Skip to content
2000
Volume 1, Issue 2
  • ISSN: 2666-7797
  • E-ISSN: 2666-7800

Abstract

Background and Objective

Glabridin (Glab) is a polyphenolic flavonoid of licorice acclaimed for its skin whitening properties. However, its poor solubility, low physicochemical stability and inefficient percutaneous penetration create hurdles in the best use of this agent in dermo-cosmetic application. The purpose of the present work was to prepare and evaluate Glabridin-loaded nanostructured lipid carrier (Glab NLC) in order to enhance its skin permeation, and hence, promote its skin-whitening potential in cosmetic formulations. Nanostructured lipid carrier (NLC) has already proven its potential for drug delivery the skin by offering various benefits, like high tolerability, biocompatibility, high drug loading, improved stability, and close contact with stratum corneum, leading to rich skin penetration and protection of bioactive from degradation.

Methods

NLC was prepared by solvent emulsification diffusion technique and was evaluated for particle size, zeta potential, polydispersity index, drug loading and encapsulation, and drug release. Optimized formulation was incorporated into a cream base, and its skin whitening activity was evaluated. Glycerol monostearate (GMS) and olive oil were chosen as solid and liquid lipids for NLC formulation.

Results

The particle size, PDI, zeta potential, entrapment efficiency, and drug release of optimized formulation were found to be 189 nm, 0.259, -14.5mV, 94.56%, and 98.86 ± 0.80%, respectively. The optimized NLC was incorporated into a suitable cream base and evaluated. The skin whitening activity of Glabridin NLC cream was determined by performing tyrosinase inhibition activity. The percentage inhibition value of GlabNLC loaded cream and Kojic acid against mushroom tyrosinase was found to be 60.31% and 52.61%, respectively.

Conclusion

The obtained results advocate lipid particles as an appropriate carrier of Glabridin for skin whitening cosmetic cream.

Loading

Article metrics loading...

/content/journals/cosci/10.2174/2666779701666220509221341
2022-09-01
2024-12-28
Loading full text...

Full text loading...

