed significant improvement in levels of glucose when fasting compared to being exposed to sucrose and maltose. Furthermore, 6 weeks to 3 months of treatment showed a substantial reduction in the HbA1c and plasma Insulin. efficiently decreases obesity and insulin resistance while enhancing glucose metabolism therefore, more substantial evidence derived from meticulously designed research is necessary to confirm its effectiveness and safety. Moreover, the research aimed at improving the growth of callus, increasing polyphenolic content, promoting mangiferin synthesis, and assessing the biological properties of the salaciagenus suggests its potential as a valuable source for the industrial production of important industrial secondary compounds. At the same time, data indicate cumulative knowledge, highlighting its strong antioxidant effect and unveiling its capabilities without impacting natural reserves.

Loading

Article metrics loading...

/content/journals/npj/10.2174/0122103155298189240415092518
2025-02-01
2024-11-22
Loading full text...

Full text loading...

References

  1. MedagamaA.B. Salacia reticulata (Kothala himbutu) revisited; a missed opportunity to treat diabetes and obesity?Nutr. J.20151412110.1186/s12937‑015‑0013‑4 25889885
    [Google Scholar]
  2. StohsS.J. RayS. Anti‐diabetic and anti‐hyperlipidemic effects and safety of Salacia reticulata and related species.Phytother. Res.201529798699510.1002/ptr.5382 26031882
    [Google Scholar]
  3. BajpeS.N. BharathiT.R. MarulasiddaswamyK.M. KumaraS.K.K. PrakashH.S. KiniR.K. Efficiency of RAPD, ISSR and ITS markers in detecting genetic variability among Salacia species sampled from the Western Ghats of Karnataka.Mol. Biol. Rep.201845593194110.1007/s11033‑018‑4248‑y 30027475
    [Google Scholar]
  4. AnazK. M.; N, S.; A, R.; M v, D. ITS 2 and RNA secondary structure-based analysis reveals a clear picture on phylogeny of South Indian Salacia spp.Comput. Biol. Chem.20219110743810.1016/j.compbiolchem.2021.107438 33524844
    [Google Scholar]
  5. ImR. ManoH. MatsuuraT. NakataniS. ShimizuJ. WadaM. Mechanisms of blood glucose-lowering effect of aqueous extract from stems of Kothala himbutu (Salacia reticulata) in the mouse.J. Ethnopharmacol.2009121223424010.1016/j.jep.2008.10.026 19028559
    [Google Scholar]
  6. VyasN. MehraR. MakhijaR. Salacia – The new multi-targeted approach in diabetics.Ayu2016372929710.4103/ayu.AYU_134_13 29200746
    [Google Scholar]
  7. StohsS.J. BadmaevV. A review of natural stimulant and non‐stimulant thermogenic agents.Phytother. Res.201630573274010.1002/ptr.5583 26856274
    [Google Scholar]
  8. AbbasG. Al-HarrasiA.S. HussainH. α-Glucosidase enzyme inhibitors from natural products. BrahmachariG. Discovery and Development of Antidiabetic Agents from Natural Products, Natural Product Drug Discovery, 1st ed.Elsevier2017
    [Google Scholar]
  9. ZandbergW.F. MohanS. KumarasamyJ. PintoB.M. Capillary zone electrophoresis method for the separation of glucosidase inhibitors in extracts of Salacia reticulata, a plant used in ayurvedic treatments of type-2 diabetes.Anal. Chem.201082125323533010.1021/ac100843y 20491445
    [Google Scholar]
  10. AkakiJ. MorikawaT. MiyakeS. NinomiyaK. OkadaM. TanabeG. PongpiriyadachaY. YoshikawaM. MuraokaO. Evaluation of salacia species as anti-diabetic natural resources based on quantitative analysis of eight sulphonium constituents: A new class of α-glucosidase inhibitors.Phytochem. Anal.201425654455010.1002/pca.2525 24816820
