Skip to content
2000
Volume 15, Issue 2
  • ISSN: 2210-3155
  • E-ISSN: 2210-3163

Abstract

Background

is a versatile mushroom with potential therapeutic benefits. A variety of bioactive compounds have been found in this mushroom that have anti-ulcer, anti-inflammatory, immunomodulatory, and blood sugar and lipid regulating effects.

Objectives

The aim is to isolate and characterize compounds from the rice medium of and evaluate their potential therapeutic effects on oxidative stress-associated diseases.

Methods

Fifteen compounds were isolated and characterized using NMR spectra and ESI-MS. The effects of compounds and on LPS-induced nitric oxide (NO) generation in BV2 cells and HO-induced cytotoxicity in SH-SY5Y cells were investigated. The regulation of nitric oxide production and apoptosis-associated proteins Bcl-2 and Bax were also examined.

Results

Compounds and exhibited potent inhibitory effects on LPS-induced NO generation in microglial cells and significant resistance to HO-induced cytotoxicity in neuronal cells. Molecular docking simulations demonstrated the interaction of compounds and with iNOS and Bax, respectively. Western blot analysis revealed that inhibited NO production and regulated the expression of Bax and Bcl-2, suggesting a protective effect against HO-induced apoptosis.

Conclusion

Compounds and isolated from are potential therapeutic candidates for oxidative stress-associated diseases, possibly through their regulation of nitric oxide production and apoptosis-related proteins. Further investigations are warranted to elucidate their mechanisms of action and therapeutic potential.

Loading

Article metrics loading...

/content/journals/npj/10.2174/0122103155295894240528061315
2025-02-01
2025-01-24
Loading full text...

Full text loading...

