Skip to content
2000
Volume 5, Issue 1
  • ISSN: 0250-6882
  • E-ISSN: 0250-6882

Abstract

Background

Vancomycin, used to treat severe gram-positive infections, can induce acute kidney injury. Some evidence introduced Interleukin-18 (IL-18) as an inflammatory mediator of ischemic damage to many organs and urinary IL-18 as a diagnostic biomarker of acute tubular necrosis.

Objective

The current study aimed to evaluate the urinary level of IL-18 after vancomycin therapy.

Methods

This cross-sectional study was conducted on patients under treatment with vancomycin selected from those referred to Dr. Sheikh Hospital, Mashhad, Iran, from 2018-2019. Urinary IL-18 was measured based on nanograms per milliliter using a human IL-18 enzyme-linked immunosorbent assay kit about this cytokine before vancomycin administration and then two days later. All the analyses were performed in SPSS software (version 25), and a P-value less than 0.05 was considered statistically significant.

Results

A total of 36 patients with a mean age of 40.06±36.67 months were included in the study. The mean scores of IL-18 before and after taking vancomycin were 1453.00±555.01 and 1713.00±660.98, respectively. The IL-18 was significantly lower before vancomycin consumption than the level reported after 48 h (P<0.05).

Conclusions

The present study highlighted a higher level of urinary IL-18 after vancomycin treatment, which may indicate kidney injuries. Therefore, it may be considered a potential biomarker of acute tubular necrosis in patients under vancomycin therapy.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/nemj/10.2174/0102506882278713240303174153
2024-03-08
2025-01-31
Loading full text...

Full text loading...

/deliver/fulltext/nemj/5/1/NEMJ-5-E02506882278713.html?itemId=/content/journals/nemj/10.2174/0102506882278713240303174153&mimeType=html&fmt=ahah

