Skip to content
2000
image of Therapeutic Applications of Oxalate-degrading Bacteria in Kidney Stone Prevention

Abstract

Urolithiasis is a condition where kidney stones exit through the renal pelvis, causing chronic pain. Kidney stones are usually formed due to the deposition of calcium and oxalate crystals. It is known to be a prevalent health condition that affects a large portion of the global human population. Inopportunely, no medications that show effective prevention of urolithiasis are currently available. Extensive research has highlighted the significant role of commensal microbes in regulating host oxalate homeostasis and oxalate-associated pathological conditions. However, limited knowledge of the pathophysiology of urolithiasis poses difficulties in designing target-based therapeutics. Growing evidence suggests the role of gut microbiota and probiotics in helping reduce the disease burden. Understanding the intricate relationship between gut-associated microbiota and its host symbiosis reveals the therapeutic potential of specific bacteria to prevent and/or treat such metabolic diseases. , a bacterium, is considered crucial for degrading dietary oxalates through the oxalyl-CoA decarboxylase enzyme. The absence of this enzyme leads to hyperoxaluria and calcium oxalate urolithiasis, underscoring the impact of microbiota on kidney stone formation. Studies on the urinary microbiome, including those focusing on and , elucidate the metabolism of dietary oxalates, providing a novel approach to kidney stone management. This review aims to consolidate the present information on the urinary microbiome, aetiology, pathogenesis, and disease prevention.

Loading

Article metrics loading...

/content/journals/npj/10.2174/0122103155352643241205175402
2025-02-03
2025-04-25
Loading full text...

Full text loading...

