Skip to content
2000
Volume 4, Issue 1
  • ISSN: 0250-6882
  • E-ISSN: 0250-6882

Abstract

Introduction

Type 2 diabetes is a chronic health condition affecting hundreds of millions of people. Type 2 diabetes has traditionally been combated with a combination of lifestyle modification, insulin therapy and pharmacological agents, including sulfonylureas, biguanides, thiazolidinediones and alpha-glucosidase inhibitors. Type 2 diabetes is associated with an increased risk of cardiovascular disease and the development of diabetic kidney disease. Although sulfonylureas are low-cost drugs and widely prescribed, they have been shown in recent cardiovascular outcome trials to present a high risk of hypoglycemia, which in turn increases the risk of negative cardiovascular outcomes. Metformin, a biguanide that is the most commonly-prescribed antidiabetic agent worldwide, is contraindicated in patients with risk factors for lactic acidosis, including heart failure and chronic kidney disease.

Objectives

The last decade has seen significant advances in the development of novel antidiabetic agents shown to possess both reno- and cardioprotective qualities. This article aims to review the available literature and recent studies demonstrating the efficacy and safety of these agents individually, as well as exploring areas of future development in the field.

Methods

The reporting of this review is based on the 2020 PRISMA statement. A literature search for all papers related to antidiabetic medication was conducted using reliable sources such PubMed and Google Scholar Databases, including a recent meta-analysis of renal and cardiovascular outcome trials.

Conclusion

A critical analysis of clinical trials on type 2 diabetes and the two most severe comorbidities in cardiovascular and chronic kidney diseases may help cardiologists, urologists and diabetes specialists to adapt their therapeutic approaches to individual patients. Data related to antidiabetic effects of agents of natural origin accompanied by their Cardioprotective and renoprotective capacity testify benefits of these compounds as novel therapeutic agents.

© 2023 The Author(s). Published by Bentham Science Publisher. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/nemj/10.2174/04666230130095723
2023-04-14
2025-01-31
Loading full text...

Full text loading...

/deliver/fulltext/nemj/4/1/NEMJ-4-1-E300123213248.html?itemId=/content/journals/nemj/10.2174/04666230130095723&mimeType=html&fmt=ahah