References

  1. KimS.Y. MoonA.R. Drug-induced nephrotoxicity and its biomarkers.Biomol. Ther.201220326827210.4062/biomolther.2012.20.3.26824130922
    [Google Scholar]
  2. AlvarezM.M.C. Nephrotoxicity of antimicrobials and antibiotics.Adv. Chronic Kidney Dis.2020271313710.1053/j.ackd.2019.08.00132146999
    [Google Scholar]
  3. RiceL.B. Antimicrobial resistance in gram-positive bacteria.Am. J. Med.20061196S11S1910.1016/j.amjmed.2006.03.01216735146
    [Google Scholar]
  4. RubinsteinE. KeynanY. Vancomycin revisited - 60 years later.Front. Public Health2014221710.3389/fpubh.2014.0021725401098
    [Google Scholar]
  5. JiaP. WuX. PanT. XuS. HuJ. DingX. Uncoupling protein 1 inhibits mitochondrial reactive oxygen species generation and alleviates acute kidney injury.EBioMedicine20194933134010.1016/j.ebiom.2019.10.02331678001
    [Google Scholar]
  6. PaisG.M. LiuJ. ZepcanS. AvedissianS.N. RhodesN.J. DownesK.J. MoorthyG.S. ScheetzM.H. Vancomycin‐induced kidney injury: Animal models of toxicodynamics, mechanisms of injury, human translation, and potential strategies for prevention.Pharmacotherapy202040543845410.1002/phar.238832239518
    [Google Scholar]
  7. PaisG.M. AvedissianS.N. O’DonnellJ.N. RhodesN.J. LodiseT.P. ProzialeckW.C. LamarP.C. CluffC. GulatiA. FitzgeraldJ.C. DownesK.J. ZuppaA.F. ScheetzM.H. Comparative performance of urinary biomarkers for vancomycin-induced kidney injury according to timeline of injury.Antimicrob. Agents Chemother.2019637e00079-1910.1128/AAC.00079‑1930988153
    [Google Scholar]
  8. PangH.M. QinX.L. LiuT.T. WeiW.X. ChengD.H. LuH. GuoQ. JingL. Urinary kidney injury molecule-1 and neutrophil gelatinase-associated lipocalin as early biomarkers for predicting vancomycin-associated acute kidney injury: A prospective study.Eur. Rev. Med. Pharmacol. Sci.2017211842034213[PMID: 29028077].29028077
    [Google Scholar]
  9. VanmassenhoveJ. VanholderR. NaglerE. Van BiesenW. Urinary and serum biomarkers for the diagnosis of acute kidney injury: An in-depth review of the literature.Nephrol. Dial. Transplant.201328225427310.1093/ndt/gfs38023115326
    [Google Scholar]
  10. Garcia-TsaoG. ParikhC.R. ViolaA. Acute kidney injury in cirrhosis.Hepatology20084862064207710.1002/hep.2260519003880
    [Google Scholar]
  11. GoundenV. BhattH. JialalI. Renal function testsTreasure Island, FLStatPearls Publishing2018
    [Google Scholar]
  12. ParikhC.R. JaniA. MelnikovV.Y. FaubelS. EdelsteinC.L. Urinary interleukin-18 is a marker of human acute tubular necrosis.Am. J. Kidney Dis.200443340541410.1053/j.ajkd.2003.10.04014981598
    [Google Scholar]
  13. HirookaY. NozakiY. Interleukin-18 in inflammatory kidney disease.Front. Med.2021863910310.3389/fmed.2021.63910333732720
    [Google Scholar]
  14. LinX. YuanJ. ZhaoY. ZhaY. Urine interleukin-18 in prediction of acute kidney injury: A systemic review and meta-analysis.J. Nephrol.201528171610.1007/s40620‑014‑0113‑924899123
    [Google Scholar]
  15. DuyN.T. QuyD.B.Q. LeH.V.D. HaL.K. HuuN.D. TrungN.K. VanT.D. OanhN.O. CongL.T. DucT.H. Le VietT. Urinary neutrophil gelatinase‐associated lipocalin predicted to contrast-associated acute kidney injury after planned percutaneous coronary intervention in elderly patients.J. Clin. Lab. Anal.20223612e2475710.1002/jcla.2475736357318
    [Google Scholar]
  16. WebbT.N. Detection of acute kidney injury in neonates after cardiopulmonary bypass.Nephron J.2022146328228510.1159/00052231635220310
    [Google Scholar]
  17. TanD. ZhaoL. PengW. WuF.H. ZhangG.B. YangB. HuoW.Q. Value of urine IL-8, NGAL and KIM-1 for the early diagnosis of acute kidney injury in patients with ureteroscopic lithotripsy related urosepsis.Chin. J. Traumatol.2022251273110.1016/j.cjtee.2021.10.00134702632
    [Google Scholar]
  18. BamgbolaO. Review of vancomycin-induced renal toxicity: An update.Ther. Adv. Endocrinol. Metab.20167313614710.1177/204201881663822327293542
    [Google Scholar]
  19. RahmaniH. KhaliliH. Prevention of vancomycin-induced nephrotoxicity; an updated review of clinical and preclinical studies.Infect. Disord. Drug Targets2022222e31032119258410.2174/187152652166621033116455233797371
    [Google Scholar]
  20. KimS.M. LeeH.S. KimM.J. ParkH.D. LeeS.Y. Diagnostic value of multiple serum biomarkers for vancomycin-induced kidney injury.J. Clin. Med.20211021500510.3390/jcm1021500534768522
    [Google Scholar]
  21. MoffettBS MorrisJ KamC GalatiM DuttaA ArikanA.A Vancomycin associated acute kidney injury in pediatric patients.PLoS One20181310e020243910.1371/journal.pone.0202439
    [Google Scholar]
  22. GyamlaniG. PotukuchiP.K. ThomasF. AkbilgicO. SoohooM. StrejaE. NaseerA. SumidaK. MolnarM.Z. ZadehK.K. KovesdyC.P. Vancomycin-associated acute kidney injury in a large veteran population.Am. J. Nephrol.201949213314210.1159/00049648430677750
    [Google Scholar]
  23. PlakogiannisR. NogidA. Acute interstitial nephritis associated with coadministration of vancomycin and ceftriaxone: Case series and review of the literature.Pharmacotherapy200727101456146110.1592/phco.27.10.145617896901
    [Google Scholar]
  24. WicklowB.A. OgbornM.R. GibsonI.W. Blydt-HansenT.D. Biopsy-proven acute tubular necrosis in a child attributed to vancomycin intoxication.Pediatr. Nephrol.20062181194119610.1007/s00467‑006‑0152‑016721580
    [Google Scholar]
  25. PollierJ. GoossensA. Oleanolic acid.Phytochemistry201277101510.1016/j.phytochem.2011.12.02222377690
    [Google Scholar]
  26. LiangX.L. LiuS.X. ChenY.H. YanL.J. LiH. XuanH.J. LiangY.Z. ShiW. Combination of urinary kidney injury molecule-1 and interleukin-18 as early biomarker for the diagnosis and progressive assessment of acute kidney injury following cardiopulmonary bypass surgery: A prospective nested case–control study.Biomarkers201015433233910.3109/1354750100370655820233133
    [Google Scholar]
  27. RenH. ZhouX. DaiD. LiuX. WangL. ZhouY. LuoX. CaiQ. Assessment of urinary kidney injury molecule-1 and interleukin-18 in the early post-burn period to predict acute kidney injury for various degrees of burn injury.BMC Nephrol.201516114210.1186/s12882‑015‑0140‑326283194
    [Google Scholar]
  28. QinZ. LiH. JiaoP. JiangL. GengJ. YangQ. LiaoR. SuB. The value of urinary interleukin-18 in predicting acute kidney injury: A systematic review and meta-analysis.Ren. Fail.20224411727174110.1080/0886022X.2022.213372836259446
    [Google Scholar]
  29. DobilienėD. MasalskienėJ. RudaitisŠ. VitkauskienėA. PečiulytėJ. KėvalasR. Early diagnosis and prognostic value of acute kidney injury in critically Ill patients.Medicina201955850610.3390/medicina5508050631434328
    [Google Scholar]
  30. Sampaio de Souza GarmsD. Cardoso EidK.Z. BurdmannE.A. MarçalL.J. AntonângeloL. SantosA. PonceD. The role of urinary biomarkers as diagnostic and prognostic predictors of acute kidney injury associated with vancomycin.Front. Pharmacol.20211270563610.3389/fphar.2021.70563634630082
    [Google Scholar]
  31. SafinaA.I. DaminovaM.A. AbdullinaG.A. Acute kidney injury in neonatal intensive care: Medicines involved.Int. J. Risk Saf. Med.201527S1S9S1010.3233/JRS‑15066926639729
    [Google Scholar]
/content/journals/nemj/10.2174/0102506882278713240303174153
Loading
/content/journals/nemj/10.2174/0102506882278713240303174153
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): Acute kidney injury; Acute tubular necrosis; Kidney interleukin-18; Urinary; Vancomycin
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test