References

  1. Singh A. Chitra V. A probe on the activity of herbal medicines in nephrolithiasis. Research J. Pharm. and Tech. 2019 12 9 4539 4544 10.5958/0974‑360X.2019.00781.9
    [Google Scholar]
  2. Kalyani K. Sailaja B. An overview on analytical methods for bioactive markers used in urolithiasis. Asian J. Pharm. Sci. 2022 12 4 321 328
    [Google Scholar]
  3. Kabita Banik S. Akshitha O.V. Poojitha C.H. Thulasi V. Evaluation of antiurolithiatic activity of Moringa leaves by UV spectroscopic method. Asian J. Res. Pharm. Sci. 2020 10 3 141 144
    [Google Scholar]
  4. Lieske J.C. Tremaine W.J. De Simone C. O’Connor H.M. Li X. Bergstralh E.J. Goldfarb D.S. Diet, but not oral probiotics, effectively reduces urinary oxalate excretion and calcium oxalate supersaturation. Kidney Int. 2010 78 11 1178 1185 10.1038/ki.2010.310 20736987
    [Google Scholar]
  5. Troxel S.A. Sidhu H. Kaul P. Low R.K. Intestinal Oxalobacter formigenes colonization in calcium oxalate stone formers and its relation to urinary oxalate. J. Endourol. 2003 17 3 173 176 10.1089/089277903321618743 12803990
    [Google Scholar]
  6. Spandana K. Shivani M. Himabindhu J. Ramanjaneyulu K. Evaluation of In Vitro antiurolithiatic activity of Vigna radiata. Research J. Pharm. and Tech. 2018 11 12 5455 5457 10.5958/0974‑360X.2018.00994.0
    [Google Scholar]
  7. Siener R. Bangen U. Sidhu H. Hönow R. von Unruh G. Hesse A. The role of Oxalobacter formigenes colonization in calcium oxalate stone disease. Kidney Int. 2013 83 6 1144 1149 10.1038/ki.2013.104 23536130
    [Google Scholar]
  8. Gupta S. Shamsher S.K. Kidney stones: Mechanism of formation, pathogenesis and possible treatments. J. Biomol Biochem. 2018 2 1 1 5
    [Google Scholar]
  9. Zalavadiya V. Santani V.S. A review on urolithiasis and its treatment using plants. J. Pharmacogn. Phytochem. 2013 5 1 1 8
    [Google Scholar]
  10. Evan A.P. Worcester E.M. Coe F.L. Williams J. Jr Lingeman J.E. Mechanisms of human kidney stone formation. Urolithiasis 2015 43 S1 Suppl. 1 19 32 10.1007/s00240‑014‑0701‑0 25108546
    [Google Scholar]
  11. Rebeca D. Monk David A. Kidney Stones Williams Textbook of Endocrinology Elsevier 12th ed 2011 1296 1367 10.1016/B978‑1‑4377‑0324‑5.00030‑4
    [Google Scholar]
  12. Aggarwal P.K. Narula S. Kakkar M. Tondon C. Nephrolithiasis: Molecular mechanism of renal stone formation and the critical role played by modulators. BioMed Res Int. 2013 2013 292953
    [Google Scholar]
  13. Lieske J.C. Peña de la Vega L.S. Slezak J.M. Bergstralh E.J. Leibson C.L. Ho K.L. Gettman M.T. Renal stone epidemiology in Rochester, Minnesota: An update. Kidney Int. 2006 69 4 760 764 10.1038/sj.ki.5000150 16518332
    [Google Scholar]
  14. Mayans L. Nephrolithiasis. Prim. Care 2019 46 2 203 212 10.1016/j.pop.2019.02.001 31030821
    [Google Scholar]
  15. Scales C.D. Jr Smith A.C. Hanley J.M. Saigal C.S. Urologic Diseases in America Project Prevalence of kidney stones in the United States. Eur. Urol. 2012 62 1 160 165 10.1016/j.eururo.2012.03.052 22498635
    [Google Scholar]
  16. Curhan G.C. Willett W.C. Rimm E.B. Stampfer M.J. Family history and risk of kidney stones. J. Am. Soc. Nephrol. 1997 8 10 1568 1573 10.1681/ASN.V8101568 9335385
    [Google Scholar]
  17. Stamatelou K.K. Francis M.E. Jones C.A. Nyberg L.M. Jr Curhan G.C. Time trends in reported prevalence of kidney stones in the United States. Kidney Int. 2003 63 5 1817 1823 10.1046/j.1523‑1755.2003.00917.x 12675858
    [Google Scholar]
  18. Romero V. Akpinar H. Assimos D.G. Kidney stones: A global picture of prevalence, incidence, and associated risk factors. Rev. Urol. 2010 12 2-3 e86 e96 20811557
    [Google Scholar]
