Skip to content
2000
Volume 1, Issue 1
  • ISSN: 2666-7797
  • E-ISSN: 2666-7800

Abstract

The human skin is a multi‐layered material consisting of three layers: the epidermis, dermis, and subcutis. The epidermis is the dominant structure that affects the properties of the skin, such as tensile strength and stiffness. The skin regulates body temperature, provides insulation, and protects inner organs. Skin structure has a substantial influence on skin biomechanics. For instance, anisotropy is a result of the alignment of elastin and collagen fibers in the dermis that compels the skin to exhibit greater tension in one direction, making it appear stiffer. The mechanical properties (such as stiffness, extensibility, and strength) of this organ are important from the clinical, cosmetic, and biomechanical standpoints. A fundamental understanding of skin mechanics is important for the development of useful products for cosmetology. As an illustration, changes in the mechanical properties of the skin can shed light on the efficacy of cosmeceutical formulations. In this review, we will highlight skin structure and then discuss the biomechanics of this important organ.

Loading

Article metrics loading...

/content/journals/cosci/10.2174/2666779701666220107161901
2022-04-01
2024-11-26
Loading full text...

Full text loading...

References

  1. Monteiro RodriguesL. FluhrJ.W. EEMCO guidance for the in vivo assessment of biomechanical properties of the human skin and its annexes: Revisiting instrumentation and test modes.Skin Pharmacol. Physiol.2020331446010.1159/000504063 31747675
    [Google Scholar]
  2. CarvalhoC.P. Costa-JúniorJ.F.S. RangelC.D.S. PereiraW.C.A. Measurement of shear wave speed and normalized elastic modulus of human skin with and without dermal striae using shear wave elastography.Ultrasound Med. Biol.202147345447010.1016/j.ultrasmedbio.2020.11.014 33349514
    [Google Scholar]
  3. GrahamH.K. McConnellJ.C. LimbertG. SherrattM.J. How stiff is skin?Exp. Dermatol.201928Suppl. 14910.1111/exd.13826 30698873
    [Google Scholar]
  4. LangtonA.K. GrahamH.K. McConnellJ.C. SherrattM.J. GriffithsC.E.M. WatsonR.E.B. Organization of the dermal matrix impacts the biomechanical properties of skin.Br. J. Dermatol.2017177381882710.1111/bjd.15353 28132410
    [Google Scholar]
  5. KalraA. LoweA. Mechanical behaviour of skin: A review.J. Mar. Sci. Eng.201620164
    [Google Scholar]
  6. JoodakiH. PanzerM.B. Skin mechanical properties and modeling: A review.Proc. Inst. Mech. Eng. H2018232432334310.1177/0954411918759801 29506427
    [Google Scholar]
  7. ChoeC. SchleusenerJ. LademannJ. DarvinM.E. Age related depth profiles of human stratum corneum barrier-related molecular pa-rameters by confocal raman microscopy in vivo.Mech. Ageing Dev.201817261210.1016/j.mad.2017.08.011 28844969
    [Google Scholar]
  8. ChenY. ParkY.H. A helmholtz resonator on elastic foundation for measurement of the elastic coefficient of human skin.J. Mech. Behav. Biomed. Mater.202010110341710.1016/j.jmbbm.2019.103417 31494447
    [Google Scholar]
  9. PrescottS.L. LarcombeD.L. LoganA.C. WestC. BurksW. CaraballoL. LevinM. EttenE.V. HorwitzP. KozyrskyjA. Camp-bellD.E. The skin microbiome: Impact of modern environments on skin ecology, barrier integrity, and systemic immune programming.World Allergy Organ. J.20171012910.1186/s40413‑017‑0160‑5 28855974
    [Google Scholar]
  10. NguyenA.V. SoulikaA.M. The dynamics of the skin’s immune system.Int. J. Mol. Sci.2019208E181110.3390/ijms20081811 31013709
    [Google Scholar]
  11. VigK. ChaudhariA. TripathiS. DixitS. SahuR. PillaiS. DennisV.A. SinghS.R. Advances in skin regeneration using tissue engi-neering.Int. J. Mol. Sci.201718478910.3390/ijms18040789 28387714
    [Google Scholar]
  12. KimJ.Y. DaoH. Physiology, integument.Treasure Island, FLStatPearls Publishing2021https://www.ncbi.nlm.nih.gov/books/NBK554386/