    [Google Scholar]
  11. BenallaW. BellahcenS. BnouhamM. Antidiabetic medicinal plants as a source of alpha glucosidase inhibitors.Curr. Diabetes Rev.20106424725410.2174/157339910791658826 20522017
    [Google Scholar]
  12. CarvalhoP.R.F. SilvaD.H.S. BolzaniV.S. FurlanM. Antioxidant quinonemethide triterpenes from Salacia campestris.Chem. Biodivers.20052336737210.1002/cbdv.200590016 17191985
    [Google Scholar]
  13. ChavanJJ KshirsagarPR JadhavSG NalavadeVM GurmeST PaiSR Elicitor-mediated enhancement of biomass, polyphenols, mangiferin production and antioxidant activities in callus cultures of Salacia chinensis L.3 Biotech2021116285
    [Google Scholar]
  14. da NizerC.W.S. FerrazA.C. MoraesT.F.S. LimaW.G. dos SantosJ.P. DuarteL.P. MagalhãesC.L.B. FilhoV.S.A. de MagalhãesJ.C. Netzahualcoyonol from Salacia multiflora (Lam.) DC. (Celastraceae) roots as a bioactive compound against gram-positive pathogens.Nat. Prod. Res.202236225904590910.1080/14786419.2021.2023865 34994265
    [Google Scholar]
  15. EskandariR. JonesK. RoseD.R. PintoB.M. The effect of heteroatom substitution of sulfur for selenium in glucosidase inhibitors on intestinal α-glucosidase activities.Chem. Commun.201147329134913610.1039/c1cc13052h 21750824
    [Google Scholar]
  16. EskandariR. KuntzD.A. RoseD.R. PintoB.M. Potent glucosidase inhibitors: De-O-sulfonated ponkoranol and its stereoisomer.Org. Lett.20101271632163510.1021/ol1004005 20218632
    [Google Scholar]
  17. EspindolaL. DusiR. DemarqueD. Braz-FilhoR. YanP. BokeschH. GustafsonK. BeutlerJ. Cytotoxic triterpenes from Salacia crassifolia and metabolite profiling of celastraceae species.Molecules2018236149410.3390/molecules23061494 29925807
    [Google Scholar]
  18. FigueiredoJ.N. RäzB. SéquinU. Novel quinone methides from Salacia kraussii with in vitro antimalarial activity.J. Nat. Prod.199861671872310.1021/np9704157 9644053
    [Google Scholar]
  19. GaoH.Y. GuoZ.H. ChengP. XuX.M. WuL.J. New triterpenes from Salacia hainanensis Chun et How with α-glucosidase inhibitory activity.J. Asian Nat. Prod. Res.2010121083484210.1080/10286020.2010.503653 20924896
    [Google Scholar]
  20. GaoL. DuanL.K. FengJ.E. JiangY.T. GaoJ. FanJ.T. DaiR. JiangZ.Y. Four new triterpene glucosides from Salacia cochinchinensis Lour.Nat. Prod. Res.20223692292229910.1080/14786419.2020.1830393 33043693
    [Google Scholar]
  21. GomesN.G.M. OliveiraA.P. CunhaD. PereiraD.M. ValentãoP. PintoE. AraújoL. AndradeP.B. Flavonoid composition of Salacia senegalensis (Lam.) DC. leaves, evaluation of antidermatophytic effects, and potential amelioration of the associated inflammatory response.Molecules20192414253010.3390/molecules24142530 31295972
    [Google Scholar]
  22. GuoZ. HuangJ. WanG. HuoX. GaoH.Y. New inhibitors of α-glucosidase in Salacia hainanensis Chun et How.J. Nat. Med.201367484484910.1007/s11418‑013‑0744‑5 23361306
    [Google Scholar]
  23. HommaT. KageyamaS. NishikawaA. NagataK. Anti-melanogenic activity of salacinol by inhibition of tyrosinase oligosaccharide processing.J. Biochem.2020167550351110.1093/jb/mvz115 31883005
    [Google Scholar]
  24. IshikawaF. JinnoK. KinouchiE. NinomiyaK. MarumotoS. XieW. MuraokaO. MorikawaT. TanabeG. Diastereoselective synthesis of salacinol-type α-glucosidase inhibitors.J. Org. Chem.2018831185193
