Skip to content
2000
Volume 5, Issue 1
  • ISSN: 0250-6882
  • E-ISSN: 0250-6882
side by side viewer icon HTML

Abstract

Introduction

Over the last half-century, the treatment and management of autoimmune rheumatic diseases have progressively improved, particularly with the contribution of immunobiological or biological therapies known as disease-modifying antirheumatic drugs. Although these agents have been generally efficient in the management of rheumatoid arthritis (RA), some patients experience limited efficacy and non-responsiveness to treatment. In addition, they may cause adverse clinical effects, further aggravating the disease.

Objectives

Despite advancements in biological therapies, significant clinical needs persist. This review aims to discuss novel treatments, guiding future guidelines and drug discoveries for rheumatoid arthritis.

Methods

This review follows the 2020 PRISMA statement, utilising PubMed and Google Scholar for literature search and emphasizing recent meta-analyses on the safety and efficacy of targeted immunobiological medications.

Results

Small molecule inhibitors, whether utilised independently or in conjunction with Methotrexate, have been shown to contribute to effective disease management and have the potential for better adherence to the American College of Rheumatology criteria. Tocilizumab therapy demonstrates a significant reduction in disease activity and improves rates of disease remission when combined with Methotrexate. Investigations of mesenchymal stromal cell therapies have had promising outcomes, improving both cartilage quality (as evaluated by Macroscopic Cartilage Repair Assessment) and joint tenderness and swelling in clinical joint counts. Intra-articular administration of tolerogenic dendritic cells has displayed a capacity to alleviate pain, as measured by Visual Analog Scale scores, and enhance the Disease Activity Score across 28 joints. Resveratrol capsules supplemented with allopathic therapy show potential in reducing TNF-α and interleukin-6 serum levels.

Conclusion

More investigations and their analysis will improve patient outcomes and reduce adverse effects and the costs involved in developing and obtaining immunobiological drugs. Moreover, assessing the safety and efficacy of anti-RA properties of the bioactive compounds could offer less toxic and more cost-effective natural treatment options.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/nemj/10.2174/0102506882277568240126102549
2024-03-28
2025-01-19
Loading full text...

Full text loading...

/deliver/fulltext/nemj/5/1/NEMJ-5-E02506882277568.html?itemId=/content/journals/nemj/10.2174/0102506882277568240126102549&mimeType=html&fmt=ahah