References

  1. TinajeroM.G. MalikV.S. An update on the epidemiology of type 2 diabetes: A global perspective.Endocrinol. Metab. Clin. North Am.202150333735510.1016/j.ecl.2021.05.01334399949
    [Google Scholar]
  2. KhanM.A.B. HashimM.J. KingJ.K. GovenderR.D. MustafaH. Al KaabiJ. Epidemiology of type 2 diabetes - global burden of disease and forecasted trends.J. Epidemiol. Glob. Health201910110711110.2991/jegh.k.191028.00132175717
    [Google Scholar]
  3. KoufakisT. DimitriadisG. KotsaK. A lion in the room: Has the CAROLINA trial definitely resolved the issue of the cardiovascular safety of sulfonylureas?J. Diabetes202012749950210.1111/1753‑0407.1303532202061
    [Google Scholar]
  4. FloryJ. LipskaK. Metformin in 2019.JAMA2019321191926192710.1001/jama.2019.380531009043
    [Google Scholar]
  5. MaqboolM. CooperM.E. Jandeleit-DahmK.A.M. Cardiovascular disease and diabetic kidney disease.Semin. Nephrol.201838321723210.1016/j.semnephrol.2018.02.00329753399
    [Google Scholar]
  6. PageM.J. McKenzieJ.E. BossuytP.M. BoutronI. HoffmannT.C. MulrowC.D. ShamseerL. TetzlaffJ.M. AklE.A. BrennanS.E. ChouR. GlanvilleJ. GrimshawJ.M. HróbjartssonA. LaluM.M. LiT. LoderE.W. Mayo-WilsonE. McDonaldS. McGuinnessL.A. StewartL.A. ThomasJ. TriccoA.C. WelchV.A. WhitingP. MoherD. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews.BMJ202137271n7110.1136/bmj.n7133782057
    [Google Scholar]
  7. ZhuangX. HeX. YangD. GuoY. HeJ. XiaoH. LiaoX. Comparative cardiovascular outcomes in the era of novel anti-diabetic agents: a comprehensive network meta-analysis of 166,371 participants from 170 randomized controlled trials.Cardiovasc. Diabetol.20181717910.1186/s12933‑018‑0722‑z29871636
    [Google Scholar]
  8. SattarN. LeeM.M.Y. KristensenS.L. BranchK.R.H. Del PratoS. KhurmiN.S. LamC.S.P. LopesR.D. McMurrayJ.J.V. PratleyR.E. RosenstockJ. GersteinH.C. Cardiovascular, mortality, and kidney outcomes with GLP-1 receptor agonists in patients with type 2 diabetes: a systematic review and meta-analysis of randomised trials.Lancet Diabetes Endocrinol.202191065366210.1016/S2213‑8587(21)00203‑534425083
    [Google Scholar]
  9. GiuglianoD. ScappaticcioL. LongoM. CarusoP. MaiorinoM.I. BellastellaG. CerielloA. ChiodiniP. EspositoK. GLP-1 receptor agonists and cardiorenal outcomes in type 2 diabetes: an updated meta-analysis of eight CVOTs.Cardiovasc. Diabetol.202120118910.1186/s12933‑021‑01366‑834526024
    [Google Scholar]
  10. ChaddaK.R. ChengT.S. OngK.K. GLP-1 agonists for obesity and type 2 diabetes in children: Systematic review and meta-analysis.Obes. Rev.2021226e1317710.1111/obr.1317733354917
    [Google Scholar]
  11. RosenstockJ. WyshamC. FríasJ.P. KanekoS. LeeC.J. Fernández LandóL. MaoH. CuiX. KaranikasC.A. ThieuV.T. Efficacy and safety of a novel dual GIP and GLP-1 receptor agonist tirzepatide in patients with type 2 diabetes (SURPASS-1): a double-blind, randomised, phase 3 trial.Lancet20213981029514315510.1016/S0140‑6736(21)01324‑634186022
    [Google Scholar]
  12. MucaloI. JovanovskiE. RahelićD. BožikovV. RomićŽ. VuksanV. Effect of American ginseng (Panax quinquefolius L.) on arterial stiffness in subjects with type-2 diabetes and concomitant hypertension.J. Ethnopharmacol.2013150114815310.1016/j.jep.2013.08.01523973636
    [Google Scholar]
  13. JovanovskiE BatemanEA BhardwajJ FairgrieveC MucaloI JenkinsA Effect of Rg3-enriched Korean red ginseng (Panax ginseng) on arterial stiffness and blood pressure in healthy individuals: a randomized controlled trial.J Am Soc Hypertens20148853754110.1016/j.jash.2014.04.004
    [Google Scholar]
  14. ParkS.H. OhM.R. ChoiE.K. KimM.G. HaK.C. LeeS.K. KimY.G. ParkB.H. KimD.S. ChaeS.W. An 8-wk, randomized, double-blind, placebo-controlled clinical trial for the antidiabetic effects of hydrolyzed ginseng extract.J. Ginseng Res.201438423924310.1016/j.jgr.2014.05.00625379002
    [Google Scholar]
