Skip to content
2000
Volume 15, Issue 2
  • ISSN: 2210-3155
  • E-ISSN: 2210-3163

Abstract

Background

Mesophotic coral ecosystems (MCEs) are light-dependent ecosystems found from 30 to 150 m in depth that are highly diverse and relatively understudied worldwide.

Methods

One new indole alkaloid, chaetoid A (), one known analog, indigodole B (), and one known -carboline type alkaloid 1-acetyl--carboline (), along with three known cyclic depsipeptides, turnagainolide A (), turnagainolide B (), arthroamide () were isolated from cultures of fungus sp. NBUF152 is associated with a 66 m deep mesophotic zone sponge. Their structures were determined by analysis of spectroscopic data (NMR, HRESIMS, UV, IR, optical rotation, and ECD). The bioassay results showed that compounds - exhibited moderate inhibition against acetylcholinesterase (AchE).

Results

The results showed that these compounds displayed moderate anti-AchE activities with IC values of 25.97, 25.80, 21.07, 23.49, 21.28 and 25.3 mol/L.

Conclusion

This work could lead to additional investigation into the potential of marine organisms in MCEs as a source for discovering natural products with interesting structures and bioactivities.

Loading

Article metrics loading...

/content/journals/npj/10.2174/0122103155310287240509105635
2025-02-01
2025-01-24
Loading full text...

Full text loading...