References

  1. AletahaD. SmolenJ.S. Diagnosis and management of rheumatoid arthritis.JAMA2018320131360137210.1001/jama.2018.1310330285183
    [Google Scholar]
  2. HuangJ. FuX. ChenX. LiZ. HuangY. LiangC. Promising therapeutic targets for treatment of rheumatoid arthritis.Front. Immunol.20211268615510.3389/fimmu.2021.68615534305919
    [Google Scholar]
  3. Santos-MorenoP.I. de la Hoz-ValleJ. VillarrealL. PalominoA. SánchezG. CastroC. Treatment of rheumatoid arthritis with methotrexate alone and in combination with other conventional DMARDs using the T2T strategy. A cohort study.Clin. Rheumatol.201534221522010.1007/s10067‑014‑2794‑925318612
    [Google Scholar]
  4. GautamR. SinghM. GautamS. RawatJ.K. SarafS.A. KaithwasG. Rutin attenuates intestinal toxicity induced by Methotrexate linked with anti-oxidative and anti-inflammatory effects.BMC Complement. Altern. Med.20161619910.1186/s12906‑016‑1069‑126965456
    [Google Scholar]
  5. ZhangY. LinJ. YouZ. TuH. HeP. LiJ. GaoR. LiuZ. XiZ. LiZ. LuY. HuQ. LiC. GeF. HuoZ. QiaoG. Cancer risks in rheumatoid arthritis patients who received immunosuppressive therapies: Will immunosuppressants work?Front. Immunol.202213105087610.3389/fimmu.2022.105087636605209
    [Google Scholar]
  6. TanakaY. LuoY. O’SheaJ.J. NakayamadaS. Janus kinase-targeting therapies in rheumatology: A mechanisms-based approach.Nat. Rev. Rheumatol.202218313314510.1038/s41584‑021‑00726‑834987201
    [Google Scholar]
  7. KimM. ChoeY. LeeS. Lessons from the success and failure of targeted drugs for rheumatoid arthritis: Perspectives for effective basic and translational research.Immune Netw.2022221e810.4110/in.2022.22.e835291656
    [Google Scholar]
  8. PageM.J. McKenzieJ.E. BossuytP.M. BoutronI. HoffmannT.C. MulrowC.D. ShamseerL. TetzlaffJ.M. AklE.A. BrennanS.E. ChouR. GlanvilleJ. GrimshawJ.M. HróbjartssonA. LaluM.M. LiT. LoderE.W. Mayo-WilsonE. McDonaldS. McGuinnessL.A. StewartL.A. ThomasJ. TriccoA.C. WelchV.A. WhitingP. MoherD. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews.BMJ202137271n7110.1136/bmj.n7133782057
    [Google Scholar]
  9. Parchami GhazaeeS TumanovV VoloshynaN Marchenko-TolstaK HameedM. A review of the novel antidiabetic medications: Efficacy, safety and innovation.202341710.2174/04666230130095723
    [Google Scholar]
  10. ReynoldsG. CoolesF.A.H. IsaacsJ.D. HilkensC.M.U. Emerging immunotherapies for rheumatoid arthritis.Hum. Vaccin. Immunother.201410482283710.4161/hv.2791024535556
    [Google Scholar]
  11. WangF. SunL. WangS. DavisJ.M.III MattesonE.L. MuradM.H. LuoF. VassalloR. Efficacy and safety of tofacitinib, baricitinib, and upadacitinib for rheumatoid arthritis: A systematic review and meta-analysis.Mayo Clin. Proc.20209571404141910.1016/j.mayocp.2020.01.03932499126
    [Google Scholar]
  12. SungY.K. LeeY.H. Comparative study of the efficacy and safety of tofacitinib, baricitinib, upadacitinib, and filgotinib versus methotrexate for disease-modifying antirheumatic drug-naïve patients with rheumatoid arthritis.Z. Rheumatol.202180988989810.1007/s00393‑020‑00889‑x32970188
    [Google Scholar]
  13. LiuL. YanY.D. ShiF.H. LinH.W. GuZ.C. LiJ. Comparative efficacy and safety of JAK inhibitors as monotherapy and in combination with methotrexate in patients with active rheumatoid arthritis: A systematic review and meta-analysis.Front. Immunol.20221397726510.3389/fimmu.2022.97726536248913
    [Google Scholar]
  14. SmolenJ.S. AletahaD. BartonA. BurmesterG.R. EmeryP. FiresteinG.S. KavanaughA. McInnesI.B. SolomonD.H. StrandV. YamamotoK. Rheumatoid arthritis.Nat. Rev. Dis. Primers2018411800110.1038/nrdp.2018.129417936
    [Google Scholar]
  15. GremeseE AliverniniS TolussoB ZeidlerMP FerraccioliG JAK inhibition by methotrexate (and csDMARDs) may explain clinical efficacy as monotherapy and combination therapy.J Leukoc Biol2019106510636810.1002/JLB.5RU0519‑145R
    [Google Scholar]
  16. EmeryP. PopeJ.E. KrugerK. LippeR. DeMasiR. LulaS. KolaB. Efficacy of monotherapy with biologics and jak inhibitors for the treatment of rheumatoid arthritis: A systematic review.Adv. Ther.201835101535156310.1007/s12325‑018‑0757‑230128641
    [Google Scholar]