    [Google Scholar]
  25. JingY.X. YouH.M. ZhaoJ.W. WangW. JiangY.T. ZuoA.X. FanJ.T. ZhangS.Y. JiangZ.Y. Bioactive constituents from Salacia cochinchinensis.J. Asian Nat. Prod. Res.202022873874510.1080/10286020.2019.1618279 31131622
    [Google Scholar]
  26. KamtchaD.W. TeneM. BedaneK.G. KnauerL. BriegerL. StrohmannC. TaneP. KusariS. SpitellerM. Cardenolides and dihydro-β-agarofuran sesquiterpenes from the seeds of Salacia staudtiana.Fitoterapia201813117418110.1016/j.fitote.2018.10.025 30352292
    [Google Scholar]
  27. KamtchaD.W. TeneM. BedaneK.G. KnauerL. StrohmannC. TaneP. KusariS. SpitellerM. Cardenolides from the stem bark of Salacia staudtiana.Fitoterapia201812740240910.1016/j.fitote.2018.04.008 29649494
    [Google Scholar]
  28. KishinoE. ItoT. FujitaK. KiuchiY. A mixture of Salacia reticulata (Kotala himbutu) aqueous extract and cyclodextrin reduces body weight gain, visceral fat accumulation, and total cholesterol and insulin increases in male Wistar fatty rats.Nutr. Res.2009291556310.1016/j.nutres.2008.11.001 19185778
    [Google Scholar]
  29. KishinoE. ItoT. FujitaK. KiuchiY. A mixture of the Salacia reticulata (Kotala himbutu) aqueous extract and cyclodextrin reduces the accumulation of visceral fat mass in mice and rats with high-fat diet-induced obesity.J. Nutr.2006136243343910.1093/jn/136.2.433 16424124
    [Google Scholar]
  30. KobayashiM. AkakiJ. NinomiyaK. YoshikawaM. MuraokaO. MorikawaT. OdawaraM. Dose-dependent suppression of postprandial hyperglycemia and improvement of blood glucose parameters by Salacia chinensis extract: Two randomized, double-blind, placebo-controlled studies.J. Med. Food2021241101710.1089/jmf.2020.4751 33370165
    [Google Scholar]
  31. AllanJ.J. AgarwalA. KoteshwarP. RaveendraK.R. GoudarK.S. VenkateshwarluK. Effect of NR-Salacia on post-prandial hyperglycemia: A randomized double blind, placebo-controlled, crossover study in healthy volunteers.Pharmacogn. Mag.201393634434910.4103/0973‑1296.117831 24124287
    [Google Scholar]
  32. Mba’ningB.M. LentaB.N. NoungouéD.T. AntheaumeC. FongangY.F. NgouelaS.A. BoyomF.F. RosenthalP.J. TsamoE. SewaldN. LaatschH. Antiplasmodial sesquiterpenes from the seeds of Salacia longipes var. camerunensis.Phytochemistry20139634735210.1016/j.phytochem.2013.06.022 23863332
    [Google Scholar]
  33. MohanS. EskandariR. PintoB.M. Naturally occurring sulfonium-ion glucosidase inhibitors and their derivatives: A promising class of potential antidiabetic agents.Acc. Chem. Res.201447121122510.1021/ar400132g 23964564
    [Google Scholar]
  34. MohanS. JayakanthanK. NasiR. KuntzD.A. RoseD.R. PintoB.M. Synthesis and biological evaluation of heteroanalogues of kotalanol and de-O-sulfonated kotalanol.Org. Lett.20101251088109110.1021/ol100080m 20143790
    [Google Scholar]
  35. MohanS. PintoB.M. Towards the elusive structure of kotalanol, a naturally occurring glucosidase inhibitor.Nat. Prod. Rep.201027448148810.1039/b925950c 20336233
    [Google Scholar]
  36. MorikawaT. NinomiyaK. TanabeG. MatsudaH. YoshikawaM. MuraokaO. A review of antidiabetic active thiosugar sulfoniums, salacinol and neokotalanol, from plants of the genus Salacia.J. Nat. Med.202175344946610.1007/s11418‑021‑01522‑0 33900535
    [Google Scholar]