References

  1. FriedmanM. Chemistry, Nutrition, and health-promoting properties of Hericium erinaceus (Lion’s mane) mushroom fruiting bodies and mycelia and their bioactive compounds.J. Agric. Food Chem.201563327108712310.1021/acs.jafc.5b02914 26244378
    [Google Scholar]
  2. RodriguesD.M.F. FreitasA.C. SantosR.T.A.P. VasconcelosM.W. RorizM. AlcaláR.L.M. GomesA.M.P. DuarteA.C. Chemical composition and nutritive value of Pleurotus citrinopileatus var cornucopiae, P. eryngii, P. salmoneo stramineus, Pholiota nameko and Hericium erinaceus.J. Food Sci. Technol.201552116927693910.1007/s13197‑015‑1826‑z
    [Google Scholar]
  3. QiJ. WuJ. KangS-j. GaoJ-m. KawagishiH. LiuH. LiuC. The chemical structures, biosynthesis, and biological activities of secondary metabolites from the culinary-medicinal mushrooms of the genus Hericium: A review.Chin. J. Nat. Med.202422124
    [Google Scholar]
  4. KomuraD.L. RuthesA.C. CarboneroE.R. GorinP.A.J. IacominiM. Water-soluble polysaccharides from Pleurotus ostreatus var. florida mycelial biomass.Int. J. Biol. Macromol.20147035435910.1016/j.ijbiomac.2014.06.007 25008131
    [Google Scholar]
  5. RossiP. CesaroniV. BrandaliseF. OcchinegroA. RattoD. PerrucciF. LanaiaV. GiromettaC. OrrùG. SavinoE. Dietary Supplementation of lion’s mane medicinal mushroom, Hericium erinaceus (Agaricomycetes), and spatial memory in wild-type mice.Int. J. Med. Mushrooms201820548549410.1615/IntJMedMushrooms.2018026241 29953363
    [Google Scholar]
  6. WangX.Y. ZhangD. YinJ.Y. NieS.P. XieM.Y. Recent developments in Hericium erinaceus polysaccharides: Extraction, purification, structural characteristics and biological activities.Crit. Rev. Food Sci. Nutr.201959S1S96S11510.1080/10408398.2018.1521370 30421988
    [Google Scholar]
  7. WongK.H. NaiduM. DavidP. AbdullaM.A. AbdullahN. KuppusamyU.R. SabaratnamV. Peripheral nerve regeneration following crush injury to rat peroneal nerve by aqueous extract of medicinal mushroom hericium erinaceus (Bull.: Fr) pers. (Aphyllophoromycetideae).Evid. Based Complement. Alternat. Med.20112011580752
    [Google Scholar]
  8. ZouP. GuoY. DingS. SongZ. CuiH. ZhangY. ZhangZ. ChenX. Autotoxicity of endogenous organic acid stress in two Ganoderma lucidum cultivars.Molecules20222719673410.3390/molecules27196734 36235268
    [Google Scholar]
  9. AmorS. PuentesF. BakerD. ValkV.D.P. Inflammation in neurodegenerative diseases.Immunology2010129215416910.1111/j.1365‑2567.2009.03225.x 20561356
    [Google Scholar]
  10. BlockM.L. ZeccaL. HongJ.S. Microglia-mediated neurotoxicity: Uncovering the molecular mechanisms.Nat. Rev. Neurosci.200781576910.1038/nrn2038 17180163
    [Google Scholar]
  11. McCartyM.F. Down-regulation of microglial activation may represent a practical strategy for combating neurodegenerative disorders.Med. Hypotheses200667225126910.1016/j.mehy.2006.01.013 16513287
    [Google Scholar]
  12. LinM.T. BealM.F. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases.Nature2006443711378779510.1038/nature05292 17051205
    [Google Scholar]
  13. SimpsonD.S.A. OliverP.L. ROS Generation in Microglia: Understanding Oxidative Stress and Inflammation in Neurodegenerative Disease.Antioxidants20209874310.3390/antiox9080743 32823544
    [Google Scholar]
  14. MattsonM.P. ArumugamT.V. Hallmarks of brain aging: Adaptive and pathological modification by metabolic states.Cell Metab.20182761176119910.1016/j.cmet.2018.05.011 29874566
    [Google Scholar]
  15. MenziesF.M. FlemingA. RubinszteinD.C. Compromised autophagy and neurodegenerative diseases.Nat. Rev. Neurosci.201516634535710.1038/nrn3961 25991442
    [Google Scholar]
  16. ChowH. HerrupK. Genomic integrity and the ageing brain.Nat. Rev. Neurosci.2015161167268410.1038/nrn4020 26462757
    [Google Scholar]
  17. MatherM. HarleyC.W. The locus coeruleus: Essential for maintaining cognitive function and the aging brain.Trends Cogn. Sci.201620321422610.1016/j.tics.2016.01.001 26895736
    [Google Scholar]
  18. StrehlerE.E. ThayerS.A. Evidence for a role of plasma membrane calcium pumps in neurodegenerative disease: Recent developments.Neurosci. Lett.2018663394710.1016/j.neulet.2017.08.035 28827127
    [Google Scholar]
  19. StephensonJ. NutmaE. van der ValkP. AmorS. Inflammation in CNS neurodegenerative diseases.Immunology2018154220421910.1111/imm.12922 29513402
    [Google Scholar]
  20. QiJ. GaoY.Q. KangS. LiuC. GaoJ.M. Secondary metabolites of bird’s nest fungi: Chemical structures and biological activities.J. Agric. Food Chem.202371176513652410.1021/acs.jafc.3c00904 37071706
    [Google Scholar]
  21. WangZ. FengX. LiuC. GaoJ. QiJ. Diverse metabolites and pharmacological effects from the basidiomycetes Inonotus hispidus.Antibiotics2022118109710.3390/antibiotics11081097 36009965
    [Google Scholar]
  22. HeiY. ZhangH. TanN. ZhouY. WeiX. HuC. LiuY. WangL. QiJ. GaoJ.M. Antimicrobial activity and biosynthetic potential of cultivable actinomycetes associated with Lichen symbiosis from Qinghai-Tibet Plateau.Microbiol. Res.202124412665210.1016/j.micres.2020.126652 33310352
