Skip to content
2000
Volume 2, Issue 1
  • ISSN: 2666-7797
  • E-ISSN: 2666-7800

Abstract

Ursolic acid (UA) has been utilized to improve memory-related cognitive processes and intellectual functions. This study aims to examine the ethnobotanical uses, phytochemical composition, toxicity, and central nervous system activities of UA. It promotes learning and memory and has biological effects against Alzheimer's disease, Parkinson's disease, and cognitive impairment, according to pharmacological investigations. UA did not cause any death, abnormal body weight, or pathological diseases at any of the test doses. Furthermore, no behavioral, neurotoxin, coagulation, haematological, or clinical chemistry changes were seen as a result of UA treatment. UA is also used as a cosmeceutical product to improve skin functions. This article examines all knowledge that has become available at this time for revealing the chemistry of the current has been extensively investigated based on the data, resulting in UA derivatives with improved potency, bioavailability, and stability being used to treat a number of non-communicable diseases. The pharmacological activity of UA has been exploited to improve learning and memory and treat depression, emotional stress, fatigue, anxiety, insomnia, Alzheimer’s disease, Parkinson’s disease, epilepsy, and schizophrenia. The effects of UA on the central nervous system detailed in this review. The majority of UA studies have been preclinical evaluations of cellular mechanisms in the central nervous system, and more translational clinical research is needed to assess the drug's safety and efficacy, as well as its favorable, biodistribution, which could be targeted using different pathways and administration routes. Several and studies have investigated the pharmacological properties of UA reporting neuroprotective effects and improvements in cognitive function. These effects are attributed to its antioxidant, antiapoptotic, and anti-inflammatory actions.

Loading

Article metrics loading...

/content/journals/cosci/10.2174/2666779702666230220111250
2023-04-18
2025-01-01
Loading full text...

Full text loading...

References

  1. Fuentes SantosA. Queiroz SouzaM.M. Bach PauliK. Ratti da SilvaG. Wolff MarquesM. Alvarez AuthP. Bacopa monnieri: Historical aspects to promising pharmacological actions for the treatment of central nervous system diseases.Bol. Latinoam. Caribe Plantas Med. Aromat.2022212
    [Google Scholar]
  2. PejinB. Jovanović K.; Mojović M.; Savić A. New and highly potent antitumor natural products from marine-derived fungi: Covering the period from 2003 to 2012.Curr. Top. Med. Chem.201313212745276610.2174/1568026611313666019724083789
    [Google Scholar]
  3. KatzL. BaltzR.H. Natural product discovery: Past, present, and future.J. Ind. Microbiol. Biotechnol.2016432-315517610.1007/s10295‑015‑1723‑526739136
    [Google Scholar]
  4. GeerlofsL. HeZ. XiaoS. XiaoZ.C. Repeated dose (90 days) oral toxicity study of ursolic acid in Han-Wistar rats.Toxicol. Rep.2020761062310.1016/j.toxrep.2020.04.00532435599
    [Google Scholar]
  5. LiuW. LiQ. HuJ. WangH. XuF. BianQ. Application of natural products derivatization method in the design of targeted anticancer agents from 2000 to 2018.Bioorg. Med. Chem.2019272311515010.1016/j.bmc.2019.11515031635893
    [Google Scholar]
  6. KhwazaV. OyedejiO. AderibigbeB. Antiviral activities of oleanolic acid and its analogues.Molecules2018239230010.3390/molecules2309230030205592
    [Google Scholar]