  37. MuraokaO. MorikawaT. MiyakeS. AkakiJ. NinomiyaK. PongpiriyadachaY. YoshikawaM. Quantitative analysis of neosalacinol and neokotalanol, another two potent α-glucosidase inhibitors from Salacia species, by LC-MS with ion pair chromatography.J. Nat. Med.201165114214810.1007/s11418‑010‑0474‑x 20981499
    [Google Scholar]
  38. MuraokaO. MorikawaT. MiyakeS. AkakiJ. NinomiyaK. YoshikawaM. Quantitative determination of potent α-glucosidase inhibitors, salacinol and kotalanol, in Salacia species using liquid chromatography–mass spectrometry.J. Pharm. Biomed. Anal.201052577077310.1016/j.jpba.2010.02.025 20303690
    [Google Scholar]
  39. MusiniA. RaoJ.P. GiriA. Phytochemicals of Salacia oblonga responsible for free radical scavenging and antiproliferative activity against breast cancer cell lines (MDA-MB-231).Physiol. Mol. Biol. Plants201521458359010.1007/s12298‑015‑0317‑z 26600684
    [Google Scholar]
  40. NakamuraS. MatsudaH. YoshikawaM. Search for antidiabetic constituents of medicinal food.Yakugaku Zasshi2011131690991510.1248/yakushi.131.909 21628977
    [Google Scholar]
  41. NakamuraS. TakahiraK. TanabeG. MorikawaT. SakanoM. NinomiyaK. YoshikawaM. MuraokaO. NakanishiI. Docking and SAR studies of salacinol derivatives as α-glucosidase inhibitors.Bioorg. Med. Chem. Lett.201020154420442310.1016/j.bmcl.2010.06.059 20598536
    [Google Scholar]
  42. NakamuraS. ZhangY. MatsudaH. NinomiyaK. MuraokaO. YoshikawaM. Chemical structures and hepatoprotective effects of constituents from the leaves of Salacia chinensis.Chem. Pharm. Bull.20115981020102810.1248/cpb.59.1020 21804248
    [Google Scholar]
  43. NguyenN.T. DuongT.T.T. DangP.H. NguyenH.X. LeT.H. DoT.N.V. LeT.D. TranT.H. NguyenM.T.T. A new 7′,9-epoxylignan from the stems of Salacia chinensis.Nat. Prod. Res.202236154026403010.1080/14786419.2021.1900178 33729063
    [Google Scholar]
  44. NizerW.S.C. FerrazA.C. MoraesT.F.S. LimaW.G. SantosJ.P. DuarteL.P. FerreiraJ.M.S. de MagalhãesB.C.L. FilhoV.S.A. AndradeA.C.S.P. RodriguesR.A.L. AbrahãoJ.S. MagalhãesJ.C. Pristimerin isolated from Salacia crassifolia (Mart. Ex. Schult.) G. Don. (Celastraceae) roots as a potential antibacterial agent against Staphylococcus aureus.J. Ethnopharmacol.202126611342310.1016/j.jep.2020.113423 33007390
    [Google Scholar]
  45. OdaY. YuasaA. UedaF. KakinumaC. A subchronic oral toxicity study of Salacia reticulata extract powder in rats.Toxicol. Rep.201521136114410.1016/j.toxrep.2015.07.001 28962454
    [Google Scholar]
  46. OeH. OzakiS. Hypoglycemic effect of 13-membered ring thiocyclitol, a novel alpha-glucosidase inhibitor from Kothala-himbutu (Salacia reticulata).Biosci. Biotechnol. Biochem.20087271962196410.1271/bbb.80118 18603797
    [Google Scholar]
  47. RodriguesL. TilveS.G. MajikM.S. Synthetic access to thiolane-based therapeutics and biological activity studies.Eur. J. Med. Chem.202122411365910.1016/j.ejmech.2021.113659 34237621
    [Google Scholar]
  48. RoopaG. MadhusudhanM.C. SunilK.C.R. LisaN. CalvinR. PoornimaR. ZeinabN. KiniK.R. PrakashH.S. GeethaN. Identification of Taxol-producing endophytic fungi isolated from Salacia oblonga through genomic mining approach.J. Genet. Eng. Biotechnol.201513211912710.1016/j.jgeb.2015.09.002 30647575
    [Google Scholar]
  49. RuphinF.P. BaholyR. EmmanueA. AmelieR. MartinM.T. NyiwaK.N. Antiplasmodial, cytotoxic activities and characterization of a new naturally occurring quinone methide pentacyclic triterpenoid derivative isolated from Salacia leptoclada Tul. (Celastraceae) originated from Madagascar.Asian Pac. J. Trop. Biomed.201331078078410.1016/S2221‑1691(13)60155‑0 24075342