    [Google Scholar]
  13. OsseiranS. CruzJ.D. JeongS. WangH. FthenakisC. EvansC.L. Characterizing stratum corneum structure, barrier function, and chemical content of human skin with coherent raman scattering imaging.Biomed. Opt. Express20189126425644310.1364/BOE.9.006425 31065440
    [Google Scholar]
  14. MaitiR. DuanM. DanbyS.G. LewisR. MatcherS.J. CarréM.J. Morphological parametric mapping of 21 skin sites throughout the body using optical coherence tomography.J. Mech. Behav. Biomed. Mater.202010210350110.1016/j.jmbbm.2019.103501 31877514
    [Google Scholar]
  15. WuY. Wangari-OliveroJ. ZhenY. ARTICLE: compromised skin barrier and sensitive skin in diverse populations.J. Drugs Dermatol.2021204s17s2210.36849/JDD.589c 33852256
    [Google Scholar]
  16. Aida MaranducaM. Liliana HurjuiL. Constantin BranisteanuD. Nicolae SerbanD. Elena BranisteanuD. DimaN. Lacramioara SerbanI. Skin - a vast organ with immunological function. (Review).Exp. Ther. Med.2020201182310.3892/etm.2020.8619 32508987
    [Google Scholar]
  17. YousefH. AllhajM. SharmaS. Anatomy, skin (integument), epidermis.Treasure Island, FLStatPearls Publishing2020https://www.ncbi.nlm.nih.gov/books/NBK470464/
    [Google Scholar]
  18. MojumdarE.H. MadsenL.B. HanssonH. TaavonikuI. KristensenK. PerssonC. MorénA.K. MoksoR. SchmidtchenA. RuzgasT. EngblomJ. Probing skin barrier recovery on molecular level following acute wounds: An in vivo/ex vivo study on pigs.Biomedicines20219436010.3390/biomedicines9040360 33807251
    [Google Scholar]
  19. LambertM.W. MaddukuriS. KaranfilianK.M. EliasM.L. LambertW.C. The physiology of melanin deposition in health and disease.Clin. Dermatol.201937540241710.1016/j.clindermatol.2019.07.013 31896398
    [Google Scholar]
  20. MaranducaM.A. BranisteanuD. SerbanD.N. BranisteanuD.C. StoleriuG. ManolacheN. SerbanI.L. Synthesis and physiological implications of melanic pigments.Oncol. Lett.20191754183418710.3892/ol.2019.10071 30944614
    [Google Scholar]
  21. MurphyG. Histology of the skin. In: Lever’s histopathology of the skinElder, R.E.D.; Jaworsky, B.J.C. Jr., Eds.; Wolters Kluwer: Netherlands,2014545
    [Google Scholar]
  22. DeckersJ. HammadH. HosteE. Langerhans cells: sensing the environment in health and disease.Front. Immunol.201899310.3389/fimmu.2018.00093 29449841
    [Google Scholar]
  23. JenkinsB.A.E.A.L. LumpkinE.A. Developing a sense of touch.Development2017144224078409010.1242/dev.120402 29138290
    [Google Scholar]
  24. BrownT.K.K. Histology, Dermis.Treasure Island, FLStatPearls Publishing2020
    [Google Scholar]
  25. Ter HorstB. ChouhanG. MoiemenN.S. GroverL.M. Advances in keratinocyte delivery in burn wound care.Adv. Drug Deliv. Rev.2018123183210.1016/j.addr.2017.06.012 28668483
    [Google Scholar]
  26. Roig-RoselloE. RousselleP. The human epidermal basement membrane: a shaped and cell instructive platform that aging slowly alters.Biomolecules20201012E160710.3390/biom10121607 33260936
    [Google Scholar]
  27. RittiéL. Cellular mechanisms of skin repair in humans and other mammals.J. Cell Commun. Signal.201610210312010.1007/s12079‑016‑0330‑1 27170326
    [Google Scholar]
  28. BakerL.B. Physiology of sweat gland function: The roles of sweating and sweat composition in human health.Temperature20196321125910.1080/23328940.2019.1632145 31608304
    [Google Scholar]
  29. WongB.J. HollowedC.G. Current concepts of active vasodilation in human skin.Temperature201641415910.1080/23328940.2016.1200203 28349094
    [Google Scholar]
  30. AlbaB.K. CastellaniJ.W. CharkoudianN. Cold-induced cutaneous vasoconstriction in humans: function, dysfunction and the distinctly counterproductive.Exp. Physiol.201910481202121410.1113/EP087718 31045297
    [Google Scholar]
  31. ChenY-L. KuanW-H. LiuC-L. Comparative study of the composition of sweat from eccrine and apocrine sweat glands during exercise and in heat.Int. J. Environ. Res. Public Health20201710337710.3390/ijerph17103377 32408694
