Skip to content
2000
Volume 5, Issue 1
  • ISSN: 0250-6882
  • E-ISSN: 0250-6882

Abstract

The gut microbiome plays a pivotal role in human health, influencing various physiological processes and overall well-being. Firstly, we explore dietary components such as prebiotics, probiotics, and fermented foods, which can modulate the composition and diversity of gut microbiota, thereby promoting a balanced microbial community. Additionally, lifestyle factors including exercise, stress management, and sleep patterns are discussed for their significant influence on gut microbiome stability and functionality. Dietary polyphenols have the ability to alter the make-up and activities of gut flora, which in turn affects immunity, inflammation, and gut metabolism. Numerous methods have been developed to increase the solubility, transport, and targeted administration of dietary polyphenols throughout the gastrointestinal tract in order to enhance their bioavailability. While further investigation is necessary, particularly in the form of translational and clinical trials, new developments in biotechnology present encouraging opportunities to use dietary polyphenols to influence the gut microbiota in dysbiosis-related illnesses. This overview provides insights into the dynamic relationship between factors affecting the gut microbiome's fundamental characteristics, the impact of diet on gut microbial ecology, the relationship between infectious diseases and the gut microbiota, and the potential of dietary polyphenols in controlling the gut microbiome. It underscores the importance of fostering a symbiotic microbial ecosystem for overall well-being.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/nemj/10.2174/0102506882329129241007054042
2024-11-14
2025-01-19
Loading full text...

Full text loading...

/deliver/fulltext/nemj/5/1/NEMJ-5-E02506882329129.html?itemId=/content/journals/nemj/10.2174/0102506882329129241007054042&mimeType=html&fmt=ahah

References

  1. HouK. WuZ.X. ChenX.Y. WangJ.Q. ZhangD. XiaoC. ZhuD. KoyaJ.B. WeiL. LiJ. ChenZ.S. Microbiota in health and diseases.Signal Transduct. Target. Ther.20227113510.1038/s41392‑022‑00974‑435461318
    [Google Scholar]
  2. ZyskW. MesjaszA. TrzeciakM. HorvathA. Plata-NazarK. Gastrointestinal comorbidities associated with atopic dermatitis-A narrative review.Int. J. Mol. Sci.2024252119410.3390/ijms2502119438256267
    [Google Scholar]
  3. HasanN. YangH. Factors affecting the composition of the gut microbiota, and its modulation.PeerJ20197e750210.7717/peerj.750231440436
    [Google Scholar]
  4. WangX. QiY. ZhengH. Dietary polyphenol, gut microbiota, and health benefits.Antioxidants2022116121210.3390/antiox1106121235740109
    [Google Scholar]
  5. BallanR. BattistiniC. Xavier-SantosD. SaadS.M.I. Interactions of probiotics and prebiotics with the gut microbiota.Prog. Mol. Biol. Transl. Sci.202017126530010.1016/bs.pmbts.2020.03.00832475525
    [Google Scholar]
  6. JandhyalaS.M. TalukdarR. SubramanyamC. VuyyuruH. SasikalaM. Nageshwar ReddyD. Role of the normal gut microbiota.World J. Gastroenterol.201521298787880310.3748/wjg.v21.i29.878726269668
    [Google Scholar]
  7. BanerjeeA. DeyS.R. BasuI. DeM. Autism spectrum disorder and gut microbiome: A brief review.International Journal of Advancement in Life Sciences Research2021411610.31632/ijalsr.20.v04i01.001
    [Google Scholar]
  8. RinninellaE. RaoulP. CintoniM. FranceschiF. MiggianoG.A.D. GasbarriniA. MeleM.C. What is the healthy gut microbiota composition? A changing ecosystem across age, environment, diet, and diseases.Microorganisms2019711410.3390/microorganisms701001430634578