  17. HoisnardL. Lebrun-VignesB. MauryS. MahevasM. El KarouiK. RoyL. ZarourA. MichelM. CohenJ.L. AmiotA. ClaudepierreP. WolkensteinP. GrimbertP. SbidianE. Adverse events associated with JAK inhibitors in 126,815 reports from the WHO pharmacovigilance database.Sci. Rep.2022121714010.1038/s41598‑022‑10777‑w35504889
    [Google Scholar]
  18. MaqsoodM.H. WeberB.N. HabermanR.H. Lo SiccoK.I. BangaloreS. GarshickM.S. Cardiovascular and venous thromboembolic risk with janus kinase inhibitors in immune-mediated inflammatory diseases: A systematic review and meta-analysis of randomized trials.ACR Open Rheumatol.202241091292210.1002/acr2.1147935903881
    [Google Scholar]
  19. KotylaP.J. EngelmannM. Giemza-StokłosaJ. WnukB. IslamM.A. Thromboembolic adverse drug reactions in Janus Kinase (JAK) inhibitors: Does the inhibitor specificity play a role?Int. J. Mol. Sci.2021225244910.3390/ijms2205244933671049
    [Google Scholar]
  20. VenkateshaS. DudicsS. AcharyaB. MoudgilK. Cytokine-modulating strategies and newer cytokine targets for arthritis therapy.Int. J. Mol. Sci.201416188790610.3390/ijms1601088725561237
    [Google Scholar]
  21. SakiA. RajaeiE. RahimF. Safety and efficacy of tocilizumab for rheumatoid arthritis: A systematic review and metaanalysis of clinical trial studies.Reumatologia202159316917910.5114/reum.2021.10702634538944
    [Google Scholar]
  22. FleischmannR. GenoveseM.C. MaslovaK. LeherH. PraestgaardA. BurmesterG.R. Long-term safety and efficacy of sarilumab over 5 years in patients with rheumatoid arthritis refractory to TNF inhibitors.Rheumatology202160114991500110.1093/rheumatology/keab35533871596
    [Google Scholar]
  23. BurmesterG.R. StrandV. KivitzA.J. HuC.C. WangS. van HoogstratenH. KlierG.L. FleischmannR. Long-term safety and efficacy of sarilumab with or without background csDMARDs in rheumatoid arthritis.Rheumatology202362103268327910.1093/rheumatology/kead06236727470
    [Google Scholar]
  24. SarsenovaM. IssabekovaA. AbishevaS. Rutskaya-MoroshanK. OgayV. SaparovA. Mesenchymal stem cell-based therapy for rheumatoid arthritis.Int. J. Mol. Sci.202122211159210.3390/ijms22211159234769021
    [Google Scholar]
  25. LimHC ParkYB HaCW ColeBJ LeeBK JeongHJ Allogeneic umbilical cord blood-derived mesenchymal stem cell implantation versus microfracture for large, full-thickness cartilage defects in older patients: A multicenter randomized clinical trial and extended 5-year clinical follow-up.Orthop J Sports Med202191232596712097305210.1177/2325967120973052
    [Google Scholar]
  26. VijR. StebbingsK.A. KimH. ParkH. ChangD. Safety and efficacy of autologous, adipose-derived mesenchymal stem cells in patients with rheumatoid arthritis: A phase I/IIa, open-label, non-randomized pilot trial.Stem Cell Res. Ther.20221318810.1186/s13287‑022‑02763‑w35241141
    [Google Scholar]
  27. BaranovskiiD.S. KlabukovI.D. ArguchinskayaN.V. YakimovaA.O. KiselA.A. YatsenkoE.M. IvanovS.A. ShegayP.V. KaprinA.D. Adverse events, side effects and complications in mesenchymal stromal cell-based therapies.Stem Cell Investig.20229710.21037/sci‑2022‑02536393919
    [Google Scholar]
  28. MolnarV. PavelićE. VrdoljakK. ČemerinM. KlarićE. MatišićV. BjelicaR. BrlekP. KovačićI. TremoladaC. PrimoracD. Mesenchymal stem cell mechanisms of action and clinical effects in osteoarthritis: A narrative review.Genes202213694910.3390/genes1306094935741711
    [Google Scholar]
  29. WeissA.R.R. DahlkeM.H. Immunomodulation by Mesenchymal Stem Cells (MSCs): Mechanisms of Action of Living, Apoptotic, and Dead MSCs.Front. Immunol.201910119110.3389/fimmu.2019.0119131214172
    [Google Scholar]
  30. BačenkováD. TrebuňováM. MorochovičR. DosedlaE. Findrik BalogováA. GašparováP. ŽivčákJ. Interaction between mesenchymal stem cells and the immune system in rheumatoid arthritis.Pharmaceuticals202215894110.3390/ph1508094136015088
    [Google Scholar]
  31. SpieringR. JansenM.A.A. WoodM.J. FathA.A. EltheringtonO. AndersonA.E. PrattA.G. van EdenW. IsaacsJ.D. BroereF. HilkensC.M.U. Targeting of tolerogenic dendritic cells to heat-shock proteins in inflammatory arthritis.J. Transl. Med.201917137510.1186/s12967‑019‑2128‑431727095
    [Google Scholar]