    [Google Scholar]
  50. SellamuthuP.S. ArulselvanP. MuniappanB.P. FakuraziS. KandasamyM. Mangiferin from Salacia chinensis prevents oxidative stress and protects pancreatic β-cells in streptozotocin-induced diabetic rats.J. Med. Food201316871972710.1089/jmf.2012.2480 23957355
    [Google Scholar]
  51. ShivaprasadH.N. BhanumathyM. SushmaG. MidhunT. RaveendraK.R. SushmaK.R. VenkateshwarluK. Salacia reticulata improves serum lipid profiles and glycemic control in patients with prediabetes and mild to moderate hyperlipidemia: A double-blind, placebo-controlled, randomized trial.J. Med. Food201316656456810.1089/jmf.2013.2751 23767865
    [Google Scholar]
  52. SomwongP. SuttisriR. BuakeawA. A new 1,3-diketofriedelane triterpene from Salacia verrucosa.Fitoterapia20118271047105110.1016/j.fitote.2011.06.007 21745551
    [Google Scholar]
  53. SulaimanC.T. ThusharK.V. SatheeshG. BalachandranI. Phenolic characterisation of selected Salacia species using LC-ESI-MS/MS analysis.Nat. Prod. Res.201428131021102410.1080/14786419.2014.905562 24730982
    [Google Scholar]
  54. TakashimaK. SakanoM. KinouchiE. NakamuraS. MarumotoS. IshikawaF. NinomiyaK. NakanishiI. MorikawaT. TanabeG. Elongation of the side chain by linear alkyl groups increases the potency of salacinol, a potent α-glucosidase inhibitor from the Ayurvedic traditional medicine “Salacia,” against human intestinal maltase.Bioorg. Med. Chem. Lett.20213312775110.1016/j.bmcl.2020.127751 33347966
    [Google Scholar]
  55. TanabeG. NakamuraS. TsutsuiN. BalakishanG. XieW. TsuchiyaS. AkakiJ. MorikawaT. NinomiyaK. NakanishiI. YoshikawaM. MuraokaO. In silico design, synthesis and evaluation of 3′-O-benzylated analogs of salacinol, a potent α-glucosidase inhibitor isolated from an Ayurvedic traditional medicine “Salacia”.Chem. Commun.201248698646864810.1039/c2cc34144a 22820468
    [Google Scholar]
  56. TanabeG. XieW. BalakishanG. AmerM.F.A. TsutsuiN. TakemuraH. NakamuraS. AkakiJ. NinomiyaK. MorikawaT. NakanishiI. MuraokaO. Hydrophobic substituents increase the potency of salacinol, a potent α-glucosidase inhibitor from Ayurvedic traditional medicine ‘Salacia’.Bioorg. Med. Chem.201624163705371510.1016/j.bmc.2016.06.013 27325449
    [Google Scholar]
  57. ThiemD.A. SnedenA.T. KhanS.I. TekwaniB.L. Bisnortriterpenes from Salacia m adagascariensis.J. Nat. Prod.200568225125410.1021/np0497088 15730255
    [Google Scholar]
  58. UedaF. IidaA. SaitoH. SekiS. AmaoA. YamateH. Assessment of the effect and safety of salacinol in horses.J. Equine Sci.201930410511110.1294/jes.30.105 31871413
    [Google Scholar]
  59. XieW.J. TanabeG. TsutsuiN. WuX.M. MuraokaO. Total synthesis of neokotalanol, a potent α-glucosidase inhibitor isolated from Salacia reticulata.Chin. J. Nat. Med.201311667668310.1016/S1875‑5364(13)60079‑5 24345510
    [Google Scholar]
  60. YoshikawaM. MorikawaT. MatsudaH. TanabeG. MuraokaO. Absolute stereostructure of potent alpha-glucosidase inhibitor, salacinol, with unique thiosugar sulfonium sulfate inner salt structure from Salacia reticulata.Bioorg. Med. Chem.20021051547155410.1016/S0968‑0896(01)00422‑9 11886816
    [Google Scholar]
  61. YoshikawaM. MurakamiT. YashiroK. MatsudaH. Kotalanol, a potent alpha-glucosidase inhibitor with thiosugar sulfonium sulfate structure, from antidiabetic ayurvedic medicine Salacia reticulata.Chem. Pharm. Bull.19984681339134010.1248/cpb.46.1339 9734318