    [Google Scholar]
  32. AbreuC.M. PirracoR.P. ReisR.L. CerqueiraM.T. MarquesA.P. Interfollicular epidermal stem-like cells for the recreation of the hair follicle epithelial compartment.Stem Cell Res. Ther.20211216210.1186/s13287‑020‑02104‑9 33451331
    [Google Scholar]
  33. BlairM.J. JonesJ.D. WoessnerA.E. QuinnK.P. Skin structure-function relationships and the wound healing response to intrinsic ag-ing.Adv. Wound Care (New Rochelle)20209312714310.1089/wound.2019.1021 31993254
    [Google Scholar]
  34. QuigleyA.S. BancelinS. Deska-GauthierD. LégaréF. VeresS.P. KreplakL. Combining tensile testing and structural analysis at the single collagen fibril level.Sci. Data20185118022910.1038/sdata.2018.229 30351303
    [Google Scholar]
  35. GriffinM.F. LeungB.C. PremakumarY. SzarkoM. ButlerP.E. Comparison of the mechanical properties of different skin sites for auricular and nasal reconstruction.J. Otolaryngol. Head Neck Surg.20174613310.1186/s40463‑017‑0210‑6 28420435
    [Google Scholar]
  36. HeadM. The influence of viscoelastic crustal rheologies on volcanic ground deformation: insights from models of pressure and volume change.J. Geophys. Res. Solid Earth201912488127814610.1029/2019JB017832
    [Google Scholar]
  37. GrearM.E. MotleyM.R. CroftsS.B. WittA.E. SummersA.P. DitscheP. Mechanical properties of harbor seal skin and blubber - a test of anisotropy.Zoology (Jena)201812613714410.1016/j.zool.2017.11.002 29157880
    [Google Scholar]
  38. Ghorbel-FekiH. Acousto-mechanical behaviour of ex-vivo skin: nonlinear and viscoelastic properties.C. R. Mec.2019347321822710.1016/j.crme.2018.12.005
    [Google Scholar]
  39. ConstantinM.M. BucurS. SerbanE.D. OlteanuR. BratuO.G. ConstantinT. Measurement of skin viscoelasticity: A non-invasive approach in allergic contact dermatitis.Exp. Ther. Med.202020618410.3892/etm.2020.9314 33101474
    [Google Scholar]
  40. PeñuelaL. NegroC. MassaM. RepaciE. CozzaniE. ParodiA. ScaglioneS. QuartoR. RaiteriR. Atomic force microscopy for biomechanical and structural analysis of human dermis: a complementary tool for medical diagnosis and therapy monitoring.Exp. Dermatol.201827215015510.1111/exd.13468 29152798
    [Google Scholar]
  41. Álvarez-AsencioR. WallqvistV. KjellinM. RutlandM.W. CamachoA. NordgrenN. LuengoG.S. Nanomechanical properties of human skin and introduction of a novel hair indenter.J. Mech. Behav. Biomed. Mater.20165418519310.1016/j.jmbbm.2015.09.014 26469630
    [Google Scholar]
  42. KimM.A. KimE.J. LeeH.K. Use of skinfibrometer® to measure skin elasticity and its correlation with Cutometer® and DUB® Skinscan-ner.Skin Res. Technol.201824346647110.1111/srt.12455 29405450
    [Google Scholar]
  43. DIASTRON. 2018. Available from:https://www.diastron.com/app/uploads/2018/06/Dia-Stron-BLS780-Brochure-V2.pdf
  44. AbbasD.B. LavinC.V. FahyE.J. GriffinM. GuardinoN. KingM. ChenK. LorenzP.H. GurtnerG.C. LongakerM.T. MomeniA. WanD.C. Standardizing dimensionless cutometer parameters to determine in vivo elasticity of human skin. Adv. Wound Care.New Ro-chelle2021Epub ahead of print10.1089/wound.2021.0082 34470542
    [Google Scholar]
  45. MyoungJ. Validation of the elastic angle for quantitative and visible evaluation of skin elasticity in vivo.Skin Res. Technol.20212761017102210.1111/srt.13051
    [Google Scholar]
  46. KimM.A. JungY.C. KimE.J. Evaluation of anisotropic properties of striae distensae with regard to skin surface texture and viscoelas-ticity.Skin Res. Technol.202026222022510.1111/srt.12783 31556202
    [Google Scholar]
  47. LaiaconaD. CohenJ.M. CoulonK. LipskyZ.W. MaioranaC. BoltyanskiyR. DufresneE.R. GermanG.K. Non-invasive in vivo quantification of human skin tension lines.Acta Biomater.20198814114810.1016/j.actbio.2019.02.003 30735808
    [Google Scholar]