  15. Filippas-NtekouanS. FilippatosT.D. ElisafM.S. SGLT2 inhibitors: are they safe?Postgrad. Med.20181301728210.1080/00325481.2018.139415229039237
    [Google Scholar]
  16. VallonV. VermaS. Effects of SGLT2 inhibitors on kidney and cardiovascular Function.Annu. Rev. Physiol.202183150352810.1146/annurev‑physiol‑031620‑09592033197224
    [Google Scholar]
  17. BhattacharyaS. RathoreA. ParwaniD. MallickC. AsatiV. AgarwalS. RajoriyaV. DasR. KashawS.K. An exhaustive perspective on structural insights of SGLT2 inhibitors: A novel class of antidiabetic agent.Eur. J. Med. Chem.202020411252310.1016/j.ejmech.2020.11252332717480
    [Google Scholar]
  18. NauckM.A. MeierJ.J. MANAGEMENT OF ENDOCRINE DISEASE: Are all GLP-1 agonists equal in the treatment of type 2 diabetes?Eur. J. Endocrinol.20191816R211R23410.1530/EJE‑19‑056631600725
    [Google Scholar]
  19. BoscoE. HsuehL. McConeghyK.W. GravensteinS. SaadeE. Major adverse cardiovascular event definitions used in observational analysis of administrative databases: a systematic review.BMC Med. Res. Methodol.202121124110.1186/s12874‑021‑01440‑534742250
    [Google Scholar]
  20. DeaconC.F. Dipeptidyl peptidase 4 inhibitors in the treatment of type 2 diabetes mellitus.Nat. Rev. Endocrinol.2020161164265310.1038/s41574‑020‑0399‑832929230
    [Google Scholar]
  21. SestiG. AvogaroA. BelcastroS. BonoraB.M. CrociM. DanieleG. DaurizM. DottaF. FormichiC. FrontoniS. InvittiC. OrsiE. PicconiF. ResiV. BonoraE. PurrelloF. Ten years of experience with DPP-4 inhibitors for the treatment of type 2 diabetes mellitus.Acta Diabetol.201956660561710.1007/s00592‑018‑1271‑330603867
    [Google Scholar]
  22. MakrilakisK. The Role of DPP-4 Inhibitors in the Treatment Algorithm of Type 2 Diabetes Mellitus: When to Select, What to Expect.Int. J. Environ. Res. Public Health20191615272010.3390/ijerph1615272031366085
    [Google Scholar]
  23. ChenW. BalanP. PopovichD.G. Review of ginseng anti-Diabetic studies.Molecules20192424450110.3390/molecules2424450131835292
    [Google Scholar]
  24. YoonJ.W. KangS.M. VassyJ.L. ShinH. LeeY.H. AhnH.Y. ChoiS.H. ParkK.S. JangH.C. LimS. Efficacy and safety of ginsam, a vinegar extract from Panax ginseng, in type 2 diabetic patients: Results of a double-blind, placebo-controlled study.J. Diabetes Investig.20123330931710.1111/j.2040‑1124.2011.00185.x24843582
    [Google Scholar]
  25. TianW. ChenL. ZhangL. WangB. LiX.B. FanK.R. AiC.H. XiaX. LiS.D. LiY. Effects of ginsenoside Rg1 on glucose metabolism and liver injury in streptozotocin-induced type 2 diabetic rats.Genet. Mol. Res.201716110.4238/gmr1601946328362999
    [Google Scholar]
  26. ShaitoA. ThuanD.T.B. PhuH.T. NguyenT.H.D. HasanH. HalabiS. AbdelhadyS. NasrallahG.K. EidA.H. PintusG. Herbal Medicine for Cardiovascular Diseases: Efficacy, Mechanisms, and Safety.Front. Pharmacol.20201142210.3389/fphar.2020.0042232317975
    [Google Scholar]
  27. AdayA.W. RidkerP.M. Antiinflammatory Therapy in Clinical Care: The CANTOS Trial and Beyond.Front. Cardiovasc. Med.201856210.3389/fcvm.2018.0006229922680
    [Google Scholar]
  28. RagabT.I.M. AliN.A. El GendyA.N.G. MohamedS.H. ShalbyA.B. FarragA.R.H. ShalabyA.S.G. Renoprotective and therapeutic effects of newly water, ethanol, and butanol ginseng fractions in hypertensive and chronic kidney disease with L-NAME.Biomed. Pharmacother.202114211197810.1016/j.biopha.2021.11197834411920
    [Google Scholar]
  29. SunC. ZhaoC. GuvenE.C. PaoliP. Simal-GandaraJ. RamkumarK.M. WangS. BuleuF. PahA. TuriV. DamianG. DraganS. TomasM. KhanW. WangM. DelmasD. PortilloM.P. DarP. ChenL. XiaoJ. Dietary polyphenols as antidiabetic agents: Advances and opportunities.Food Front.2020111844[DOI:10.1002/fft2.15 Corpus ID: 216323656].10.1002/fft2.15
    [Google Scholar]
  30. AlkhalidyH. MooreW. WangY. LuoJ. McMillanR. ZhenW. ZhouK. LiuD. The Flavonoid Kaempferol Ameliorates Streptozotocin-Induced Diabetes by Suppressing Hepatic Glucose Production.Molecules2018239233810.3390/molecules2309233830216981
    [Google Scholar]