    [Google Scholar]
  9. Kasprzak-DrozdK. OniszczukT. StasiakM. OniszczukA. Beneficial effects of phenolic compounds on gut microbiota and metabolic syndrome.Int. J. Mol. Sci.2021227371510.3390/ijms2207371533918284
    [Google Scholar]
  10. SwansonK.S. de VosW.M. MartensE.C. GilbertJ.A. MenonR.S. Soto-VacaA. HautvastJ. MeyerP.D. BorewiczK. VaughanE.E. SlavinJ.L. Effect of fructans, prebiotics and fibres on the human gut microbiome assessed by 16S rRNA-based approaches: A review.Benef. Microbes202011210113010.3920/BM2019.008232073295
    [Google Scholar]
  11. TanX. WangY. GongT. The interplay between oral microbiota, gut microbiota and systematic diseases.J. Oral Microbiol.2023151221311210.1080/20002297.2023.221311237200866
    [Google Scholar]
  12. İpçakH.H. AlçiçekA. DenliM. Dietary encapsulated fennel seed ( Foeniculum vulgare Mill.) essential oil supplementation improves performance, modifies the intestinal microflora, morphology, and transcriptome profile of broiler chickens.J. Anim. Sci.2024102skae03510.1093/jas/skae03538330242
    [Google Scholar]
  13. ConsalesA. CerasaniJ. SorrentinoG. MorniroliD. ColomboL. MoscaF. GiannìM.L. The hidden universe of human milk microbiome: Origin, composition, determinants, role, and future perspectives.Eur. J. Pediatr.202218151811182010.1007/s00431‑022‑04383‑135124754
    [Google Scholar]
  14. HanN. PengX. ZhangT. QiangY. LiX. ZhangW. Rapid turnover and short-term blooms of Escherichia coli in the human gut.J. Bacteriol.20242061e00239-2310.1128/jb.00239‑2338099689
    [Google Scholar]
  15. HofH. The medical relevance of Fusarium spp.J. Fungi (Basel)20206311710.3390/jof603011732722172
    [Google Scholar]
  16. LaiS. WangJ. WangB. WangR. LiG. JiaY. ChenT. ChenY. Alterations in gut microbiota affect behavioral and inflammatory responses to methamphetamine in mice.Psychopharmacology (Berl.)2022239811610.1007/s00213‑022‑06154‑035503371
    [Google Scholar]
  17. GarciaS. OrdoñezS. López-MolinaV.M. Lacruz-PleguezuelosB. Carrillo de Santa PauE. Marcos-ZambranoL.J. Citizen science helps to raise awareness about gut microbiome health in people at risk of developing non-communicable diseases.Gut Microbes2023151224120710.1080/19490976.2023.224120737530428
    [Google Scholar]
  18. OngM.L.Y. GreenC.G. BongiovanniT. HeaneyL.M. A gutsy performance: The potential for supplementation of short-chain fatty acids to benefit athletic health, exercise performance, and recovery.Benef. Microbes202314656559010.1163/18762891‑2023006938350483
    [Google Scholar]
  19. NallappanD. KanathasanJ.S. PoddarS. WareA. Gut microbiota and artificial intelligence.In: Fostering Cross-Industry Sustainability With Intelligent Technologies. Braja KishoreMishra IRMA International202415216110.4018/979‑8‑3693‑1638‑2.ch010
    [Google Scholar]
  20. IslamM.S. Page-HefleyS. HernandezA.P. WhelchelL. CrastoC. ViatorW. MoneyT. AwosileB. HowardN. VasylyevaT.L. Change in urinary inflammatory biomarkers and psychological health with gut microbiome modulation after six months of a lifestyle modification program in children.Nutrients20231519424310.3390/nu1519424337836527
    [Google Scholar]
  21. ZuoT. SunY. WanY. YeohY.K. ZhangF. CheungC.P. ChenN. LuoJ. WangW. SungJ.J.Y. ChanP.K.S. WangK. ChanF.K.L. MiaoY. NgS.C. Human-gut-DNA virome variations across geography, ethnicity, and urbanization.Cell Host Microbe2020285741751.e410.1016/j.chom.2020.08.00532910902
    [Google Scholar]
