Skip to content
2000
Volume 15, Issue 2
  • ISSN: 2210-3155
  • E-ISSN: 2210-3163

Abstract

Background

Roxb., a new species of the Zingiberaceae family, is found profoundly in the Northeastern region of India. It is a rhizomatous geophyte and grows primarily in the seasonally dry tropical biome native to Indo-China regimens.

Objective

The aim is to research the root part of this plant to discover active constituents and evaluate the molecular mechanism of antidiabetic activity.

Methods

The hydroalcoholic root extract of this plant (HAZR) was evaluated for antioxidant assays α-amylase and α-glucosidase inhibition assay. Further, the antidiabetic activity assay was evaluated, exploring the molecular mechanism for modulating oxidative stress in tissue biochemical parameters and HbA1c. To explore the molecular mechanism, we also investigated the inhibition assay of protein kinase C (PKC) phosphorylation in mouse peritoneal macrophages.

Results

The experiments' results helped to conclude that HAZR has potent antioxidant and antidiabetic activity and could have been embedded with potent active molecules. They also revealed the mechanism of action as inhibition of PKC phosphorylation, meriting further studies.

Conclusion

The present study revealed that HAZR demonstrated its antidiabetic activity against diabetic animal models through oxidative stress-mediated PKC and TGF-β regulation in diabetic individuals.

Loading

Article metrics loading...

/content/journals/npj/10.2174/0122103155292112240407113802
2025-02-01
2024-11-22
Loading full text...

Full text loading...