References

  1. RibeiroL.N. Franz-MontanM. BreitkreitzM.C. AlcântaraA.C. CastroS.R. GuilhermeV.A. BarbosaR.M. de PaulaE. Nanostruc-tured lipid carriers as robust systems for topical lidocaine-prilocaine release in dentistry.Eur. J. Pharm. Sci.20169319220210.1016/j.ejps.2016.08.030 27543066
    [Google Scholar]
  2. PugliaC. BoninaF. Lipid nanoparticles as novel delivery systems for cosmetics and dermal pharmaceuticals.Expert Opin. Drug Deliv.20129442944110.1517/17425247.2012.666967 22394125
    [Google Scholar]
  3. ShahR. EldridgeD. PalomboE. HardingI. Lipid nanoparticles: Production, characterization and stability.LondonSpringer2015181910.1007/978‑3‑319‑10711‑0_2
    [Google Scholar]
  4. ShahK.A. DateA.A. JoshiM.D. PatravaleV.B. Solid lipid nanoparticles (SLN) of tretinoin: Potential in topical delivery.Int. J. Pharm.20073451-216317110.1016/j.ijpharm.2007.05.061 17644288
    [Google Scholar]
  5. SoutoE.B. MüllerR.H. Cosmetic features and applications of lipid nanoparticles (SLN, NLC).Int. J. Cosmet. Sci.200830315716510.1111/j.1468‑2494.2008.00433.x 18452432
    [Google Scholar]
  6. WissingS. LippacherA. MüllerR. Investigations on the occlusive properties of solid lipid nanoparticles (SLN).J. Cosmet. Sci.2001525313324 11567210
    [Google Scholar]
  7. PardeikeJ. HommossA. MüllerR.H. Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products.Int. J. Pharm.20093661-217018410.1016/j.ijpharm.2008.10.003 18992314
    [Google Scholar]
  8. Bethesda (MD) ] Bethesda (MD): National library of medicine (US), national center for biotechnology information 2004Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Glabridin (Accessed on 2022 Jan. 5).
    [Google Scholar]
  9. SimmlerC. PauliG.F. ChenS.N. Phytochemistry and biological properties of glabridin.Fitoterapia20139016018410.1016/j.fitote.2013.07.003 23850540
    [Google Scholar]
  10. Licorice extract.Available from: https://www.lorealparisusa.com/ingredient-library/licorice-extract.aspx(Accessed on December 12, 2021).
    [Google Scholar]
  11. WangW.P. HulJ. SuiH. ZhaoY.S. FengJ. LiuC. Glabridin nanosuspension for enhanced skin penetration: Formulation optimization, in vitro and in vivo evaluation.Pharmazie2016715252257 27348968
    [Google Scholar]
  12. ObagiU. GandhiR.K. Skin rejuvenation and resurfacing. Maxillofacial Surgery, 3rd ed; Brennan, P.A.; Schliephake, H.; Ghali, G.E.; Cascarini, L., Eds.; Churchill Livingstone, 20171286130110.1016/B978‑0‑7020‑6056‑4.00085‑X
    [Google Scholar]
  13. HespelerD. KaltenbachJ. PyoS.M. Glabridin smart Pearls-Silica selection, production, amorphous stability and enhanced solubility.Int. J. Pharm.201956122823510.1016/j.ijpharm.2019.02.028 30836152
    [Google Scholar]
  14. AoM. ShiY. CuiY. GuoW. WangJ. YuL. Factors influencing glabridin stability.Nat. Prod. Commun.20105121907191210.1177/1934578X1000501214 21299118
    [Google Scholar]
  15. ParkY.S. ParkH.J. LeeJ. Stabilization of glabridin by chitosan nano-complex.J. Korean Soc. Appl. Biol. Chem.201255445746210.1007/s13765‑012‑2001‑0
    [Google Scholar]
  16. YasirM. SaraU.V. Solid lipid nanoparticles for nose to brain delivery of haloperidol: In vitro drug release and pharmacokinetics evalua-tion.Acta Pharm. Sin. B20144645446310.1016/j.apsb.2014.10.005 26579417
    [Google Scholar]
  17. CirriM. MaestriniL. MaestrelliF. MenniniN. MuraP. GhelardiniC. Di Cesare MannelliL. Design, characterization and in vivo eval-uation of nanostructured lipid carriers (NLC) as a new drug delivery system for hydrochlorothiazide oral administration in pediatric therapy.Drug Deliv.20182511910192110.1080/10717544.2018.1529209 30451015
    [Google Scholar]
  18. TrottaM. DebernardiF. CaputoO. Preparation of solid lipid nanoparticles by a solvent emulsification-diffusion technique.Int. J. Pharm.200325715316010.1016/S0378‑5173(03)00135‑2
    [Google Scholar]
  19. SinghA.P. SharmaS.K. GaurP.K. GuptaD.K. Fabrication of mupirocin-loaded nanostructured lipid carrier and its in-vitro characteriza-tion.Assay Drug Dev. Technol.202119421622510.1089/adt.2020.1070 33781090
    [Google Scholar]
  20. GuptaN. DubeyA. PrasadP. RoyA. Formulation and evaluation of herbal fairness cream comprising hydroalcoholic extracts of pleuro-tusostreatus, Glycyrrhizaglabra and Camellia sinensis.UK J. Pharm. Biosc.201533404510.20510/ukjpb/3/i3/89410
    [Google Scholar]
  21. AlobaidiA.H. HamadE.S. KudairK.A. AlsamaraiA.M. Formulation of hypopigmentation cream and evaluation of its effect on skin pigment. Part I: Formulation of the Product.Nasza Dermatol. Online20145191310.7241/ourd.20141.02
    [Google Scholar]
  22. MaruA.D. LahotiS.R. Formulation and evaluation of moisturizing cream containing sunflower wax.Int. J. Pharm. Pharm. Sci.20181011545910.22159/ijpps.2018v10i11.28645