    [Google Scholar]
  23. QiJ. WangD. YinX. ZhangQ. GaoJ.M. New metabolite with inhibitory activity against α-glucosidase and α-amylase from endophytic Chaetomium globosum.Nat. Prod. Commun.20201571934578X209413310.1177/1934578X20941338
    [Google Scholar]
  24. WuJ.N. ChenD.L. LiuY.Y. ZhengC.L. JiaF.L. MaG.X. SunW.H. Chemical constituents and bioactive activities of Eleutherine americana.Chin. Tradit. Herbal Drugs2018491329672971
    [Google Scholar]
  25. HuhS. KimY.S. JungE. LimJ. JungK.S. KimM.O. LeeJ. ParkD. Melanogenesis inhibitory effect of fatty acid alkyl esters isolated from Oxalis triangularis.Biol. Pharm. Bull.20103371242124510.1248/bpb.33.1242 20606321
    [Google Scholar]
  26. MurakamiN. ShirahashiH. NagatsuA. SakakibaraJ. Two unsaturated 9 R ‐hydroxy fatty acids from the cyanobacterium Anabaena flos‐aquae f. flos‐aquae.Lipids1992271077677810.1007/BF02535848
    [Google Scholar]
  27. Ying-ziL. Ming-jinH. Shou-maoS. Ming-zhiS. Dan-danY. Yue-weiG. Yu-qiangQ. Guang-wenZ. Chemical constituents from Armillaria mellea fermentation broth and its mycelia. Natural Product Res.Development202335711831190
    [Google Scholar]
  28. KouR.W. DuS.T. LiY.X. YanX.T. ZhangQ. CaoC.Y. YinX. GaoJ.M. Cyathane diterpenoids and drimane sesquiterpenoids with neurotrophic activity from cultures of the fungus Cyathus africanus.J. Antibiot.2019721152110.1038/s41429‑018‑0106‑3 30327549
    [Google Scholar]
  29. ChaoX.X. Wen-Li1, M.; Yan-Bo1, Z.; Hai-Peng1, L.; Ling1, Z.; Hao-Fu1*, D.; Xiu-Chao, X.; Wen-Li1, M.; Yan-Bo1, Z.; Hai-Peng1, L.; Ling1, Z.; Hao-Fu1*, D., Cytotoxic Constituents from Marine Actinomycete Streptomyces sp. 124092.Chem. J. Chin. Univ.2008291121832186
    [Google Scholar]
  30. WenB. YuanX. ZhangW.D. ChenB.Y. FuK.L. LiB. YeJ. ShanL. ShenY.H. Chemical constituents from the aerial parts of Psammosilene tunicoides.Phytochem. Lett.20149596610.1016/j.phytol.2014.04.006
    [Google Scholar]
  31. XinL. YuC. FengJ. WenG. RanL. DaG. JianZ. YunD. Study on the chemical constituents of Fusarium solani, an endophytic fungus from Hippocampus japonicas Kaup.Zhongyao Yu Linchuang2022130115, 31
    [Google Scholar]
  32. YeX. ChaiW. LianX.Y. ZhangZ. Novel propanamide analogue and antiproliferative diketopiperazines from mangrove Streptomyces sp. Q24.Nat. Prod. Res.201731121390139610.1080/14786419.2016.1253079 27806640
    [Google Scholar]
  33. XiaoluY. XueX. LinY. HuangQ. MoM. WangS. MengJ. Chemical constituents from the Moutan Cortex charcoal and their potential coagulation activities.J. Chin. Pharm. Sci.201827960861610.5246/jcps.2018.09.062
    [Google Scholar]
  34. LopesT.I.B. CoelhoR.G. YoshidaN.C. HondaN.K. Radical-scavenging activity of orsellinates.Chem. Pharm. Bull.200856111551155410.1248/cpb.56.1551 18981604
    [Google Scholar]
  35. DongW. WangZ. FengX. ZhangR. ShenD. DuS. GaoJ. QiJ. Chromosome-level genome sequences, comparative genomic analyses, and secondary-metabolite biosynthesis evaluation of the medicinal edible mushroom Laetiporus sulphureus.Microbiol. Spectr.2022105e02439e2210.1128/spectrum.02439‑22 36200896
    [Google Scholar]
  36. YuanW. YuanW. ZhouR. LvG. SunM. ZhaoY. ZhengW. Production of hispidin polyphenols from medicinal mushroom Sanghuangporus vaninii in submerged cultures.Chin. Herb. Med.202315459460210.1016/j.chmed.2022.07.004 38094021
    [Google Scholar]
  37. HeX. ChenY. LiZ. FangL. ChenH. LiangZ. AbozeidA. YangZ. YangD. Germplasm resources and secondary metabolism regulation in Reishi mushroom (Ganoderma lucidum).Chin. Herb. Med.202315337638210.1016/j.chmed.2023.01.005 37538858
    [Google Scholar]
  38. WeiJ. ChengM. ZhuJ. ZhangY. CuiK. WangX. QiJ. Comparative genomic analysis and metabolic potential profiling of a novel culinary-medicinal mushroom, hericium rajendrae (Basidiomycota).J. Fungi2023910101810.3390/jof9101018 37888275
    [Google Scholar]
  39. KawagishiH. ShimadaA. ShiraiR. OkamotoK. OjimaF. SakamotoH. IshiguroY. FurukawaS. ErinacinesA. ErinacinesA. B and C, strong stimulators of nerve growth factor (NGF)-synthesis, from the mycelia of Hericium erinaceum.Tetrahedron Lett.199435101569157210.1016/S0040‑4039(00)76760‑8
    [Google Scholar]
  40. QiJ. KangS. ZhaoL. GaoJ. LiuC. Natural and engineered xylosyl products from microbial source.Nat. Prod. Bioprospect.20241411310.1007/s13659‑024‑00435‑1 38296905
    [Google Scholar]
  41. KawagishiH. AndoM. SakamotoH. YoshidaS. OjimaF. IshiguroY. UkaiN. FurukawaS. HericenonesC. HericenonesC. D and E, stimulators of nerve growth factor (NGF)-synthesis, from the mushroom Hericium erinaceum.Tetrahedron Lett.199132354561456410.1016/0040‑4039(91)80039‑9
    [Google Scholar]
  42. KawagishiH. AndoM. MizunoT. Hericenone A and B as cytotoxic principles from the mushroom.Tetrahedron Lett.199031337337610.1016/S0040‑4039(00)94558‑1
    [Google Scholar]
/content/journals/npj/10.2174/0122103155295894240528061315
Loading
/content/journals/npj/10.2174/0122103155295894240528061315
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test