Skip to content
2000
Volume 4, Issue 2
  • ISSN: 0250-6882
  • E-ISSN: 0250-6882

Abstract

Head and neck infection (HNI) is more complicated, as most of the sites of infection in this regions are very complex. Bacterial head and neck infections can usually originate through the upper airway, sinusitis, and dental or oral cavity and then extend deeper into other head and neck compartment sites. Both aerobic and anaerobic bacteria induce bacterial head and neck infections. This narrative review discusses the bacterial association, sites of infection, host-pathogen interaction, and secondary complications of head and neck bacterial infection. and are commonly responsible bacteria behind the bacterial head and neck infection (BHNI). Immunosuppression, alcohol consumption, and smoking risk factors are associated with it. The immune cell maintains a defense mechanism in host-pathogen interaction. Antibiotic-resistant genes in mucoid biofilm raise multidrug resistance against pathogenic bacteria. Inflammatory condition of the complete head and neck region can be demonstrated by computed tomography (CT) scan. The secondary complication may lead to induce cancer. Microbial invasions can be bacterial, fungal, or viral.

© 2023 The Author(s). Published by Bentham Science Publisher. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/nemj/10.2174/0250688204666230417083058
2023-06-13
2025-06-24
The full text of this item is not currently available.

References

  1. HeimN. FaronA. WiedemeyerV. ReichR. MartiniM. Microbiology and antibiotic sensitivity of head and neck space infections of odontogenic origin. Differences in inpatient and outpatient management.J. Craniomaxillofac. Surg.201745101731173510.1016/j.jcms.2017.07.01328838838
    [Google Scholar]
  2. WaliaI.S. BorleR.M. MehendirattaD. YadavA.O. Microbiology and antibiotic sensitivity of head and neck space infections of odontogenic origin.J. Maxillofac. Oral Surg.2014131162110.1007/s12663‑012‑0455‑624644391
    [Google Scholar]
  3. AkhtarN. SaleemM. MianF.A. ShareefM.J. HussainF. Head and neck infections.Prof. Med. J.201522678779210.29309/TPMJ/2015.22.06.1250
    [Google Scholar]
  4. RajL.V. SachdevaK. ShuklaA. KabadeM.V. TomS.M. Current scenario of suppurative head and neck infections in patients of tertiary care centre in COVID era.Int J Otorhinolaryngol Head and Neck Surg20228431432010.18203/issn.2454‑5929.ijohns20220797
    [Google Scholar]
  5. BrookI. Anaerobic bacteria in upper respiratory tract and head and neck infections: Microbiology and treatment.Anaerobe201218221422010.1016/j.anaerobe.2011.12.01422197951
    [Google Scholar]
  6. AtkinsonH. WallisS. CoatesworthA.P. Otitis media with effusion.Postgrad. Med.2015127438138510.1080/00325481.2015.102831725913597
    [Google Scholar]
  7. HasturkH. KantarciA. Van DykeT.E. Oral inflammatory diseases and systemic inflammation: role of the macrophage.Front. Immunol.2012311810.3389/fimmu.2012.0011822623923
    [Google Scholar]
  8. KushkevychI. CoufalováM. VítězováM. RittmannS.K.M.R. Sulfate-reducing bacteria of the oral cavity and their relation with periodontitis-recent advances.J. Clin. Med.202098234710.3390/jcm908234732717883
    [Google Scholar]
  9. Reynolds-CampbellG. NicholsonA. Thoms-RodriguezC.A. Oral bacterial infections: Diagnosis and management.Dent. Clin. North Am.201761230531810.1016/j.cden.2016.12.00328317568