References

  1. JanaS. GayenS. DasguptaB. SinghaS. MondalJ. KarA. NepalA. GhoshS. RajabalayaR. DavidS.R. BalaramanA.K. BalaA. MukherjeeP.K. HaldarP.K. Investigation on anti-diabetic efficacy of a Cucurbitaceae food plant from the North-East region of India: Exploring the molecular mechanism through modulation of oxidative stress and glycosylated hemoglobin (HbA1c).Endocr. Metab. Immune Disord. Drug Targets202310.2174/1871530323666230907115818 37691221
    [Google Scholar]
  2. SofoworaA. OgunbodedeE. OnayadeA. The role and place of medicinal plants in the strategies for disease prevention.Afr. J. Tradit. Complement. Altern. Med.201310521022910.4314/ajtcam.v10i5.2 24311829
    [Google Scholar]
  3. PetrovskaB. Historical review of medicinal plants′ usage.Pharmacogn. Rev.20126111510.4103/0973‑7847.95849 22654398
    [Google Scholar]
  4. HaldarP.K. PatraS. BhattacharyaS. BalaA. Antidiabetic effect of Drymaria cordata leaf against streptozotocin–nicotinamide-induced diabetic albino rats.J. Adv. Pharm. Technol. Res.2020111445210.4103/japtr.JAPTR_98_19 32154158
    [Google Scholar]
  5. ChangkakotiL. DasJ.M. BorahR. RajabalayaR. DavidS.R. BalaramanA.K. PramanikS. HaldarP.K. BalaA. Protein kinase C (PKC)-mediated TGF-β regulation in diabetic neuropathy: emphasis on neuro-inflammation and allodynia.Endocr. Metab. Immune Disord. Drug Targets202310.2174/0118715303262824231024104849 37937564
    [Google Scholar]
  6. DaiD.N. ThangT.D. ChauL.T.M. OgunwandeI.A. Chemical constituents of the root essential oils of Zingiber rubens/Roxb., and Zingiber zerumbet/(L.).Smith. Am. J. Plant Sci.20134171010.4236/ajps.2013.41002
    [Google Scholar]
  7. MohantyS. PandaM.K. SahooS. NayakS. Micropropagation of Zingiber rubens and assessment of genetic stability through RAPD and ISSR markers.Biol. Plant.2011551162010.1007/s10535‑011‑0002‑1
    [Google Scholar]
  8. HynniewtaS.R. KumarY. The lesser-known medicine ka dawai ñiangsohpet of the khasis in meghalaya.Northeast India. Indian J. Tradit. Knowl.201093475479
    [Google Scholar]
  9. TripathiS. SinghK.K. Taxonomic revision of the genus Zingiber Boehm. in North-East India.J. Econ. Taxon. Bot.200630520532
    [Google Scholar]
  10. BarekM.A. Ud-DaulaA.F.M.S. BhuiyaM.S. HudaM.N. MiaM.S. BasherM.A. Ascertainment of phytochemical screening, antidiarrheal, hrombolytic and antibacterial effect of methanol extract of leaves of Zingiber rubens Roxb.Int. J. Pharmacogn. Phytochem. Res.2019113191198
    [Google Scholar]
  11. NaskarS. MazumderU.K. PramanikG. GuptaM. Suresh KumarR.B. BalaA. IslamA. Evaluation of antihyperglycemic activity of Cocos nucifera Linn. on streptozotocin induced type 2 diabetic rats.J. Ethnopharmacol.2011138376977310.1016/j.jep.2011.10.021 22041106
    [Google Scholar]
  12. MazumderU.K. SahaP. BalaA. KarB. NaskarS. HaldarP.K. GuptaM. Antidiabetic activity of cucurbita maxima aerial parts.Res. J. Med. Plant20115557758610.3923/rjmp.2011.577.586
    [Google Scholar]
  13. KundusenS. GuptaM. MazumderU.K. HaldarP.K. SahaP. BhattacharyaS. KarB. BalaA. Antihyperglycemic effect and antioxidant property of citrus maxima leaf in streptozotocininduced diabetic rats.Diabetol. Croat.2011440113120
    [Google Scholar]
  14. DolaiN. KarmakarI. KumarR.B.S. KarB. BalaA. HaldarP.K. Free radical scavenging activity of Castanopsis indica in mediating hepatoprotective activity of carbon tetrachloride intoxicated rats.Asian Pac. J. Trop. Biomed.201221S243S25110.1016/S2221‑1691(12)60168‑3
    [Google Scholar]
  15. HaldarP.K. ChetiaP. BalaA. KhandelwalB. Comparative in vitro free radical scavenging property of -carotene and naringenin with respect to vitamin C and N-acetyl cysteine.Pharmacologia201231272472810.5567/pharmacologia.2012.724.728
    [Google Scholar]
  16. YanL.J. The nicotinamide/streptozotocin rodent model of type 2 diabetes: Renal pathophysiology and redox imbalance features.Biomolecules2022129122510.3390/biom12091225 36139064
    [Google Scholar]
  17. Kotb El-SayedM.I. Al-MassaraniS. El GamalA. El-ShaibanyA. Al-MahbashiH.M. Mechanism of antidiabetic effects of Plicosepalus Acaciae flower in streptozotocin-induced type 2 diabetic rats, as complementary and alternative therapy.BMC Complementary Medicine and Therapies202020129010.1186/s12906‑020‑03087‑z 32967670
    [Google Scholar]
  18. BalaA. HaldarP.K. KarB. NaskarS. MazumderU.K. Carbon tetrachloride: A hepatotoxin causes oxidative stress in murine peritoneal macrophage and peripheral blood lymphocyte cells.Immunopharmacol. Immunotoxicol.201234115716210.3109/08923973.2011.590498 21721906
    [Google Scholar]
  19. LuY. KimS. ParkK. In vitro–in vivo correlation: Perspectives on model development.Int. J. Pharm.2011418114214810.1016/j.ijpharm.2011.01.010 21237256
    [Google Scholar]
  20. BouhaddouM. YuL.J. LunardiS. StamatelosS.K. MackF. GalloJ.M. BirtwistleM.R. WalzA.C. Predicting in vivo efficacy from in vitro data: Quantitative systems pharmacology modeling for an epigenetic modifier drug in cancer.Clin. Transl. Sci.202013241942910.1111/cts.12727 31729169
    [Google Scholar]
  21. SherwaniS.I. KhanH.A. EkhzaimyA. MasoodA. SakharkarM.K. Significance of HbA1c test in diagnosis and prognosis of diabetic patients.Biomark. Insights201611BMI.S3844010.4137/BMI.S38440 27398023
    [Google Scholar]
  22. FlorkowskiC. HbA1c as a diagnostic test for diabetes mellitus - Reviewing the evidence.Clin. Biochem. Rev.20133427583 24151343
    [Google Scholar]
  23. BalaA. Importance of protein kinase C (PKC) in phosphorylation of AMP-activated protein kinase (AMPK) in endocrine control.Endocrine202383382810.1007/s12020‑023‑03576‑4 37864651
    [Google Scholar]
  24. BalaA. RoyS. DasD. MarturiV. MondalC. PatraS. HaldarP.K. SamajdarG. Role of glycogen synthase kinase-3 in the etiology of type 2 diabetes mellitus: A review.Curr. Diabetes Rev.2022183e30072119514710.2174/1573399817666210730094225 34376135
    [Google Scholar]
  25. GeraldesP. KingG.L. Activation of protein kinase C isoforms and its impact on diabetic complications.Circ. Res.201010681319133110.1161/CIRCRESAHA.110.217117 20431074
    [Google Scholar]
  26. HeathcoteH.R. ManciniS.J. StrembitskaA. JamalK. ReihillJ.A. PalmerT.M. GouldG.W. SaltI.P. Protein kinase C phosphorylates AMP-activated protein kinase α1 Ser487.Biochem. J.2016473244681469710.1042/BCJ20160211 27784766
    [Google Scholar]
  27. FakhruddinS. AlanaziW. JacksonK.E. Diabetes-induced reactive oxygen species: Mechanism of their generation and role in renal injury.J. Diabetes Res.2017201713010.1155/2017/8379327 28164134
    [Google Scholar]
  28. MatoughF.A. BudinS.B. HamidZ.A. AlwahaibiN. MohamedJ. The role of oxidative stress and antioxidants in diabetic complications.Sultan Qaboos Univ. Med. J.201212151810.12816/0003082 22375253
    [Google Scholar]
  29. FokunangC.N. NdikumV. TabiO.Y. JiofackR.B. NgameniB. GuedjeN.M. Tembe-FokunangE.A. TomkinsP. BarkwanS. KechiaF. AsongalemE. NgoupayouJ. TorimiroN.J. GonsuK.H. SielinouV. NgadjuiB.T. AngwaforI.I.I.III NkongmeneckA. AbenaO.M. NgogangJ. AsonganyiT. ColizziV. LohoueJ. Kamsu-Kom, Traditional medicine: Past, present and future research and development prospects and integration in the national health system of cameroon.Afr. J. Tradit. Complement. Altern. Med.20118328429510.4314/ajtcam.v8i3.65276 22468007
    [Google Scholar]
  30. TranN. PhamB. LeL. Bioactive compounds in anti-diabetic plants: From herbal medicine to modern drug discovery.Biology20209925210.3390/biology9090252 32872226
    [Google Scholar]
/content/journals/npj/10.2174/0122103155292112240407113802
Loading
/content/journals/npj/10.2174/0122103155292112240407113802
Loading

Data & Media loading...

Supplements

ARRIVE checklist is available on the publisher's website along with the published article. Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test