  48. ThieulinC. Pailler-MatteiC. AbdouniA. DjaghloulM. ZahouaniH. Mechanical and topographical anisotropy for human skin: Ageing effect.J. Mech. Behav. Biomed. Mater.202010310355110.1016/j.jmbbm.2019.103551 32090946
    [Google Scholar]
  49. KirbyM. TangP. LiouH. KuriakoseM. PitreJ.J. PhamT.N. EttingerR. WangR. O’DonnellM. PelivanovI. Probing elastic anisotropy of human skin in vivo with light using non-contact acoustic micro-tapping oce and polarization-sensitive.Res. Square2021Epub ahead of print10.21203/rs.3.rs‑913561/v1
    [Google Scholar]
  50. ChartierC. MofidY. BastardC. MietteV. MaruaniA. MachetL. OssantF. High-Resolution elastography for thin-layer mechanical characterization: Toward skin investigation.Ultrasound Med. Biol.201743367068110.1016/j.ultrasmedbio.2016.11.007 28043724
    [Google Scholar]
  51. LakhaniP. DwivediK.K. KumarN. Directional dependent variation in mechanical properties of planar anisotropic porcine skin tissue.J. Mech. Behav. Biomed. Mater.202010410369310.1016/j.jmbbm.2020.103693 32174437
    [Google Scholar]
  52. RosadoC. AntunesF. BarbosaR. FernandoR. EstudanteM. SilvaH.N. RodriguesL.M. About the in vivo quantitation of skin ani-sotropy.Skin Res. Technol.201723342943610.1111/srt.12353 27882608
    [Google Scholar]
  53. MurphyJ. GoodhallW. PattersonA. Langer’s lines – what are they and do they matter?Br. J. Oral Maxillofac. Surg.20175510e86e8710.1016/j.bjoms.2017.08.012
    [Google Scholar]
  54. PanS. MalhotraD. GermannN. Nonlinear viscoelastic properties of native male human skin and in vitro 3D reconstructed skin models under LAOS stress.J. Mech. Behav. Biomed. Mater.20199631032310.1016/j.jmbbm.2019.04.032 31132545
    [Google Scholar]
  55. LynchB. Bonod-BidaudC. DucourthialG. AffagardJ.S. BancelinS. PsilodimitrakopoulosS. RuggieroF. AllainJ.M. Schanne-KleinM.C. How aging impacts skin biomechanics: a multiscale study in mice.Sci. Rep.2017711375010.1038/s41598‑017‑13150‑4 29061975
    [Google Scholar]
  56. OftadehR. ConnizzoB.K. NiaH.T. OrtizC. GrodzinskyA.J. Biological connective tissues exhibit viscoelastic and poroelastic behav-ior at different frequency regimes: Application to tendon and skin biophysics.Acta Biomater.20187024925910.1016/j.actbio.2018.01.041 29425716
    [Google Scholar]
  57. ZhangX. A surface wave elastography technique for measuring tissue viscoelastic properties.Med. Eng. Phys.20174211111510.1016/j.medengphy.2017.01.014 28159449
    [Google Scholar]
  58. AnsariF. McGuinessC. ZhangB. DauskardtR.H. Effect of emulsifiers on drying stress and intercellular cohesion in human stratum corneum.Int. J. Cosmet. Sci.202042658158910.1111/ics.12643 32567061
    [Google Scholar]
  59. BerkeyC. BiniekK. DauskardtR.H. Screening sunscreens: Protecting the biomechanical barrier function of skin from solar ultraviolet radiation damage.Int. J. Cosmet. Sci.201739326927410.1111/ics.12370 27685249
    [Google Scholar]
  60. TateM.L. WrightA.S. In vitro methods for evaluating skin hydration under diapers and incontinence products.Skin Res. Technol.201723448649010.1111/srt.12360 28370745
    [Google Scholar]
  61. SpadaF. BarnesT.M. GreiveK.A. Skin hydration is significantly increased by a cream formulated to mimic the skin’s own natural moisturizing systems.Clin. Cosmet. Investig. Dermatol.20181149149710.2147/CCID.S177697 30410378
    [Google Scholar]
  62. CrowtherJ.M. Understanding effects of topical ingredients on electrical measurement of skin hydration.Int. J. Cosmet. Sci.201638658959810.1111/ics.12324 27028308
    [Google Scholar]
  63. JeppsO.G. Modeling the human skin barrier — Towards a better understanding of dermal absorption. Advanced Drug Delivery Reviews2013652152168
    [Google Scholar]
/content/journals/cosci/10.2174/2666779701666220107161901
Loading

  • Article Type:
    Review Article
Keyword(s): anisotropy; indentation; mechanics; Skin; skin anatomy; stress-strain curve
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test