  7. SalvadorJ.A.R. LealA.S. ValdeiraA.S. GonçalvesB.M.F. AlhoD.P.S. FigueiredoS.A.C. SilvestreS.M. MendesV.I.S. Oleanane-, ursane-, and quinone methide friedelane-type triterpenoid derivatives: Recent advances in cancer treatment.Eur. J. Med. Chem.20171429513010.1016/j.ejmech.2017.07.01328754470
    [Google Scholar]
  8. SathyaS. SudhagarS. SarathkumarB. LakshmiB.S. EGFR inhibition by pentacyclic triterpenes exhibit cell cycle and growth arrest in breast cancer cells.Life Sci.201495536210.1016/j.lfs.2013.11.01924333132
    [Google Scholar]
  9. JägerS. TrojanH. KoppT. LaszczykM. SchefflerA. Pentacyclic triterpene distribution in various plants - rich sources for a new group of multi-potent plant extracts.Molecules20091462016203110.3390/molecules1406201619513002
    [Google Scholar]
  10. Woźniak, Ł.; Skąpska, S.; Marszałek, K. Ursolic acid-A pentacyclic triterpenoid with a wide spectrum of pharmacological activities.Molecules20152011206142064110.3390/molecules20111972126610440
    [Google Scholar]
  11. JinhuaW. Ursolic acid: Pharmacokinetics process in vitro and in vivo, a mini review.Arch. Pharm. (Weinheim)20193523180022210.1002/ardp.20180022230663087
    [Google Scholar]
  12. EloyJ.O. SaraivaJ. De AlbuquerqueS. MarchettiJ.M. Preparation, Characterization and evaluation of the in vivo trypanocidal activity of ursolic acid-loaded solid dispersion with poloxamer 407 and sodium caprate.J. Pharm. Sci.201551101109
    [Google Scholar]
  13. XuC. LiaoY. FangC. TsunodaM. ZhangY. SongY. DengS. Simultaneous analysis of ursolic acid and oleanolic acid in guava leaves using QuEChERS-based extraction followed by high-performance liquid chromatography.J. Anal. Methods Chem.201720171710.1155/2017/298456228781908
    [Google Scholar]
  14. MachadoD.G. NeisV.B. BalenG.O. CollaA. CunhaM.P. DalmarcoJ.B. PizzolattiM.G. PredigerR.D. RodriguesA.L.S. RodriguesA.L.S. Antidepressant-like effect of ursolic acid isolated from Rosmarinus officinalis L. in mice: Evidence for the involvement of the dopaminergic system.Pharmacol. Biochem. Behav.2012103220421110.1016/j.pbb.2012.08.01622940588
    [Google Scholar]
  15. ShihY.H. CheinY.C. WangJ.Y. FuY.S. Ursolic acid protects hippocampal neurons against kainate-induced excitotoxicity in rats.Neurosci. Lett.2004362213614010.1016/j.neulet.2004.03.01115193771
    [Google Scholar]
  16. FrighettoR.T.S. WelendorfR.M. NigroE.N. FrighettoN. SianiA.C. Isolation of ursolic acid from apple peels by high speed counter-current chromatography.Food Chem.2008106276777110.1016/j.foodchem.2007.06.003
    [Google Scholar]
  17. AhmadA. AbuzinadahM.F. AlkreathyH.M. BanaganapalliB. MujeebM. Ursolic acid rich Ocimum sanctum L leaf extract loaded nanostructured lipid carriers ameliorate adjuvant induced arthritis in rats by inhibition of COX-1, COX-2, TNF-α and IL-1: Pharmacological and docking studies.PLoS One2018133e019345110.1371/journal.pone.019345129558494
    [Google Scholar]
  18. FlegkasA. Milosević Ifantis, T.; Barda, C.; Samara, P.; Tsitsilonis, O.; Skaltsa, H. Antiproliferative activity of (-)-rabdosiin isolated from Ocimum sanctum L.Medicines (Basel)201963710.3390/medicines601003730870993
    [Google Scholar]
  19. Jothie RichardE. IlluriR. BethapudiB. AnandhakumarS. BhaskarA. Chinampudur VelusamiC. MundkinajedduD. AgarwalA. Anti-stress Activity of Ocimum sanctum: possible effects on hypothalamic-pituitary-adrenal axis.Phytother. Res.201630580581410.1002/ptr.558426899341
    [Google Scholar]
  20. YangY.C. WeiM.C. HuangT.C. Optimisation of an ultrasound-assisted extraction followed by RP-HPLC separation for the simultaneous determination of oleanolic acid, ursolic acid and oridonin content in Rabdosia rubescens.Phytochem. Anal.201223662763610.1002/pca.236522706975