  22. LiX. PanC. MaW. YangT. WangC. HanW. ZhangW. LiH. LiZ. ZhaoT. GuoX. LiD. Effects of dietary supplementation of fish oil plus vitamin D 3 on gut microbiota and fecal metabolites, and their correlation with nonalcoholic fatty liver disease risk factors: a randomized controlled trial.Food Funct.20241552616262710.1039/D3FO02319B38356413
    [Google Scholar]
  23. DanielI.K. NjueO.M. SanadY.M. Antimicrobial effects of plant-based supplements on gut microbial diversity in small ruminants.Pathogens20231313110.3390/pathogens1301003138251338
    [Google Scholar]
  24. GearyE.L. ObaP.M. ApplegateC.C. ClarkL.V. FieldsC.J. SwansonK.S. Effects of a mildly cooked human-grade dog diet on gene expression, skin and coat health measures, and fecal microbiota of healthy adult dogs.J. Anim. Sci.202210010skac26510.1093/jas/skac26535965387
    [Google Scholar]
  25. MerraG. NoceA. MarroneG. CintoniM. TarsitanoM.G. CapacciA. De LorenzoA. Influence of mediterranean diet on human gut microbiota.Nutrients2020131710.3390/nu1301000733375042
    [Google Scholar]
  26. YangQ. LiangQ. BalakrishnanB. BelobrajdicD.P. FengQ.J. ZhangW. Role of dietary nutrients in the modulation of gut microbiota: A narrative review.Nutrients202012238110.3390/nu1202038132023943
    [Google Scholar]
  27. MalczewskiA.B. KetheesanN. CowardJ.I.G. NavarroS. Enhancing checkpoint inhibitor therapy in solid tissue cancers: The role of diet, the microbiome & microbiome-derived metabolites.Front. Immunol.20211262443410.3389/fimmu.2021.62443434305883
    [Google Scholar]
  28. YangY. KeY. LiuX. ZhangZ. ZhangR. TianF. ZhiL. ZhaoG. LvB. HuaS. WuH. Navigating the B vitamins: Dietary diversity, microbial synthesis, and human health.Cell Host Microbe2024321121810.1016/j.chom.2023.12.00438211561
    [Google Scholar]
  29. KaliaV.C. ShimW.Y. PatelS.K.S. GongC. LeeJ.K. Recent developments in antimicrobial growth promoters in chicken health: Opportunities and challenges.Sci. Total Environ.202283415530010.1016/j.scitotenv.2022.15530035447189
    [Google Scholar]
  30. NdungoE. HolmJ.B. GamaS. BuchwaldA.G. TennantS.M. LauferM.K. PasettiM.F. RaskoD.A. Dynamics of the gut microbiome in shigella-infected children during the first two years of life.mSystems202275e00442-2210.1128/msystems.00442‑2236121169
    [Google Scholar]
  31. BaiX. XuQ. ZhangW. WangC. The gut-eye axis: Correlation between the gut microbiota and autoimmune dry eye in individuals with sjögren syndrome.Eye Contact Lens20234911710.1097/ICL.000000000000095336544282
    [Google Scholar]
  32. DaiZ. LiuJ. YaoX. WangA. LiuY. StrappeP. HuangW. ZhouZ. Association of gut microbiota characteristics and metabolites reveals the regulation mechanisms under cadmium consumption circumstance.J. Sci. Food Agric.2022102146737674810.1002/jsfa.1204135621360
    [Google Scholar]
  33. HuJ. MesnageR. TuohyK. HeissC. Rodriguez-MateosA. (Poly)phenol-related gut metabotypes and human health: An update.Food Funct.20241562814283510.1039/D3FO04338J38414364
    [Google Scholar]
  34. RobertsonR.C. MangesA.R. FinlayB.B. PrendergastA.J. The human microbiome and child growth – first 1000 days and beyond.Trends Microbiol.201927213114710.1016/j.tim.2018.09.00830529020
    [Google Scholar]
  35. GaireT.N. ScottH.M. NoyesN.R. EricssonA.C. TokachM.D. WilliamH. MenegatM.B. VinascoJ. NagarajaT.G. VolkovaV.V. Temporal dynamics of the fecal microbiome in female pigs from early life through estrus, parturition, and weaning of the first litter of piglets.Anim. Microbiome202461710.1186/s42523‑024‑00294‑838383422
    [Google Scholar]