  19. Ferraro P.M. Bargagli M. Trinchieri A. Gambaro G. Risk of kidney stones: Influence of dietary factors, dietary patterns, and vegetarian–vegan diets. Nutrients 2020 12 3 779 10.3390/nu12030779 32183500
    [Google Scholar]
  20. Tasian G. Miller A. Lange D. Antibiotics and kidney stones: Perturbation of the gut-kidney axis. Am. J. Kidney Dis. 2019 74 6 724 726 10.1053/j.ajkd.2019.07.021 31635850
    [Google Scholar]
  21. Tasian G.E. Jemielita T. Goldfarb D.S. Copelovitch L. Gerber J.S. Wu Q. Denburg M.R. Oral antibiotic exposure and kidney stone disease. J. Am. Soc. Nephrol. 2018 29 6 1731 1740 10.1681/ASN.2017111213 29748329
    [Google Scholar]
  22. Stern J.M. Moazami S. Qiu Y. Kurland I. Chen Z. Agalliu I. Burk R. Davies K.P. Evidence for a distinct gut microbiome in kidney stone formers compared to non-stone formers. Urolithiasis 2016 44 5 399 407 10.1007/s00240‑016‑0882‑9 27115405
    [Google Scholar]
  23. Taylor E.N. Curhan G.C. Oxalate intake and the risk for nephrolithiasis. J. Am. Soc. Nephrol. 2007 18 7 2198 2204 10.1681/ASN.2007020219 17538185
    [Google Scholar]
  24. Zabłocka A. Janusz M. The two faces of reactive oxygen species. Postepy Hig. Med. Dosw. 2008 62 118 124 18388851
    [Google Scholar]
  25. Holmes R.P. Goodman H.O. Assimos D.G. Contribution of dietary oxalate to urinary oxalate excretion. Kidney Int. 2001 59 1 270 276 10.1046/j.1523‑1755.2001.00488.x 11135080
    [Google Scholar]
  26. Ratkalkar V.N. Kleinman J.G. Mechanisms of stone formation. Clin. Rev. Bone Miner. Metab. 2011 9 3-4 187 197 10.1007/s12018‑011‑9104‑8 22229020
    [Google Scholar]
  27. Sharma S. Sharma N. Chandra Gupta P. Verma R. Yadav V. An update on kidney stones: Types, mechanism and treatment approaches. Res. J. Pharmacogn Phytochem 2023 15 1 53 62 10.52711/0975‑4385.2023.00009
    [Google Scholar]
  28. Sathish R. Natarajan K. Nikhad M.M. Effect of Hygrophila spinosa T Anders on ethylene glycol induced urolithiasis in rats. Asian J. Pharm. Clin. Res. 2010 3 4 61 63
    [Google Scholar]
  29. Ticinesi A. Milani C. Guerra A. Allegri F. Lauretani F. Nouvenne A. Mancabelli L. Lugli G.A. Turroni F. Duranti S. Mangifesta M. Viappiani A. Ferrario C. Dodi R. Dall’Asta M. Del Rio D. Ventura M. Meschi T. Understanding the gut–kidney axis in nephrolithiasis: An analysis of the gut microbiota composition and functionality of stone formers. Gut 2018 67 12 2097 2106 10.1136/gutjnl‑2017‑315734 29705728
    [Google Scholar]
  30. Edvardsson V.O. Goldfarb D.S. Lieske J.C. Beara-Lasic L. Anglani F. Milliner D.S. Palsson R. Hereditary causes of kidney stones and chronic kidney disease. Pediatr. Nephrol. 2013 28 10 1923 1942 10.1007/s00467‑012‑2329‑z 23334384
    [Google Scholar]
  31. Howles S.A. Thakker R.V. Genetics of kidney stone disease. Nat. Rev. Urol. 2020 17 7 407 421 10.1038/s41585‑020‑0332‑x 32533118
    [Google Scholar]
  32. Abratt V.R. Reid S.J. Oxalate-degrading bacteria of the human gut as probiotics in the management of kidney stone disease. Adv. Appl. Microbiol. 2010 72 63 87 10.1016/S0065‑2164(10)72003‑7 20602988
    [Google Scholar]
  33. Joshi S. Goldfarb D.S. The use of antibiotics and risk of kidney stones. Curr. Opin. Nephrol. Hypertens. 2019 28 4 311 315 10.1097/MNH.0000000000000510 31145705
    [Google Scholar]
  34. Mehta M. Goldfarb D.S. Nazzal L. The role of the microbiome in kidney stone formation. Int. J. Surg. 2016 36 Pt D 607 612 10.1016/j.ijsu.2016.11.024 27847292
    [Google Scholar]
  35. Hatch M. Cornelius J. Allison M. Sidhu H. Peck A. Freel R.W. Oxalobacter sp. reduces urinary oxalate excretion by promoting enteric oxalate secretion. Kidney Int. 2006 69 4 691 698 10.1038/sj.ki.5000162 16518326
    [Google Scholar]
  36. Kaufman D.W. Kelly J.P. Curhan G.C. Anderson T.E. Dretler S.P. Preminger G.M. Cave D.R. Oxalobacter formigenes may reduce the risk of calcium oxalate kidney stones. J. Am. Soc. Nephrol. 2008 19 6 1197 1203 10.1681/ASN.2007101058 18322162