    [Google Scholar]
  21. ShibataS. Chemistry and cancer preventing activities of ginseng saponins and some related triterpenoid compounds.J. Korean Med. Sci.200116Suppl SupplS28S3710.3346/jkms.2001.16.S.S2811748374
    [Google Scholar]
  22. SharifiyanF. MirjaliliS.A. FazilatiM. PooraziziE. HabibollahiS. Variation of ursolic acid content in flowers of ten Iranian pomegranate (Punica granatum L.) cultivars.BMC Chem.2019138010.1186/s13065‑019‑0598‑331384827
    [Google Scholar]
  23. FuQ. ZhangL. ChengN. JiaM. ZhangY. Extraction optimization of oleanolic and ursolic acids from pomegranate (Punica granatum L.) flowers.Food Bioprod. Process.201492332132710.1016/j.fbp.2012.12.006
    [Google Scholar]
  24. SaravananR. ViswanathanP. PugalendiK.V. Protective effect of ursolic acid on ethanol-mediated experimental liver damage in rats.Life Sci.200678771371810.1016/j.lfs.2005.05.060
    [Google Scholar]
  25. LiuJ. Pharmacology of oleanolic acid and ursolic acid.J. Ethnopharmacol.1995492576810.1016/0378‑8741(95)90032‑28847885
    [Google Scholar]
  26. IkedaY. MurakamiA. OhigashiH. Ursolic acid: An anti- and pro-inflammatory triterpenoid.Mol. Nutr. Food Res.200852264210.1002/mnfr.20070038918203131
    [Google Scholar]
  27. HussainH. GreenI.R. AliI. KhanI.A. AliZ. Al-SadiA.M. AhmedI. Ursolic acid derivatives for pharmaceutical use: A patent review (2012-2016).Expert Opin. Ther. Pat.20172791061107210.1080/13543776.2017.134421928637397
    [Google Scholar]
  28. TangX. QinQ. XieX. HeP. Protective effect of sRAGE on fetal development in pregnant rats with gestational diabetes mellitus.Cell Biochem. Biophys.201571254955610.1007/s12013‑014‑0233‑925205260
    [Google Scholar]
  29. TianZ.H. MiaoF.T. ZhangX. WangQ.H. LeiN. GuoL.C. Therapeutic effect of okra extract on gestational diabetes mellitus rats induced by streptozotocin.Asian Pac. J. Trop. Med.20158121038104210.1016/j.apjtm.2015.11.00226706676
    [Google Scholar]
  30. HolemansK. CaluwaertsS. PostonL. Van AsscheF.A. Diet-induced obesity in the rat: A model for gestational diabetes mellitus.Am. J. Obstet. Gynecol.2004190385886510.1016/j.ajog.2003.09.02515042025
    [Google Scholar]
  31. LuJ. ZhengY.L. WuD.M. LuoL. SunD.X. ShanQ. Ursolic acid ameliorates cognition deficits and attenuates oxidative damage in the brain of senescent mice induced by d-galactose.Biochem. Pharmacol.20077471078109010.1016/j.bcp.2007.07.00717692828
    [Google Scholar]
  32. LuoY. NiuF. SunZ. CaoW. ZhangX. GuanD. LvZ. zhang, B.; Xu, Y. Altered expression of Aβ metabolism-associated molecules from d-galactose/AlCl3 induced mouse brain.Mech. Ageing Dev.2009130424825210.1016/j.mad.2008.12.00519150622
    [Google Scholar]
  33. TianJ. IshibashiK. IshibashiK. ReiserK. GrebeR. BiswalS. GehlbachP. HandaJ.T. Advanced glycation endproduct-induced aging of the retinal pigment epithelium and choroid: A comprehensive transcriptional response.Proc. Natl. Acad. Sci. USA200510233118461185110.1073/pnas.050475910216081535
    [Google Scholar]
  34. MallidisC. AgbajeI. RogersD. GlennJ. McCulloughS. AtkinsonA.B. StegerK. StittA. McClureN. Distribution of the receptor for advanced glycation end products in the human male reproductive tract: prevalence in men with diabetes mellitus.Hum. Reprod.20072282169217710.1093/humrep/dem15617588956
    [Google Scholar]
  35. SrikanthV. MaczurekA. PhanT. SteeleM. WestcottB. JuskiwD. MunchG. Advanced glycation endproducts and their receptor RAGE in Alzheimer’s disease.Neurobiol. Aging2011325763777
    [Google Scholar]