    [Google Scholar]
  23. ChenJ. YuX. HuangY. Inhibitory mechanisms of glabridin on tyrosinase.Spectrochim. Acta A Mol. Biomol. Spectrosc.201616811111710.1016/j.saa.2016.06.008 27288962
    [Google Scholar]
  24. ChoiS.Y. KimS. KimH. SukK. HwangJ.S. LeeB.G. KimA.J. KimS.Y. (4-Methoxy-benzylidene)-(3-methoxy-phenyl)-amine, a nitrogen analog of stilbene as a potent inhibitor of melanin production.Chem. Pharm. Bull. (Tokyo)200250445045210.1248/cpb.50.450 11963989
    [Google Scholar]
  25. Choe-sinsikR. Glabridin-Zein complex nanoparticle, manufacturing method thereof and use thereof.South Korea Patent, KR101902846B12017
    [Google Scholar]
  26. GabaB. FazilM. KhanS. AliA. BabootaS. AliJ. Nanostructured lipid carrier system for topical delivery of terbinafine hydrochloride.Bull. Fac. Pharm. Cairo Univ.201553214715910.1016/j.bfopcu.2015.10.001
    [Google Scholar]
  27. PatelK. PadhyeS. NagarsenkerM. Duloxetine HCl lipid nanoparticles: Preparation, characterization, and dosage form design.AAPS PharmSciTech201213112513310.1208/s12249‑011‑9727‑6 22167415
    [Google Scholar]
  28. WitayaudomP. KlinkesornU. Effect of surfactant concentration and solidification temperature on the characteristics and stability of nanostructured lipid carrier (NLC) prepared from rambutan (Nephelium lappaceum L.) kernel fat.J. Colloid Interface Sci.20175051082109210.1016/j.jcis.2017.07.008 28697547
    [Google Scholar]
  29. Gonzalez-MiraE. EgeaM.A. SoutoE.B. CalpenaA.C. GarcíaM.L. Optimizing flurbiprofen-loaded NLC by central composite factorial design for ocular delivery.Nanotechnology201122404510110.1088/0957‑4484/22/4/045101 21169662
    [Google Scholar]
  30. ChaitaliJ. VaishaliK. SantoshP. Formulation and evaluation of antifungal non-aqueous microemulsion for topical drug delivery of grise-ofulvin.Inventi Impact: Pharm Tech201520153850
    [Google Scholar]
  31. MohammadiM. AssadpourE. JafariS.M. Encapsulation of food ingredients by nanostructured lipid carriers (NLCs). Nanoencapsulation in the food industry, Lipid-based nanostructures for food encapsulation purposes. JafariS.M. Academic Press201921727010.1016/B978‑0‑12‑815673‑5.00007‑6
    [Google Scholar]
  32. HanF. LiS. YinR. LiuH. XuL. Effect of surfactants on the formation and characterization of a new type of colloidal drug delivery system: Nanostructured lipid carriers. Colloids Surf. A Physicochem.Eng.2008315210216
    [Google Scholar]
  33. KhosaA. ReddiS. SahaR.N. Nanostructured lipid carriers for site-specific drug delivery.Biomed. Pharmacother.201810359861310.1016/j.biopha.2018.04.055 29677547
    [Google Scholar]
  34. KandadiP. SyedM.A. SurenderG. VeerabrahmaK. Tween 80 containing lipid nanoemulsions for delivery of indinavir to brain.Acta Pharm. Sin. B20133534535310.1016/j.apsb.2013.08.001
    [Google Scholar]
  35. NighojkarP.A. DeviS.K.U. PundK.V. GadakhR.T. ShindeM.G. Formulation development of BMP-NLC enriched gel.Int. J. Pharm. Sci. Res.20123935223529
    [Google Scholar]
  36. DashS. MurthyP.N. NathL. ChowdhuryP. Kinetic modeling on drug release from controlled drug delivery systems.Acta Pol. Pharm.2010673217223 20524422
    [Google Scholar]
  37. NegiL.M. JaggiM. TalegaonkarS. Development of protocol for screening the formulation components and the assessment of common quality problems of nano-structured lipid carriers.Int. J. Pharm.20144611-240341010.1016/j.ijpharm.2013.12.006 24345574
    [Google Scholar]
  38. Glabridin dosage in cosmetics Available from: http://varucosmotech. com/2019/10/22/how-is-it-used/ (Accessed on 12 December 2021).
    [Google Scholar]
  39. VanithaM. SoundhariC. Isolation and characterisation of mushroom tyrosinase and screening of herbal extracts for anti-tyrosinase activi-ty.Int. J. Chemtech Res.20171011561167
    [Google Scholar]
  40. TiefK. HahneM. SchmidtA. BeermannF. Tyrosinase, the key enzyme in melanin synthesis, is expressed in murine brain.Eur. J. Biochem.19962411121610.1111/j.1432‑1033.1996.0012t.x 8898882
    [Google Scholar]
  41. CurtoE.V. KwongC. HermersdörferH. GlattH. SantisC. ViradorV. HearingV.J.Jr DooleyT.P. Inhibitors of mammalian melano-cyte tyrosinase: In vitro comparisons of alkyl esters of gentisic acid with other putative inhibitors.Biochem. Pharmacol.199957666367210.1016/S0006‑2952(98)00340‑2 10037452
    [Google Scholar]
  42. Matsuda,H. Higashino,M. Nakai,Y. Iinuma,M. Kubo,M. Lang,F.A. Studies of cuticle drugs from natural sources. IV. Inhibitory effects of some Arctostaphylos plants on melanin biosynthesis.Biol. Pharm. Bul199619115315610.1248/bpb.19.1538820931
    [Google Scholar]
/content/journals/cosci/10.2174/2666779701666220509221341
Loading
/content/journals/cosci/10.2174/2666779701666220509221341
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test