  36. BerryA.S.F. PierdonM.K. MisicA.M. SullivanM.C. O’BrienK. ChenY. MurrayS.J. RamharackL.A. BaldassanoR.N. ParsonsT.D. BeitingD.P. Remodeling of the maternal gut microbiome during pregnancy is shaped by parity.Microbiome20219114610.1186/s40168‑021‑01089‑834176489
    [Google Scholar]
  37. Socha-BanasiakA. PawłowskaM. CzkwianiancE. PierzynowskaK. From intrauterine to extrauterine life-the role of endogenous and exogenous factors in the regulation of the intestinal microbiota community and gut maturation in early life.Front. Nutr.2021869696610.3389/fnut.2021.69696634977104
    [Google Scholar]
  38. WalkerR.W. ClementeJ.C. PeterI. LoosR.J.F. The prenatal gut microbiome: Are we colonized with bacteria in utero? Pediatr. Obes.201712S1Suppl. 131710.1111/ijpo.1221728447406
    [Google Scholar]
  39. Ganal-VonarburgS.C. DuerrC.U. The interaction of intestinal microbiota and innate lymphoid cells in health and disease throughout life.Immunology20201591395110.1111/imm.1313831777064
    [Google Scholar]
  40. LimM.Y. HongS. KimJ.H. NamY.D. Association between gut microbiome and frailty in the older adult population in Korea.J. Gerontol. A Biol. Sci. Med. Sci.20217681362136810.1093/gerona/glaa31933437992
    [Google Scholar]
  41. CasoJ.R. MacDowellK.S. González-PintoA. GarcíaS. de Diego-AdeliñoJ. Carceller-SindreuM. SarrameaF. Caballero-VillarrasoJ. Gracia-GarcíaP. De la CámaraC. AgüeraL. Gómez-LusM.L. AlbaC. RodríguezJ.M. LezaJ.C. Gut microbiota, innate immune pathways, and inflammatory control mechanisms in patients with major depressive disorder.Transl. Psychiatry202111164510.1038/s41398‑021‑01755‑334934041
    [Google Scholar]
  42. CarabottiM. SciroccoA. MaselliM.A. SeveriC. The gut-brain axis: Interactions between enteric microbiota, central and enteric nervous systems.Ann. Gastroenterol.201528220320925830558
    [Google Scholar]
  43. BelkaidY. HandT.W. Role of the microbiota in immunity and inflammation.Cell2014157112114110.1016/j.cell.2014.03.01124679531
    [Google Scholar]
  44. FosterJ.A. McVey NeufeldK.A. Gut–brain axis: How the microbiome influences anxiety and depression.Trends Neurosci.201336530531210.1016/j.tins.2013.01.00523384445
    [Google Scholar]
  45. Purnama DewiN. PoddarS. AbdullahD. Teti VaniA. The potential of Pediococcus acidilactici DS1 from Dadiah Bukitinggi as a tumor necrosis factor (TNF) expression inhibitor in bioinformatics.Research Journal of Pharmacy and Technology2023164737474010.52711/0974‑360X.2023.00769
    [Google Scholar]
  46. LiuX. CaoS. ZhangX. Modulation of gut microbiota–brain axis by probiotics, prebiotics, and diet.J. Agric. Food Chem.201563367885789510.1021/acs.jafc.5b0240426306709
    [Google Scholar]
  47. MarlowG. HanD.Y. WickensK. StanleyT. CraneJ. MitchellE.A. DekkerJ. BarthowC. FitzharrisP. FergusonL.R. MorganA.R. Differential effects of two probiotics on the risks of eczema and atopy associated with single nucleotide polymorphisms to Toll-like receptors.Pediatr. Allergy Immunol.201526326227110.1111/pai.1237125779902
    [Google Scholar]
  48. RiederR. WisniewskiP.J. AldermanB.L. CampbellS.C. Microbes and mental health: A review.Brain Behav. Immun.20176691710.1016/j.bbi.2017.01.01628131791
    [Google Scholar]
  49. DeM. BhattacharyaM. SahaA. BasuI. GanguliS. DeyS. Influence of oral microbiome on human health: An overview.Int. J. Adv. Life Sci. Res.201921621
    [Google Scholar]
  50. HossainM.I. IslamR. Islam MimiS. Ahmed JewelZ. Ali HaiderU. Gut microbiota: Succinct overview of impacts on human physique and current research status with future aspects.International Journal of Advancement in Life Sciences Research20203211010.31632/ijalsr.20.v03i02.001