  36. SalminenA. OjalaJ. KauppinenA. KaarnirantaK. SuuronenT. Inflammation in Alzheimer’s disease: Amyloid-β oligomers trigger innate immunity defence via pattern recognition receptors.Prog. Neurobiol.200987318119410.1016/j.pneurobio.2009.01.00119388207
    [Google Scholar]
  37. WallaceD.C. A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: A dawn for evolutionary medicine.Annu. Rev. Genet.20053935940710.1146/annurev.genet.39.110304.09575116285865
    [Google Scholar]
  38. ChengT.L. LiaoC.C. TsaiW.H. LinC.C. YehC.W. TengC.F. ChangW.T. Identification and characterization of the mitochondrial targeting sequence and mechanism in human citrate synthase.J. Cell. Biochem.200910751002101510.1002/jcb.2220019479947
    [Google Scholar]
  39. AlbertsB. Molecular biology of the cell.4th edNew YorkGarland Science2002
    [Google Scholar]
  40. MathupalaS.P. KoY.H. PedersenP.L. The pivotal roles of mitochondria in cancer: Warburg and beyond and encouraging prospects for effective therapies.Biochim. Biophys. Acta Bioenerg.201017976-71225123010.1016/j.bbabio.2010.03.02520381449
    [Google Scholar]
  41. WilsonJ.E. Isozymes of mammalian hexokinase: Structure, subcellular localization and metabolic function.J. Exp. Biol.2003206122049205710.1242/jeb.0024112756287
    [Google Scholar]
  42. PedersenP.L. MathupalaS. RempelA. GeschwindJ.F. KoY.H. Mitochondrial bound type II hexokinase: A key player in the growth and survival of many cancers and an ideal prospect for therapeutic intervention.Biochim. Biophys. Acta Bioenerg.200215551-3142010.1016/S0005‑2728(02)00248‑712206885
    [Google Scholar]
  43. MathupalaS.P. KoY.H. PedersenP.L. Hexokinase-2 bound to mitochondria: Cancer’s stygian link to the “Warburg effect” and a pivotal target for effective therapy.Semin. Cancer Biol.200919172410.1016/j.semcancer.2008.11.00619101634
    [Google Scholar]
  44. ShanmugamM.K. DaiX. KumarA.P. TanB.K.H. SethiG. BishayeeA. Ursolic acid in cancer prevention and treatment: Molecular targets, pharmacokinetics and clinical studies.Biochem. Pharmacol.201385111579158710.1016/j.bcp.2013.03.00623499879
    [Google Scholar]
  45. WangY. BranickyR. NoëA. HekimiS. Superoxide dismutases: Dual roles in controlling ROS damage and regulating ROS signaling.J. Cell Biol.201821761915192810.1083/jcb.20170800729669742
    [Google Scholar]
  46. ZorovD.B. JuhaszovaM. SollottS.J. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release.Physiol. Rev.201494390995010.1152/physrev.00026.201324987008
    [Google Scholar]
  47. SiesH. Oxidative stress: a concept in redox biology and medicine.Redox Biol.2015418018310.1016/j.redox.2015.01.00225588755
    [Google Scholar]
  48. MoloneyJ.N. CotterT.G. ROS signalling in the biology of cancer.Semin. Cell Dev. Biol.201880506410.1016/j.semcdb.2017.05.02328587975
    [Google Scholar]
  49. SabharwalS.S. SchumackerP.T. Mitochondrial ROS in cancer: initiators, amplifiers or an Achilles’ heel?Nat. Rev. Cancer2014141170972110.1038/nrc380325342630
    [Google Scholar]
  50. KimK.H. SeoH.S. ChoiH.S. ChoiI. ShinY.C. KoS.G. Induction of apoptotic cell death by ursolic acid through mitochondrial death pathway and extrinsic death receptor pathway in MDA-MB-231 cells.Arch. Pharm. Res.20113481363137210.1007/s12272‑011‑0817‑521910059
    [Google Scholar]
  51. HuangT.H.W. YangQ. HaradaM. LiG.Q. YamaharaJ. RoufogalisB.D. LiY. Pomegranate flower extract diminishes cardiac fibrosis in Zucker diabetic fatty rats: modulation of cardiac endothelin-1 and nuclear factor-kappaB pathways.J. Cardiovasc. Pharmacol.200546685686210.1097/01.fjc.0000190489.85058.7e16306813