References

  1. OsukaK.E. McCleanC. StewartB.D. BettB.J. Le BasT. HoweJ. AbernerthyC. YahyaS. OburaD. SamoilysM. Characteristics of shallow and mesophotic environments of the Pemba Channel, Tanzania: Implications for management and conservation.Ocean Coast. Manage.202120010546310.1016/j.ocecoaman.2020.105463
    [Google Scholar]
  2. PyleR.L. CopusJ.M. Mesophotic coral ecosystems: Introduction and overview.Mesophotic Coral Ecosystems.United StatesSpringer International Publishing2019327
    [Google Scholar]
  3. BongaertsP. Mesophotic coral ecosystems.Curr. Biol.2022328R345R34610.1016/j.cub.2022.03.036 35472416
    [Google Scholar]
  4. HindersteinL.M. MarrJ.C.A. MartinezF.A. DowgialloM.J. PugliseK.A. PyleR.L. ZawadaD.G. AppeldoornR. Theme section on “mesophotic coral ecosystems: Characterization, ecology, and management”.Coral Reefs201029224725110.1007/s00338‑010‑0614‑5
    [Google Scholar]
  5. LaverickJ.H. RogersA.D. Mesophotic coral ecosystems.AmsterdamElsevier2020
    [Google Scholar]
  6. Pérez-RosalesG. Hernández-AgredaA. BongaertsP. RouzéH. PichonM. CarlotJ. TordaG. ParraviciniV. HédouinL. Mesophotic depths hide high coral cover communities in French Polynesia.Sci. Total Environ.202284415704910.1016/j.scitotenv.2022.157049 35780903
    [Google Scholar]
  7. EnrichettiF. BoM. MorriC. MontefalconeM. TomaM. BavestrelloG. TunesiL. CaneseS. GiustiM. SalvatiE. BertolottoR.M. BianchiC.N. Assessing the environmental status of temperate mesophotic reefs: A new, integrated methodological approach.Ecol. Indic.201910221822910.1016/j.ecolind.2019.02.028
    [Google Scholar]
  8. WangT. FengY. HuangJ. WuS. HuK. WuJ. NamanC.B. WangH. LinW. HeS. Pestanoid A, a rearranged pimarane diterpenoid osteoclastogenesis inhibitor from a marine mesophotic zone Chalinidae sponge-associated fungus Pestalotiopsis sp. NBUF145.J. Nat. Prod.202487116016510.1021/acs.jnatprod.3c00892 38194474
    [Google Scholar]
  9. FengY.P. WangH.K. WuJ.L. ShaoP. ZhouW.L. LaiQ.L. LinH.W. NamanC.B. WangT.T. HeS. Acremocholone, an anti-Vibrio steroid from the marine mesophotic zone Ciocalypta sponge-associated Fungus Acremonium sp. NBUF150.Chem. Biodivers.2022194e20220002810.1002/cbdv.202200028 35194947
    [Google Scholar]
  10. YuanY. LiT. WangT. NamanC.B. YeJ. WuX. LazaroJ.E.H. YanX. HeS. Targeted isolation of a cytotoxic cyclic hexadepsipeptide from the mesophotic zone sponge-associated fungus Cymostachys sp. NBUF082.Mar. Drugs2021191056510.3390/md19100565 34677465
    [Google Scholar]
  11. ZouJ. WuJ. DingL. WangW. LiuY. FengY. LaiQ. LinW. WangT. HeS. Guignardones Y-Z, antiviral meroterpenes from Penicillium sp. NBUF154 associated with a Crella Sponge from the marine mesophotic zone.Chem. Biodivers.2022198e20220047510.1002/cbdv.202200475 35766362
    [Google Scholar]
  12. LeeC.L. WangC.M. HuH.C. YenH.R. SongY.C. YuS.J. ChenC.J. LiW.C. WuY.C. Indole alkaloids indigodoles A-C from aerial parts of Strobilanthes cusia in the traditional Chinese medicine Qing Dai have anti-IL-17 properties.Phytochemistry2019162394610.1016/j.phytochem.2019.02.016 30852259
    [Google Scholar]
  13. HongS.S. HanX.H. ParkS.Y. ChoiW.H. LeeM.K. HurJ.D. HwangB.Y. RoJ.S. Monoamine oxidase inhibitor from Uncaria Rhynchophylla.Nat. Prod. Sci.2005113145149
    [Google Scholar]
  14. VervoortH.C. DraškovićM. CrewsP. Histone deacetylase inhibitors as a tool to up-regulate new fungal biosynthetic products: Isolation of EGM-556, a cyclodepsipeptide, from Microascus sp.Org. Lett.201113341041310.1021/ol1027199 21174394
    [Google Scholar]
  15. LiD. CarrG. ZhangY. WilliamsD.E. AmlaniA. BottriellH. MuiA.L.F. AndersenR.J. Turnagainolides A and B, cyclic depsipeptides produced in culture by a Bacillus sp.: Isolation, structure elucidation, and synthesis.J. Nat. Prod.20117451093109910.1021/np200033y 21539394
    [Google Scholar]
  16. IgarashiY. YamamotoK. FukudaT. ShojimaA. NakayamaJ. CarroL. TrujilloM.E. Arthroamide, a cyclic depsipeptide with quorum sensing inhibitory activity from Arthrobacter sp.J. Nat. Prod.201578112827283110.1021/acs.jnatprod.5b00540 26575343
    [Google Scholar]
  17. LionettoM.G. CaricatoR. CalisiA. GiordanoM.E. SchettinoT. Acetylcholinesterase as a biomarker in environmental and occupational medicine: New insights and future perspectives.BioMed Res. Int.2013201351810.1155/2013/321213 23936791
    [Google Scholar]
  18. AnJ.M. JungK.O. OhM.S. KimD. Acetylcholinesterase-responsive fluorescent probe: Recent advances from development to applications.Dyes Pigments202321511126710.1016/j.dyepig.2023.111267
    [Google Scholar]
  19. McHardyS.F. WangH.Y.L. McCowenS.V. ValdezM.C. Recent advances in acetylcholinesterase inhibitors and reactivators: An update on the patent literature (2012-2015).Expert Opin. Ther. Pat.201727445547610.1080/13543776.2017.1272571 27967267
    [Google Scholar]
  20. TsaiY.C. LeeC.L. YenH.R. ChangY.S. LinY.P. HuangS.H. LinC.W. Antiviral action of tryptanthrin isolated from Strobilanthes cusia leaf against human coronavirus Nl63.Biomolecules202010336610.3390/biom10030366 32120929
    [Google Scholar]
  21. ClementeV. D’ArcyP. BazzaroM. Deubiquitinating enzymes in coronaviruses and possible therapeutic opportunities for COVID-19.Int. J. Mol. Sci.20202110349210.3390/ijms21103492 32429099
    [Google Scholar]
  22. FieldingB.C. da Silva Maia Bezerra FilhoC. IsmailN.S.M. SousaD.P. Alkaloids: Therapeutic potential against human coronaviruses.Molecules20202523549610.3390/molecules25235496 33255253
    [Google Scholar]
/content/journals/npj/10.2174/0122103155310287240509105635
Loading
/content/journals/npj/10.2174/0122103155310287240509105635
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Research Article
Keyword(s): acetylcholinesterase; alkaloid; anti-AchE; MCEs; Mesophotic zone; sponge-associated fungi
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test