    [Google Scholar]
  62. YoshikawaM. ZhangY. WangT. NakamuraS. MatsudaH. New triterpene constituents, foliasalacins A(1)-A(4), B(1)-B(3), and C, from the leaves of Salacia chinensis.Chem. Pharm. Bull.200856791592010.1248/cpb.56.915 18591801
    [Google Scholar]
  63. YouH.M. ZhaoJ.W. JingY.X. ZhangJ.R. WangW. JiangY.T. ZuoA.X. FanJ.T. ZhangL.Z. ZhouM. JiangZ.Y. Bioactive glycosides from Salacia cochinchinensis.Carbohydr. Res.201948410777710.1016/j.carres.2019.107777 31446303
    [Google Scholar]
  64. YuM.H. ShiZ.F. YuB.W. PiE.H. WangH.Y. HouA.J. LeiC. Triterpenoids and α-glucosidase inhibitory constituents from Salacia hainanensis.Fitoterapia20149814314810.1016/j.fitote.2014.07.016 25073097
    [Google Scholar]
  65. LiY. HuangT.H.W. YamaharaJ. Salacia root, a unique Ayurvedic medicine, meets multiple targets in diabetes and obesity.Life Sci.20088221-221045104910.1016/j.lfs.2008.03.005 18433791
    [Google Scholar]
  66. OzakiS. OeH. KitamuraS. Alpha-glucosidase inhibitor from Kothala-himbutu (Salacia reticulata WIGHT).J. Nat. Prod.200871698198410.1021/np070604h 18547114
    [Google Scholar]
  67. JeykodiS. DeshpandeJ. JuturuV. Salacia extract improves postprandial glucose and insulin response: A randomized double-blind, placebo controlled, crossover study in healthy volunteers.J. Diabetes Res.201620161910.1155/2016/7971831 27803937
    [Google Scholar]
  68. RadhaR. AmrithaveniM. Role of medicinal plant Salacia reticulata in the management of Type II Diabetic Subjects.Anc. Sci. Life20092911416 22557337
    [Google Scholar]
  69. YoshinoK. MiyauchiY. KanetakaT. TakagiY. KogaK. Anti-diabetic activity of a leaf extract prepared from Salacia reticulata in mice.Biosci. Biotechnol. Biochem.20097351096110410.1271/bbb.80854 19420711
    [Google Scholar]
  70. SimL. JayakanthanK. MohanS. NasiR. JohnstonB.D. PintoB.M. RoseD.R. New glucosidase inhibitors from an ayurvedic herbal treatment for type 2 diabetes: structures and inhibition of human intestinal maltase-glucoamylase with compounds from Salacia reticulata.Biochemistry201049344345110.1021/bi9016457 20039683
    [Google Scholar]
  71. WilliamsJ.A. ChoeY.S. NossM.J. BaumgartnerC.J. MustadV.A. Extract of Salacia oblonga lowers acute glycemia in patients with type 2 diabetes.Am. J. Clin. Nutr.200786112413010.1093/ajcn/86.1.124 17616771
    [Google Scholar]
  72. YoshinoK. KanetakaT. KogaK. Antioxidant activity of salacia plant (<i>Salacia reticulata</i>).J. Food Hyg. Soc.201556414415010.3358/shokueishi.56.144 26346858
    [Google Scholar]
  73. KogaK. HisamuraM. KanetakaT. YoshinoK. MatsuoY. TanakaT. Proanthocyanidin oligomers isolated from Salacia reticulata leaves potently inhibit pancreatic lipase activity.J. Food Sci.2013781H105H111
    [Google Scholar]
  74. RamasarmaT. RafiM. A glucose-centric perspective of hyperglycemia.Indian J. Exp. Biol.20165428399 26934776
    [Google Scholar]
  75. IshiiM. MatsumotoY. KatadaT. SekimizuK. Additive effects of Kothala himbutu (Salacia reticulata) extract and a lactic acid bacterium (Enterococcus faecalis YM0831) for suppression of sucrose-induced hyperglycemia in an in vivo silkworm evaluation system.Drug Discov. Ther.201913313313610.5582/ddt.2019.01025 31327788
    [Google Scholar]