    [Google Scholar]
  52. JayaprakasamB. OlsonL.K. SchutzkiR.E. TaiM.H. NairM.G. Amelioration of obesity and glucose intolerance in high-fat-fed C57BL/6 mice by anthocyanins and ursolic acid in Cornelian cherry (Cornus mas).J. Agric. Food Chem.20065424324810.1021/jf052034216390206
    [Google Scholar]
  53. a LowryO.H. RosenbroughN.J. FarrA.L. RandallR.J. Protein measurement with the Folin phenol reagent.J. Biol. Chem.1951193265275
    [Google Scholar]
  54. b MacNairC.R. StokesJ.M. CarfraeL.A. Fiebig-ComynA.A. CoombesB.K. MulveyM.R. BrownE.D. Overcoming mcr-1 mediated colistin resistance with colistin in combination with other antibiotics.Nat. Commun.20189458
    [Google Scholar]
  55. StokesJ.M. MacNairC.R. IlyasB. FrenchS. CôtéJ.P. BouwmanC. FarhaM.A. SieronA.O. WhitfieldC. CoombesB.K. BrownE.D. Pentamidine sensitizes Gram-negative pathogens to antibiotics and overcomes acquired colistin resistance.Nat. Microbiol.2017251702810.1038/nmicrobiol.2017.2828263303
    [Google Scholar]
  56. ParkY.S. ChoiS.E. KohH.C. PGAM5 regulates PINK1/Parkin-mediated mitophagy via DRP1 in CCCP-induced mitochondrial dysfunction.Toxicol. Lett.201828412012810.1016/j.toxlet.2017.12.00429241732
    [Google Scholar]
  57. ItamiN. ShiratsukiS. ShirasunaK. KuwayamaT. IwataH. Mitochondrial biogenesis and degradation are induced by CCCP treatment of porcine oocytes.Reproduction201515029710410.1530/REP‑15‑003725995440
    [Google Scholar]
  58. MarksL.R. ClementiE.A. HakanssonA.P. Sensitization of Staphylococcus aureus to methicillin and other antibiotics in vitro and in vivo in the presence of HAMLET.PLoS One201385e6315810.1371/journal.pone.006315823650551
    [Google Scholar]
  59. LiuY.Y. WangY. WalshT.R. YiL.X. ZhangR. SpencerJ. DoiY. TianG. DongB. HuangX. YuL.F. GuD. RenH. ChenX. LvL. HeD. ZhouH. LiangZ. LiuJ.H. ShenJ. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study.Lancet Infect. Dis.201616216116810.1016/S1473‑3099(15)00424‑726603172
    [Google Scholar]
  60. LiuY. TianW. MaX. DingW. Evaluation of inhibition of fatty acid synthase by ursolic acid: Positive cooperation mechanism.Biochem. Biophys. Res. Commun.20103923386390
    [Google Scholar]
  61. KazmiI. AfzalM. RahmanS. IqbalM. ImamF. AnwarF. Antiobesity potential of ursolic acid stearoyl glucoside by inhibiting pancreatic lipase.Eur. J. Pharmacol.20137091-3283610.1016/j.ejphar.2013.02.03223500199
    [Google Scholar]
  62. JeonS.J. ParkH.J. GaoQ. Dela PenaI.J. ParkS.J. LeeH.E. Ursolic acid enhances pentobarbital-induced sleeping behaviors via GABAergic neurotransmission in mice.Eur. J. Pharmacol.2015762443448
    [Google Scholar]
  63. ZhangT. SuJ. WangK. ZhuT. LiX. Ursolic acid reduces oxidative stress to alleviate early brain injury following experimental subarachnoid hemorrhage.Neurosci. Lett.2014579121710.1016/j.neulet.2014.07.00525026072
    [Google Scholar]
  64. PrissadovaN. BozovP. MarinkovK. BadakovH. KristevA. Effects of ursolic acid on contractile activity of gastric smooth muscles. Nat. Prod. Commun.201510141934578X150100010.1177/1934578X150100040625973477
    [Google Scholar]
  65. GongY.Y. LiuY.Y. YuS. ZhuX.N. CaoX.P. XiaoH.P. Ursolic acid suppresses growth and adrenocorticotrophic hormone secretion in AtT20 cells as a potential agent targeting adrenocorticotrophic hormone-producing pituitary adenoma.Mol. Med. Rep.2014962533253910.3892/mmr.2014.207824682498
    [Google Scholar]
/content/journals/cosci/10.2174/2666779702666230220111250
Loading
/content/journals/cosci/10.2174/2666779702666230220111250
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test