  32. KurochkinaY. TikhonovaM. TyrinovaT. SAT0212 The safety and tolerability of intra-articular injection of tolerogenic dendritic cells in patients with rheumatoid arthritis: The preliminary results.Ann. Rheum. Dis.201877Suppl. 2966967
    [Google Scholar]
  33. WillekensB. WensI. WoutersK. CrasP. CoolsN. Safety and immunological proof-of-concept following treatment with tolerance-inducing cell products in patients with autoimmune diseases or receiving organ transplantation: A systematic review and meta-analysis of clinical trials.Autoimmun. Rev.202120810287310.1016/j.autrev.2021.10287334119672
    [Google Scholar]
  34. KaushikB. SharmaJ. YadavK. KumarP. ShourieA. Phytochemical properties and pharmacological role of plants: Secondary metabolites.Biosci. Biotechnol. Res. Asia2021181233510.13005/bbra/2894
    [Google Scholar]
  35. SantiagoL.Â.M. NetoR.N.M. Santos AtaídeA.C. FonsecaD.C.S.C. SoaresE.F.A. de Sá SousaJ.C. Mondego-OliveiraR. RibeiroR.M. de Sousa CartágenesM.S. Lima-NetoL.G. CarvalhoR.C. de SousaE.M. Flavonoids, alkaloids and saponins: are these plant-derived compounds an alternative to the treatment of rheumatoid arthritis? A literature review.Clin. Phytosci.2021715810.1186/s40816‑021‑00291‑3
    [Google Scholar]
  36. KourG. HaqS.A. BajajB.K. GuptaP.N. AhmedZ. Phytochemical add-on therapy to DMARDs therapy in rheumatoid arthritis: In vitro and in vivo bases, clinical evidence and future trends.Pharmacol. Res.202116910561810.1016/j.phrs.2021.10561833878447
    [Google Scholar]
  37. YahfoufiN. AlsadiN. JambiM. MatarC. The immunomodulatory and anti-inflammatory role of polyphenols.Nutrients20181011161810.3390/nu1011161830400131
    [Google Scholar]
  38. KhojahH.M. AhmedS. Abdel-RahmanM.S. ElhakeimE.H. Resveratrol as an effective adjuvant therapy in the management of rheumatoid arthritis: A clinical study.Clin. Rheumatol.20183782035204210.1007/s10067‑018‑4080‑829611086
    [Google Scholar]
  39. Duda-ChodakA. TarkoT. Possible side effects of polyphenols and their interactions with medicines.Molecules2023286253610.3390/molecules2806253636985507
    [Google Scholar]
  40. LiS. LiuX. ChenX. BiL. Research progress on anti-inflammatory effects and mechanisms of alkaloids from chinese medical herbs.Evid. Based Complement. Alternat. Med.20202020Mar11010.1155/2020/130352432256634
    [Google Scholar]
  41. DøssingA. HenriksenM. EllegaardK. NielsenS.M. StampL.K. MüllerF.C. KloppenburgM. HaugenI.K. McCarthyG.M. ConaghanP.G. Ulff-Møller DahlL. TerslevL. AltmanR.D. BecceF. Ginnerup-NielsenE. JensenL. BoesenM. ChristensenR. DalU. BliddalH. Colchicine twice a day for hand osteoarthritis (COLOR): A double-blind, randomised, placebo-controlled trial.Lancet Rheumatol.202355e254e26210.1016/S2665‑9913(23)00065‑6
    [Google Scholar]
  42. KomatsuN. TakayanagiH. Mechanisms of joint destruction in rheumatoid arthritis - immune cell-fibroblast-bone interactions.Nat. Rev. Rheumatol.202218741542910.1038/s41584‑022‑00793‑535705856
    [Google Scholar]
  43. LiuK. LiuY. XuY. NandakumarK.S. TanH. HeC. DangW. LinJ. ZhouC. Asperosaponin VI protects against bone destructions in collagen induced arthritis by inhibiting osteoclastogenesis.Phytomedicine20196315300610.1016/j.phymed.2019.15300631299594
    [Google Scholar]
  44. NiuJ. WangY. MengY. QiW. WenJ. Asperosaponin VI induces osteogenic differentiation of human umbilical cord mesenchymal stem cells via the estrogen signaling pathway.Medicine202210150e3234410.1097/MD.000000000003234436550906
    [Google Scholar]
  45. ZhangM. RenH. LiK. XieS. ZhangR. ZhangL. XiaJ. ChenX. LiX. WangJ. Therapeutic effect of various ginsenosides on rheumatoid arthritis.BMC Complemen. Med. Therap.202121114910.1186/s12906‑021‑03302‑534034706
    [Google Scholar]
  46. SharmaA. GoelA. LinZ. In vitro and in silico anti-rheumatic arthritis activity of nyctanthes arbor-tristis. Molecules20232816612510.3390/molecules2816612537630377
    [Google Scholar]
/content/journals/nemj/10.2174/0102506882277568240126102549
Loading
/content/journals/nemj/10.2174/0102506882277568240126102549
Loading

Data & Media loading...

Supplements

PRISMA checklist is available as supplementary material on the publisher’s website along with the published article. Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test