    [Google Scholar]
  51. CheathamC.L. NiemanD.C. NeilsonA.P. LilaM.A. Enhancing the cognitive effects of flavonoids with physical activity: Is there a case for the gut microbiome?Front. Neurosci.20221683320210.3389/fnins.2022.83320235273477
    [Google Scholar]
  52. GinwalaR. BhavsarR. ChigbuD.G.I. JainP. KhanZ.K. Potential role of flavonoids in treating chronic inflammatory diseases with a special focus on the anti-inflammatory activity of apigenin.Antioxidants2019823510.3390/antiox802003530764536
    [Google Scholar]
  53. RadulovicK. NormandS. RehmanA. Delanoye-CrespinA. ChatagnonJ. DelacreM. WaldschmittN. PoulinL.F. IovannaJ. RyffelB. RosenstielP. ChamaillardM. A dietary flavone confers communicable protection against colitis through NLRP6 signaling independently of inflammasome activation.Mucosal Immunol.201811381181910.1038/mi.2017.8729139477
    [Google Scholar]
  54. TourkochristouE. TriantosC. MouzakiA. The influence of nutritional factors on immunological outcomes.Front. Immunol.20211266596810.3389/fimmu.2021.66596834135894
    [Google Scholar]
  55. PandeyV.K. TripathiA. SrivastavaS. PandeyS. DarA.H. SinghR. DuraisamyP. SinghP. MukarramS.A. A systematic review on immunity functionalities and nutritional food recommendations to develop immunity against viral infection.Applied Food Research20233110029110.1016/j.afres.2023.100291
    [Google Scholar]
  56. WilliamsA.R. Andersen-CivilA.I.S. ZhuL. BlanchardA. Dietary phytonutrients and animal health: Regulation of immune function during gastrointestinal infections.J. Anim. Sci.2020984skaa03010.1093/jas/skaa03031999321
    [Google Scholar]
  57. FuY. WangY. GaoH. LiD. JiangR. GeL. TongC. XuK. Associations among dietary omega-3 polyunsaturated fatty acids, the gut microbiota, and intestinal immunity.Mediators Inflamm.2021202111110.1155/2021/887922733488295
    [Google Scholar]
  58. Arjomand FardN. Bording-JorgensenM. WineE. A potential role for gut microbes in mediating effects of omega-3 fatty acids in inflammatory bowel diseases: A comprehensive review.Curr. Microbiol.2023801136310.1007/s00284‑023‑03482‑y37807005
    [Google Scholar]
  59. HrncirT. Gut Microbiota dysbiosis: Triggers, consequences, diagnostic and therapeutic options.Microorganisms202210357810.3390/microorganisms1003057835336153
    [Google Scholar]
  60. RamamurthyT. KumariS. GhoshA. Diarrheal disease and gut microbiome.Prog. Mol. Biol. Transl. Sci.2022192114917710.1016/bs.pmbts.2022.08.00236280318
    [Google Scholar]
  61. Clemente-SuárezV.J. Beltrán-VelascoA.I. Redondo-FlórezL. Martín-RodríguezA. Tornero-AguileraJ.F. Global impacts of western diet and its effects on metabolism and health: A narrative review.Nutrients20231512274910.3390/nu1512274937375654
    [Google Scholar]
  62. AzizT. KhanA.A. TzoraA. VoidarouC.C. SkoufosI. Dietary implications of the bidirectional relationship between the gut microflora and inflammatory diseases with special emphasis on irritable bowel disease: Current and future perspective.Nutrients20231513295610.3390/nu1513295637447285
    [Google Scholar]
  63. HarschI.A. KonturekP.C. The role of gut microbiota in obesity and type 2 and type 1 diabetes mellitus: New insights into “old” diseases.Med. Sci2018623210.3390/medsci602003229673211
    [Google Scholar]
  64. Esteban-TorresM. RuizL. RossiniV. NallyK. van SinderenD. Intracellular glycogen accumulation by human gut commensals as a niche adaptation trait.Gut Microbes2023151223506710.1080/19490976.2023.223506737526383
    [Google Scholar]