    [Google Scholar]
  10. NaplesJ. ParhamK. Oropharyngeal and tonsillar infections.Head, Neck, and Orofacial Infections2016271
    [Google Scholar]
  11. EdwinB. PrasannaV. KannanI. KatiyarV. DhanapalE. Incidence of bacterial colonization in the oropharynx of patients with ear, nose and throat infections.Int. J. Med. Sci. Public Health20143893193410.5455/ijmsph.2014.220420142
    [Google Scholar]
  12. Suárez-QuintanillaJ. CabreraA.F. SharmaS. Anatomy, head and neck, larynx.Stat Pearls2021
    [Google Scholar]
  13. El AyoubiF. CharibaI. El AyoubiA. CharibaS. EssakalliL. Primary tuberculosis of the larynx.Eur. Ann. Otorhinolaryngol. Head Neck Dis.2014131636136410.1016/j.anorl.2013.10.00525443690
    [Google Scholar]
  14. CardesaA. AlosL. NadalA. FranchiA. Nasal cavity and paranasal sinuses.Head Neck Pathol.201649127
    [Google Scholar]
  15. OgleO.E. WeinstockR.J. FriedmanE. Surgical anatomy of the nasal cavity and paranasal sinuses.Oral Maxillofac. Surg. Clin. North Am.2012242155166, vii10.1016/j.coms.2012.01.01122386856
    [Google Scholar]
  16. EdizerD.T. KaramanE. MercanH. AlimogluY. EsenT. CansizH. Primary tuberculosis involving epiglottis: A rare case report.Dysphagia201025325826010.1007/s00455‑009‑9256‑619784701
    [Google Scholar]
  17. GeorgakopoulosC.D. EliopoulouM.I. StasinosS. ExarchouA. PharmakakisN. VarvarigouA. Periorbital and orbital cellulitis: A 10-year review of hospitalized children.Eur. J. Ophthalmol.20102061066107210.1177/11206721100200060720544674
    [Google Scholar]
  18. ChasonH.M. DownsB.W. Anatomy, head and neck, parotid gland.Stat Pearls2020
    [Google Scholar]
  19. UggaL. RavanelliM. PallottinoA.A. FarinaD. LeoneC. Diagnostic work-up in obstructive and inflammatory salivary gland disorders.Acta Otorhinolaryngol. Ital.2017372839310.14639/0392‑100X‑159728516970
    [Google Scholar]
  20. WakefieldR.J. D’AgostinoM.A. Essential Applications of Musculoskeletal Ultrasound in Rheumatology E-Book: Expert Consult Premium Edition.Elsevier Health Sciences2010
    [Google Scholar]
  21. WilsonK.F. MeierJ.D. WardP.D. Salivary gland disorders.Am. Fam. Physician2014891188288825077394
    [Google Scholar]
  22. ItoK. MuraokaH. HiraharaN. SawadaE. OkadaS. KanedaT. Quantitative assessment of normal submandibular glands and submandibular sialadenitis using CT texture analysis: A retrospective study.Oral Surg. Oral Med. Oral Pathol. Oral Radiol.2021132111211710.1016/j.oooo.2020.10.00733214092
    [Google Scholar]
  23. CordesmeyerR. KauffmannP. MarkusT. SömmerC. EiffertH. BremmerF. LaskawiR. Bacterial and histopathological findings in deep head and neck infections: A retrospective analysis.Oral Surg. Oral Med. Oral Pathol. Oral Radiol.20171241111510.1016/j.oooo.2017.02.00328411005
    [Google Scholar]
  24. CelakovskyP. KalfertD. SmatanovaK. TucekL. CermakovaE. MejzlikJ. KotulekM. VrbackyA. MatousekP. StanikovaL. HoskovaT. Bacteriology of deep neck infections: Analysis of 634 patients.Aust. Dent. J.201560221221510.1111/adj.1232525988277
    [Google Scholar]
  25. HasegawaJ. HidakaH. TatedaM. KudoT. SagaiS. MiyazakiM. KatagiriK. NakanomeA. IshidaE. OzawaD. KobayashiT. An analysis of clinical risk factors of deep neck infection.Auris Nasus Larynx201138110110710.1016/j.anl.2010.06.00120609540