  76. RathoreS.S. WaniI.A. Usha; Agrawal, A.; Dubey, G.; Singh, R.G. Effects of Salacia oblonga on cardiovascular risk factors in chronic kidney disease patients: A prospective study.Saudi J. Kidney Dis. Transpl.2015261616610.4103/1319‑2442.148736 25579717
    [Google Scholar]
  77. ShimadaT. NakayamaY. HarasawaY. MatsuiH. KobayashiH. SaiY. MiyamotoK. TomatsuS. AburadaM. Salacia reticulata has therapeutic effects on obesity.J. Nat. Med.201468466867610.1007/s11418‑014‑0845‑9 24838513
    [Google Scholar]
  78. ShimadaT. NagaiE. HarasawaY. AkaseT. AburadaT. IizukaS. MiyamotoK. AburadaM. Metabolic disease prevention and suppression of fat accumulation by Salacia reticulata.J. Nat. Med.201064326627410.1007/s11418‑010‑0401‑1 20225078
    [Google Scholar]
  79. ShimadaT. NagaiE. HarasawaY. WatanabeM. NegishiK. AkaseT. SaiY. MiyamotoK. AburadaM. Salacia reticulata inhibits differentiation of 3T3-L1 adipocytes.J. Ethnopharmacol.20111361677410.1016/j.jep.2011.04.012 21511020
    [Google Scholar]
  80. YoshikawaM. ShimodaH. MatsudaH. NishidaN. TakadaM. Salacia reticulata and its polyphenolic constituents with lipase inhibitory and lipolytic activities have mild antiobesity effects in rats.J. Nutr.200213271819182410.1093/jn/132.7.1819 12097653
    [Google Scholar]
  81. ChoudharyG.P. KanthV.M.S. Antimicrobial activity of root bark of Salacia reticulata.Anc. Sci. Life200525147 22557181
    [Google Scholar]
  82. SekiguchiY. ManoH. NakataniS. ShimizuJ. WadaM. Effects of the Sri Lankan medicinal plant, Salacia reticulata, in rheumatoid arthritis.Genes Nutr.201051899610.1007/s12263‑009‑0144‑3 19727885
    [Google Scholar]
  83. RajashreeR. PatilR. KhlokuteS.D. GoudarS.S. Effect of Salacia reticulata W. and Clitoria ternatea L. on the cognitive and behavioral changes in the streptozotocin-induced young diabetic rats.J. Basic Clin. Physiol. Pharmacol.201728210711410.1515/jbcpp‑2016‑0024 28132032
    [Google Scholar]
  84. OdaY. UedaF. KameiA. KakinumaC. AbeK. Biochemical investigation and gene expression analysis of the immunostimulatory functions of an edible Salacia extract in rat small intestine.Biofactors2011371313910.1002/biof.132 21328625
    [Google Scholar]
  85. OdaY. UedaF. UtsuyamaM. KameiA. KakinumaC. AbeK. HirokawaK. Improvement in human immune function with changes in intestinal microbiota by Salacia reticulata extract ingestion: A randomized placebo-controlled trial.PLoS One20151012e014290910.1371/journal.pone.0142909 26630568
    [Google Scholar]
  86. Romero-PérezG.A. EgashiraM. HaradaY. TsurutaT. OdaY. UedaF. TsukaharaT. TsukamotoY. InoueR. Orally administered Salacia reticulata extract reduces h1n1 influenza clinical symptoms in murine lung tissues putatively due to enhanced natural killer cell activity.Front. Immunol.2016711510.3389/fimmu.2016.00115 27066007
    [Google Scholar]
  87. SekiguchiY. ManoH. NakataniS. ShimizuJ. KobataK. WadaM. Anti-proliferative effects of Salacia reticulata leaves hot-water extract on interleukin-1β-activated cells derived from the synovium of rheumatoid arthritis model mice.BMC Res. Notes20125119810.1186/1756‑0500‑5‑198 22537486
    [Google Scholar]
  88. YoshikawaM. NinomiyaK. ShimodaH. NishidaN. MatsudaH. Hepatoprotective and antioxidative properties of Salacia reticulata: Preventive effects of phenolic constituents on CCl4-induced liver injury in mice.Biol. Pharm. Bull.2002251727610.1248/bpb.25.72 11824561