  65. JiangW. TanJ. ZhangJ. DengX. HeX. ZhangJ. LiuT. SunR. SunM. ChenK. XuT. YanY. MoazzamiA. WuE.J. ZhanJ. HuB. Polysaccharides from Dendrobium officinale improve obesity-induced insulin resistance through the gut microbiota and the SOCS3 -mediated insulin receptor substrate-1 signaling pathway.J. Sci. Food Agric.202410463437344710.1002/jsfa.1322938111200
    [Google Scholar]
  66. ForteN. Fernández-RiloA.C. PalombaL. Di MarzoV. CristinoL. Obesity affects the microbiota-gut-brain axis and the regulation thereof by endocannabinoids and related mediators.Int. J. Mol. Sci.2020215155410.3390/ijms2105155432106469
    [Google Scholar]
  67. MansourS. AlkhaaldiS.M.I. SammanasunathanA.F. IbrahimS. FarhatJ. Al-OmariB. Precision nutrition unveiled: Gene-nutrient interactions, microbiota dynamics, and lifestyle factors in obesity management.Nutrients202416558110.3390/nu1605058138474710
    [Google Scholar]
  68. LiuS. HeF. ZhengT. WanS. ChenJ. YangF. XuX. PeiX. Ligustrum robustum alleviates atherosclerosis by decreasing serum TMAO, modulating gut microbiota, and decreasing bile acid and cholesterol absorption in mice.Mol. Nutr. Food Res.20216514210001410.1002/mnfr.20210001434005835
    [Google Scholar]
  69. ShoerS. ShiloS. GodnevaA. Ben-YacovO. ReinM. WolfB.C. Lotan-PompanM. BarN. WeissE.I. Houri-HaddadY. PilpelY. WeinbergerA. SegalE. Impact of dietary interventions on pre-diabetic oral and gut microbiome, metabolites and cytokines.Nat. Commun.2023141538410.1038/s41467‑023‑41042‑x37666816
    [Google Scholar]
  70. VernocchiP. Del ChiericoF. PutignaniL. Gut microbiota metabolism and interaction with food components.Int. J. Mol. Sci.20202110368810.3390/ijms2110368832456257
    [Google Scholar]
  71. ZhaoM. ChuJ. FengS. GuoC. XueB. HeK. LiL. Immunological mechanisms of inflammatory diseases caused by gut microbiota dysbiosis: A review.Biomed. Pharmacother.202316411498510.1016/j.biopha.2023.11498537311282
    [Google Scholar]
  72. FakharianF. ThirugnanamS. WelshD.A. KimW.K. RappaportJ. BittingerK. RoutN. The role of gut dysbiosis in the loss of intestinal immune cell functions and viral pathogenesis.Microorganisms2023117184910.3390/microorganisms1107184937513022
    [Google Scholar]
  73. WardillH.R. ChanR.J. ChanA. KeefeD. CostelloS.P. HartN.H. Dual contribution of the gut microbiome to immunotherapy efficacy and toxicity: Supportive care implications and recommendations.Support. Care Cancer20223086369637310.1007/s00520‑022‑06948‑035266052
    [Google Scholar]
  74. SelvamaniS. MehtaV. Ali El EnshasyH. ThevarajooS. El AdawiH. ZeiniI. PhamK. VarzakasT. AbomoelakB. Efficacy of probiotics-based interventions as therapy for inflammatory bowel disease: A recent update.Saudi J. Biol. Sci.20222953546356710.1016/j.sjbs.2022.02.04435844369
    [Google Scholar]
  75. LiuY. LiZ. WuY. JingX. LiL. FangX. Intestinal bacteria encapsulated by biomaterials enhance immunotherapy.Front. Immunol.20211162017010.3389/fimmu.2020.62017033643302
    [Google Scholar]
  76. LozenovS. KrastevB. NikolaevG. Peshevska-SekulovskaM. PeruhovaM. VelikovaT. Gut microbiome composition and its metabolites are a key regulating factor for malignant transformation, metastasis and antitumor immunity.Int. J. Mol. Sci.2023246597810.3390/ijms2406597836983053
    [Google Scholar]
  77. DadgarN. Edlukudige KeshavaV. RajM.S. WagnerP.L. The influence of the microbiome on immunotherapy for gastroesophageal cancer.Cancers20231518442610.3390/cancers1518442637760397
    [Google Scholar]
  78. LyonsK.E. RyanC.A. DempseyE.M. RossR.P. StantonC. Breast milk, a source of beneficial microbes and associated benefits for infant health.Nutrients2020124103910.3390/nu1204103932283875