    [Google Scholar]
  26. LamO.L.T. McGrathC. LiL.S.W. SamaranayakeL.P. Effectiveness of oral hygiene interventions against oral and oropharyngeal reservoirs of aerobic and facultatively anaerobic gram-negative bacilli.Am. J. Infect. Control201240217518210.1016/j.ajic.2011.03.00421719150
    [Google Scholar]
  27. CampocciaD. MirzaeiR. MontanaroL. ArciolaC.R. Hijacking of immune defences by biofilms: A multifront strategy.Biofouling201935101055107410.1080/08927014.2019.168996431762334
    [Google Scholar]
  28. MirzaeiR. MohammadzadehR. AlikhaniM.Y. Shokri MoghadamM. KarampoorS. KazemiS. BarfipoursalarA. YousefimashoufR. The biofilm‐associated bacterial infections unrelated to indwelling devices.IUBMB Life20207271271128510.1002/iub.226632150327
    [Google Scholar]
  29. FlemmingH.C. WingenderJ. The biofilm matrix.Nat. Rev. Microbiol.20108962363310.1038/nrmicro241520676145
    [Google Scholar]
  30. ArpaiaN. GodecJ. LauL. SivickK.E. McLaughlinL.M. JonesM.B. DrachevaT. PetersonS.N. MonackD.M. BartonG.M. TLR signaling is required for Salmonella typhimurium virulence.Cell2011144567568810.1016/j.cell.2011.01.03121376231
    [Google Scholar]
  31. ZanoniI. OstuniR. MarekL.R. BarresiS. BarbalatR. BartonG.M. GranucciF. KaganJ.C. CD14 controls the LPS-induced endocytosis of Toll-like receptor 4.Cell2011147486888010.1016/j.cell.2011.09.05122078883
    [Google Scholar]
  32. BaglamT. BinnetogluA. YumusakhuyluA.C. GerinF. DemirB. SariM. Predictive value of the neutrophil-to-lymphocyte ratio in patients with deep neck space infection secondary to acute bacterial tonsillitis.Int. J. Pediatr. Otorhinolaryngol.20157991421142410.1016/j.ijporl.2015.06.01626123298
    [Google Scholar]
  33. IsaradisaikulS. NavacharoenN. HanprasertpongC. KangsanarakJ. PanyathongR. Causes and time-course of vertigo in an ear, nose, and throat clinic.Eur. Arch. Otorhinolaryngol.2010267121837184110.1007/s00405‑010‑1309‑920567978
    [Google Scholar]
  34. DoğanM. AkyelA. BilginM. EratM. ÇimenT. SunmanH. EfeT.H. AçıkelS. YeterE. Can admission neutrophil to lymphocyte ratio predict infarct-related artery patency in ST-segment elevation myocardial infarction?Clin. Appl. Thromb. Hemost.201521217217610.1177/107602961351507124322278
    [Google Scholar]
  35. EbersoleJ.L. DawsonD.R.III MorfordL.A. PeyyalaR. MillerC.S. GonzalézO.A. Periodontal disease immunology: ‘double indemnity’ in protecting the host.Periodontol. 2000201362116320210.1111/prd.1200523574466
    [Google Scholar]
  36. ZhangI. PletcherS.D. GoldbergA.N. BarkerB.M. CopeE.K. Fungal microbiota in chronic airway inflammatory disease and emerging relationships with the host immune response.Front. Microbiol.20178247710.3389/fmicb.2017.0247729312187
    [Google Scholar]
  37. HuppJ.R. FerneiniE.M. Head, neck, and orofacial infections: An interdisciplinary approach.Elsevier Health Sciences2015
    [Google Scholar]
  38. PasichE. WalczewskaM. PasichA. MarcinkiewiczJ. Mechanizm i czynniki ryzyka powstawania biofilmu bakteryjnego jamy ustnej.PostHigMed.201367736741
    [Google Scholar]
  39. BergerD. RakhamimovaA. PollackA. LoewyZ. Oral biofilms: Development, control, and analysis.High Throughput2018732430200379
    [Google Scholar]