    [Google Scholar]
  37. Tarasewicz A. Laudańska E. Naumnik B. Oxalobacter formigenes – wykorzystanie mikrobiomu jelita grubego w profilaktyce kamicy nerkowej Oxalobacter formigenes - use of the colon microbiome in the prevention of kidney stones]. Pol Merkur Lekarski. 2022 50 295 54 57
    [Google Scholar]
  38. Jiang J. Knight J. Easter L.H. Neiberg R. Holmes R.P. Assimos D.G. Impact of dietary calcium and oxalate, and Oxalobacter formigenes colonization on urinary oxalate excretion. J. Urol. 2011 186 1 135 139 10.1016/j.juro.2011.03.006 21575973
    [Google Scholar]
  39. Tavasoli S. Alebouyeh M. Naji M. Shakiba majd G. Shabani Nashtaei M. Broumandnia N. Basiri A. Association of intestinal oxalate‐degrading bacteria with recurrent calcium kidney stone formation and hyperoxaluria: A case–control study. BJU Int. 2020 125 1 133 143 10.1111/bju.14840 31145528
    [Google Scholar]
  40. Batislam E. Yilmaz E. Yuvanc E. Kisa O. Kisa U. Quantitative analysis of colonization with real-time PCR to identify the role of Oxalobacter formigenes in calcium oxalate urolithiasis. Urol. Res. 2012 40 5 455 460 10.1007/s00240‑011‑0449‑8 22215293
    [Google Scholar]
  41. Ravikumar Y. Begum R.F. Velmurugan R. Oxalobacter formigenes reduce the risk of kidney stones in patients exposed to oral antibiotics: A case–control study. Int. Urol. Nephrol. 2021 53 1 13 20 10.1007/s11255‑020‑02627‑3 32880090
    [Google Scholar]
  42. Verhulst A. Dehmel B. Lindner E. Akerman M.E. D’Haese P.C. Oxalobacter formigenes treatment confers protective effects in a rat model of primary hyperoxaluria by preventing renal calcium oxalate deposition. Urolithiasis 2022 50 2 119 130 10.1007/s00240‑022‑01310‑9 35122487
    [Google Scholar]
  43. Sidhu H. Allison M.J. Chow J.O.M. Clark A. Peck A.B. Rapid reversal of hyperoxaluria in a rat model after probiotic administration of Oxalobacter formigenes. J. Urol. 2001 166 4 1487 1491 10.1016/S0022‑5347(05)65817‑X 11547118
    [Google Scholar]
  44. Klimesova K. Whittamore J.M. Hatch M. Bifidobacterium animalis subsp. lactis decreases urinary oxalate excretion in a mouse model of primary hyperoxaluria. Urolithiasis 2015 43 2 107 117 10.1007/s00240‑014‑0728‑2 25269440
    [Google Scholar]
  45. Al K.F. Daisley B.A. Chanyi R.M. Bjazevic J. Razvi H. Reid G. Burton J.P. Oxalate-degrading Bacillus subtilis mitigates urolithiasis in a Drosophila melanogaster Model. MSphere 2020 5 5 e00498 10.1128/mSphere.00498‑20
    [Google Scholar]
  46. Anbazhagan K. Sasikumar P. Gomathi S. Priya H.P. Selvam G.S. In vitro degradation of oxalate by recombinant Lactobacillus plantarum expressing heterologous oxalate decarboxylase. J. Appl. Microbiol. 2013 115 3 880 887 10.1111/jam.12269 23734819
    [Google Scholar]
  47. Antonelli J.A. Maalouf N.M. Pearle M.S. Lotan Y. Use of the national health and nutrition examination survey to calculate the impact of obesity and diabetes on cost and prevalence of urolithiasis in 2030. Eur. Urol. 2014 66 4 724 729 10.1016/j.eururo.2014.06.036 25015037
    [Google Scholar]
  48. Arvans D. Jung Y.C. Antonopoulos D. Koval J. Granja I. Bashir M. Karrar E. Roy-Chowdhury J. Musch M. Asplin J. Chang E. Hassan H. Oxalobacter formigenes–derived bioactive factors stimulate oxalate transport by intestinal epithelial cells. J. Am. Soc. Nephrol. 2017 28 3 876 887 10.1681/ASN.2016020132 27738124
    [Google Scholar]
/content/journals/npj/10.2174/0122103155352643241205175402
Loading
/content/journals/npj/10.2174/0122103155352643241205175402
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: calcium oxalate ; Urolithiasis ; microbiome ; Oxalobacter formigenes
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test