    [Google Scholar]
  79. PrameelaK.K. Gut microbes - Early immunity and health.Med. J. Malaysia202176339540034031340
    [Google Scholar]
  80. SanchezH.N. MoroneyJ.B. GanH. ShenT. ImJ.L. LiT. TaylorJ.R. ZanH. CasaliP. B cell-intrinsic epigenetic modulation of antibody responses by dietary fiber-derived short-chain fatty acids.Nat. Commun.20201116010.1038/s41467‑019‑13603‑631896754
    [Google Scholar]
  81. ChenY. WangX. ZhangC. LiuZ. LiC. RenZ. Gut microbiota and bone diseases: A growing partnership.Front. Microbiol.20221387777610.3389/fmicb.2022.87777635602023
    [Google Scholar]
  82. KerezoudiE.N. MitsouE.K. GiotiK. TerziE. AvgoustiI. PanagiotouA. KoutrotsiosG. ZervakisG.I. MountzourisK.C. TentaR. KyriacouA. Fermentation of Pleurotus ostreatus and Ganoderma lucidum mushrooms and their extracts by the gut microbiota of healthy and osteopenic women: Potential prebiotic effect and impact of mushroom fermentation products on human osteoblasts.Food Funct.20211241529154610.1039/D0FO02581J33521800
    [Google Scholar]
  83. KearnsA.E. KhoslaS. KostenuikP.J. Receptor activator of nuclear factor kappaB ligand and osteoprotegerin regulation of bone remodeling in health and disease.Endocr. Rev.200829215519210.1210/er.2007‑001418057140
    [Google Scholar]
  84. LoombaR. LingL. DinhD.M. DePaoliA.M. LieuH.D. HarrisonS.A. SanyalA.J. The commensal microbe Veillonella as a marker for response to an FGF19 analog in NASH.Hepatology202173112614310.1002/hep.3152332794259
    [Google Scholar]
  85. NovakovicM. RoutA. KingsleyT. KirchoffR. SinghA. VermaV. KantR. ChaudharyR. Role of gut microbiota in cardiovascular diseases.World J. Cardiol.202012411012210.4330/wjc.v12.i4.11032431782
    [Google Scholar]
  86. KeathleyJ. KearneyM. GarneauV. Toro-MartínJ. VarinT.V. PilonG. CoutureP. MaretteA. VohlM.C. CouillardC. Changes in systolic blood pressure, postprandial glucose, and gut microbial composition following mango consumption in individuals with overweight and obesity.Appl. Physiol. Nutr. Metab.202247556557410.1139/apnm‑2021‑063735506190
    [Google Scholar]
  87. BakrA.F. FaragM.A. Soluble dietary fibers as antihyperlipidemic agents: A comprehensive review to maximize their health benefits.ACS Omega2023828246802469410.1021/acsomega.3c0112137483202
    [Google Scholar]
  88. ZhouE. ZhangL. HeL. XiaoY. ZhangK. LuoB. Cold exposure, gut microbiota and health implications: A narrative review.Sci. Total Environ.202491617006010.1016/j.scitotenv.2024.17006038242473
    [Google Scholar]
  89. WillersM. ViemannD. Role of the gut microbiota in airway immunity and host defense against respiratory infections.Biol. Chem.2021402121481149110.1515/hsz‑2021‑028134599869
    [Google Scholar]
  90. BhattA.P. RedinboM.R. BultmanS.J. The role of the microbiome in cancer development and therapy.CA Cancer J. Clin.201767432634410.3322/caac.2139828481406
    [Google Scholar]
  91. Senthil KumarS. GundaV. ReinartzD.M. PondK.W. ThorneC.A. Santiago RajP.V. JohnsonM.D.L. WilsonJ.E. Oral streptococci S. anginosus and S. mitis induce distinct morphological, inflammatory, and metabolic signatures in macrophages.Infect. Immun.2024923e00536-2310.1128/iai.00536‑23
    [Google Scholar]
  92. HaririZ. YariZ. HoseiniS. AbhariK. SohrabG. Synbiotic as an ameliorating factor in the health-related quality of life in women with polycystic ovary syndrome. A randomized, triple-blind, placebo-controlled trial.BMC Womens Health20242411910.1186/s12905‑023‑02868‑138172876
    [Google Scholar]