    [Google Scholar]
  89. SuwannalertP. KariyaR. SuzuI. OkadaS. The effects of Salacia reticulata on anti-cellular oxidants and melanogenesis inhibition in alpha-MSH-stimulated and UV irradiated B16 melanoma cells.Nat. Prod. Commun.201494551554 24868882
    [Google Scholar]
  90. SekiguchiY. ManoH. NakataniS. ShimizuJ. KataokaA. OguraK. KimiraY. EbataM. WadaM. Mangiferin positively regulates osteoblast differentiation and suppresses osteoclast differentiation.Mol. Med. Rep.20171621328133210.3892/mmr.2017.6752 28627701
    [Google Scholar]
  91. AkaseT. ShimadaT. HarasawaY. AkaseT. IkeyaY. NagaiE. IizukaS. NakagamiG. IizakaS. SanadaH. AburadaM. Preventive effects of Salacia reticulata on obesity and metabolic disorders in TSOD mice.Evid. Based Complement. Alternat. Med.2011201111010.1093/ecam/nep052 19505975
    [Google Scholar]
  92. ZhuS. LiuQ. HeJ. NakajimaN. SamarakoonS.P. SweS. ZawK. KomatsuK. Genetic identification of medicinally used Salacia species by nrDNA ITS sequences and a PCR-RFLP assay for authentication of Salacia-related health foods.J. Ethnopharmacol.202127411390910.1016/j.jep.2021.113909 33588011
    [Google Scholar]
  93. ManalilJ.J. BabyM. RamavarmaS.K. SuseelaI.M. PadikkalaJ. RaghavamenonA. Development of an anti-atherosclerotic polyherbal formulation: GSTC3.J. Environ. Pathol. Toxicol. Oncol.201534323724810.1615/JEnvironPatholToxicolOncol.2015012673 26349606
    [Google Scholar]
  94. JayawardenaM.H.S. de AlwisN.M.W. HettigodaV. FernandoD.J.S. A double blind randomised placebo controlled cross over study of a herbal preparation containing Salacia reticulata in the treatment of type 2 diabetes.J. Ethnopharmacol.200597221521810.1016/j.jep.2004.10.026 15707755
    [Google Scholar]
  95. OfnerM. TomaschitzA. WonischM. LitscherG. Complementary treatment of obesity and overweight with Salacia reticulata and vitamin d.Int. J. Vitam. Nutr. Res.201383421622310.1024/0300‑9831/a000162 25008011
    [Google Scholar]
  96. RatnasooriyaW.D. JayakodyJ.R.A.C. PremakumaraG.A.S. Adverse pregnancy outcome in rats following exposure to a Salacia reticulata (Celastraceae) root extract.Braz. J. Med. Biol. Res.200336793193510.1590/S0100‑879X2003000700015 12845381
    [Google Scholar]
  97. ImR. ManoH. NakataniS. ShimizuJ. WadaM. Safety evaluation of the aqueous extract Kothala himbutu (Salacia reticulata) stem in the hepatic gene expression profile of normal mice using DNA microarrays.Biosci. Biotechnol. Biochem.200872123075308310.1271/bbb.70745 19060410
    [Google Scholar]
  98. Reddi NageshM. GatashehM.K. HodaN. VijayakumarN. Mutagenicity assessment of Salacia chinensis by bacterial reverse mutation assay using histidine dependent Salmonella typhimurium tester strains.Saudi J. Biol. Sci.202229810337010.1016/j.sjbs.2022.103370 35846385
    [Google Scholar]
  99. YewaleS. FarashZ. KolheS. SakkanS. BhopeS. AmbekarP. PadmanabhanS. Benefits of soleris ® over the conventional method for enumeration of microbial load in Salacia herbal extract.Pol. J. Microbiol.202069445346210.33073/pjm‑2020‑048 33574873
    [Google Scholar]
/content/journals/npj/10.2174/0122103155298189240415092518
Loading
/content/journals/npj/10.2174/0122103155298189240415092518
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): anti-oxidant; diabetes; lipid-lowering; obesity; phytochemicals; Salacia reticulata
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test