  31. SangeethaR. Luteolin in the management of type 2 diabetes mellitus.Curr. Res. Nutr. Food Sci.201972393398[DOI: http://dx.doi.org/10.12944/CRNFSJ.7.2.09].10.12944/CRNFSJ.7.2.09
    [Google Scholar]
  32. CiumărneanL. MilaciuM.V. RuncanO. VesaȘ.C. RăchișanA.L. NegreanV. PernéM.G. DoncaV.I. AlexescuT.G. ParaI. DogaruG. The Effects of Flavonoids in Cardiovascular Diseases.Molecules20202518432010.3390/molecules2518432032967119
    [Google Scholar]
  33. VargasF. RomecínP. García-GuillénA.I. WangesteenR. Vargas-TenderoP. ParedesM.D. AtuchaN.M. García-EstañJ. Flavonoids in Kidney Health and Disease.Front. Physiol.2018939410.3389/fphys.2018.0039429740333
    [Google Scholar]
  34. LeiteK.M. LongA.M. OstroffM.L. BorgesL. BradenG. A review of the renoprotective effects of novel antidiabetic agents.J. Pharm. Pract.202134114114810.1177/089719002090234432067559
    [Google Scholar]
  35. BrownE. HeerspinkH.J.L. CuthbertsonD.J. WildingJ.P.H. SGLT2 inhibitors and GLP-1 receptor agonists: established and emerging indications.Lancet20213981029626227610.1016/S0140‑6736(21)00536‑534216571
    [Google Scholar]
  36. KotsisV. JordanJ. StabouliS. AntzaC. MicicD. JelakovićB. SchlaichM.P. NilssonP.M. KreutzR. ManciaG. TsioufisK. GrassiG. Cardiovascular, renal and liver protection with novel antidiabetic agents beyond blood glucose lowering in type 2 diabetes: consensus article from the European Society of Hypertension Working Group on Obesity, Diabetes and the High-risk Patient.J. Hypertens.202038337738610.1097/HJH.000000000000227931764586
    [Google Scholar]
  37. ZhuL. RossiM. DolibaN.M. WessJ. Beta-cell M3 muscarinic acetylcholine receptors as potential targets for novel antidiabetic drugs.Int. Immunopharmacol.20208110626710.1016/j.intimp.2020.10626732044662
    [Google Scholar]
  38. ZhuL. RossiM. CohenA. PhamJ. ZhengH. DattaroyD. MukaiboT. MelvinJ.E. LangelJ.L. HattarS. MatschinskyF.M. AppellaD.H. DolibaN.M. WessJ. Proceedings of the National Academy of Sciences of the United States of America Allosteric modulation of β-cell M 3 muscarinic acetylcholine receptors greatly improves glucose homeostasis in lean and obese mice.Proc. Natl. Acad. Sci. USA201911637186841869010.1073/pnas.190494311631451647
    [Google Scholar]
  39. HussainH. NazirM. SaleemM. Al-HarrasiA. Elizbit GreenI.R. Fruitful decade of fungal metabolites as anti-diabetic agents from 2010 to 2019: emphasis on α-glucosidase inhibitors.Phytochem. Rev.2021201145179[DOI: 10.1007/s11101-020-09733-1].10.1007/s11101‑020‑09733‑1
    [Google Scholar]
  40. CaoH. OuJ. ChenL. ZhangY. SzkudelskiT. DelmasD. DagliaM. XiaoJ. Dietary polyphenols and type 2 diabetes: Human Study and Clinical Trial.Crit. Rev. Food Sci. Nutr.201959203371337910.1080/10408398.2018.149290029993262
    [Google Scholar]
  41. Da PortoA. CavarapeA. ColussiG. CasarsaV. CatenaC. SechiL.A. Polyphenols Rich Diets and Risk of Type 2 Diabetes.Nutrients2021135144510.3390/nu1305144533923263
    [Google Scholar]
  42. SchernthanerG. ShehadehN. AmetovA.S. BazarovaA.V. EbrahimiF. FaschingP. JanežA. KemplerP. KonrādeI. LalićN.M. MankovskyB. MartinkaE. RahelićD. SerafinceanuC. ŠkrhaJ. TankovaT. VisockienėŽ. Worldwide inertia to the use of cardiorenal protective glucose-lowering drugs (SGLT2i and GLP-1 RA) in high-risk patients with type 2 diabetes.Cardiovasc. Diabetol.202019118510.1186/s12933‑020‑01154‑w33097060
    [Google Scholar]
  43. RangaswamiJ. BhallaV. de BoerI.H. StaruschenkoA. SharpJ.A. SinghR.R. LoK.B. TuttleK. VaduganathanM. VenturaH. McCulloughP.A. Cardiorenal protection with the newer antidiabetic agents in patients with diabetes and chronic kidney disease: a scientific statement from the American heart association.Circulation202014217e265e28610.1161/CIR.000000000000092032981345
    [Google Scholar]
/content/journals/nemj/10.2174/04666230130095723
Loading
/content/journals/nemj/10.2174/04666230130095723
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test