  93. AlHilliM.M. Bae-JumpV. Diet and gut microbiome interactions in gynecologic cancer.Gynecol. Oncol.2020159229930810.1016/j.ygyno.2020.08.02732933758
    [Google Scholar]
  94. AL-IshaqR.K. LiskovaA. KubatkaP. BüsselbergD. Enzymatic metabolism of flavonoids by gut microbiota and its impact on gastrointestinal cancer.Cancers20211316393410.3390/cancers1316393434439088
    [Google Scholar]
  95. CaoQ. ZhaoM. SuY. LiuS. LinY. DaH. YueC. LiuY. JingD. ZhaoQ. LiuN. DuJ. ZuoZ. FuY. ChenA. BirnbaumerL. YangY. DaiB. GaoX. Chronic stress dampens Lactobacillus Johnsonii-mediated tumor suppression to enhance colorectal cancer progression.Cancer Res.202484577178410.1158/0008‑5472.CAN‑22‑370538190716
    [Google Scholar]
  96. Nieto-ClavijoC. MoralesL. Marquez-OrtizR.A. Romero-SánchezC. Ramos-CasallasA. Escobar-PerezJ. Bautista-MolanoW. Bello-GualteroJ.M. Chaparro-OlayaJ. Differential gut microbiome in spondyloarthritis patients associated to Blastocystis colonization.Sci. Rep.20231311348010.1038/s41598‑023‑39055‑z37596338
    [Google Scholar]
  97. SiddiquiR. MungrooM.R. AlharbiA.M. AlfahemiH. KhanN.A. The use of gut microbial modulation strategies as interventional strategies for ageing.Microorganisms2022109186910.3390/microorganisms1009186936144471
    [Google Scholar]
  98. LindstedtK. BuczekD. PedersenT. HjerdeE. RaffelsbergerN. SuzukiY. BrisseS. HoltK. SamuelsenØ. SundsfjordA. Detection of Klebsiella pneumoniae human gut carriage: A comparison of culture, qPCR, and whole metagenomic sequencing methods.Gut Microbes2022141211850010.1080/19490976.2022.211850036045603
    [Google Scholar]
  99. SungJ. RajendraprasadS.S. PhilbrickK.L. BauerB.A. GajicO. ShahA. LaudanskiK. BakkenJ.S. SkalskiJ. KarnatovskaiaL.V. The human gut microbiome in critical illness: disruptions, consequences, and therapeutic frontiers.J. Crit. Care20247915443610.1016/j.jcrc.2023.15443637769422
    [Google Scholar]
  100. LeeJ.S. MinJ.W. GyeS.B. KimY.W. KangH.C. ChoiY.S. SeoW.S. LeeB.Y. Suppression of UVB-induced MMP-1 expression in human skin fibroblasts using lysate of lactobacillus iners derived from Korean women’s skin in their twenties.Curr. Issues Mol. Biol.202446151352610.3390/cimb4601003338248335
    [Google Scholar]
  101. CaswellG. EshelbyB. Skin microbiome considerations for long haul space flights.Front. Cell Dev. Biol.20221095643210.3389/fcell.2022.95643236158225
    [Google Scholar]
  102. KangY. KangX. CaiY. The gut microbiome as a target for adjuvant therapy in insomnia disorder.Clin. Res. Hepatol. Gastroenterol.202246110183410.1016/j.clinre.2021.10183434800683
    [Google Scholar]
  103. KoszewiczM. JarochJ. BrzeckaA. EjmaM. BudrewiczS. MikhalevaL.M. MuresanuC. SchieldP. SomasundaramS.G. KirklandC.E. Avila-RodriguezM. AlievG. Dysbiosis is one of the risk factor for stroke and cognitive impairment and potential target for treatment.Pharmacol. Res.202116410527710.1016/j.phrs.2020.10527733166735
    [Google Scholar]
  104. VujanovicS. VujanovicJ. VujanovicV. Microbiome-driven proline biogenesis in plants under stress: Perspectives for balanced diet to minimize depression disorders in humans.Microorganisms20221011226410.3390/microorganisms1011226436422335
    [Google Scholar]
  105. MuyyarikkandyM.S. ParzygnatJ. ThakurS. Uncovering changes in microbiome profiles across commercial and backyard poultry farming systems.Microbiol. Spectr.2023115e01682-2310.1128/spectrum.01682‑2337607066
    [Google Scholar]
/content/journals/nemj/10.2174/0102506882329129241007054042
Loading
/content/journals/nemj/10.2174/0102506882329129241007054042
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test