  40. SinghS. SinghS.K. ChowdhuryI. SinghR. Understanding the mechanism of bacterial biofilms resistance to antimicrobial agents.Open Microbiol. J.2017111536210.2174/187428580171101005328553416
    [Google Scholar]
  41. StewartP.S. Antimicrobial tolerance in biofilms.Microbiol. Spectr.2015333.3.0710.1128/microbiolspec.MB‑0010‑201426185072
    [Google Scholar]
  42. SotoS.M. Role of efflux pumps in the antibiotic resistance of bacteria embedded in a biofilm.Virulence20134322322910.4161/viru.2372423380871
    [Google Scholar]
  43. RobertsA.P. MullanyP. Oral biofilms: A reservoir of transferable, bacterial, antimicrobial resistance.Expert Rev. Anti Infect. Ther.20108121441145010.1586/eri.10.10621133668
    [Google Scholar]
  44. TajM.K. WeiY.L. SamreenZ. TajI. HassaniT.M. JiX.L. Quorum sensing and its different signals systems in bacteria.Impact Ijranss.20142117124
    [Google Scholar]
  45. RathS. BalS.C.B. DubeyD. Oral Biofilm: Development Mechanism, Multidrug Resistance, and Their Effective Management with Novel Techniques.Rambam Maimonides Med. J.2021121e000410.5041/RMMJ.1042833478627
    [Google Scholar]
  46. PereraM. Al-hebshiN.N. SpeicherD.J. PereraI. JohnsonN.W. Emerging role of bacteria in oral carcinogenesis: A review with special reference to perio-pathogenic bacteria.J. Oral Microbiol.2016813276210.3402/jom.v8.3276227677454
    [Google Scholar]
  47. LinY.Y. HsuC.H. LeeJ.C. WangH.W. LinY.S. WangC.H. KaoC.H. SuW.F. ChuY.H. Head and neck cancers manifested as deep neck infection.Eur. Arch. Otorhinolaryngol.2012269258559010.1007/s00405‑011‑1622‑y21547387
    [Google Scholar]
  48. JiaoY. TayF.R. NiuL. ChenJ. Advancing antimicrobial strategies for managing oral biofilm infections.Int. J. Oral Sci.20191132810.1038/s41368‑019‑0062‑131570700
    [Google Scholar]
  49. PadovaniG.C. FeitosaV.P. SauroS. TayF.R. DuránG. PaulaA.J. DuránN. Advances in dental materials through nanotechnology: facts, perspectives, and toxicological aspects.Trends Biotechnol.2015331162163610.1016/j.tibtech.2015.09.00526493710
    [Google Scholar]
  50. LiW.X. DongY. ZhangA. TianJ. LuC. QuraishiM.S. LiuL. Management of deep neck infections from cervical esophageal perforation caused by foreign body: A case series study.Am. J. Otolaryngol.202142210287010.1016/j.amjoto.2020.10287033418175
    [Google Scholar]
  51. SikoraM. WróbelK. StąporA. SielskiM. ChlubekD. Odontogenic orbital cellulitis in a young man with complete vision loss – a case report.Pomeranian J. Life Sci.2020664414510.21164/pomjlifesci.746
    [Google Scholar]
  52. WakeN. AsahiY. NoiriY. HayashiM. MotookaD. NakamuraS. GotohK. MiuraJ. MachiH. IidaT. EbisuS. Temporal dynamics of bacterial microbiota in the human oral cavity determined using an in situ model of dental biofilms.NPJ Biofilms Microbiomes2016211601810.1038/npjbiofilms.2016.1828721251
    [Google Scholar]
  53. BrookI. Microbiology of chronic rhinosinusitis.Eur. J. Clin. Microbiol. Infect. Dis.20163571059106810.1007/s10096‑016‑2640‑x27086363
    [Google Scholar]
  54. VerityD.H. Hamed-AzzamS. AlHashashI. BriscoeD. RoseG.E. Common orbital infections ~ state of the art ~ part I.J. Ophthalmic Vis. Res.201813217518210.4103/jovr.jovr_199_1729719647
    [Google Scholar]
/content/journals/nemj/10.2174/0250688204666230417083058
Loading
/content/journals/nemj/10.2174/0250688204666230417083058
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test