Skip to content
2000
Volume 2, Issue 1
  • ISSN: 2666-7797
  • E-ISSN: 2666-7800

Abstract

Background

Seed oils have been exploited for an array of purposes with their addition to dietary, cosmetics, or therapeutic products. The process of skin aging is a natural and complex phenomenon in living beings. Skin aging is classified into two independent processes, ., chronological aging and premature aging. Aging is observed as a loss of strength and elasticity of the skin, leading to wrinkles on the skin. It is due to a decrease in various components of the skin matrix, like elastin, collagen, and hyaluronic acid. Furthermore, aging is potentiated by excessive exposure to UV radiation (Photoaging) and can be prevented or reduced by using products that combat photoaging.

Objective

Anti-aging and antiwrinkle agents are in demand for maintaining skin tone. Seed oils composed of polyunsaturated fatty acids are traditionally used in cosmetic products as moisturizers and emollients, while palmitic acid and oleic acid are known for their penetration-enhancing effect. With the changing trend for extraction of oils like cold pressed methods, seed oils enriched with polyphenols, flavonoids, carotenoids, and phytosterols are good antioxidants and antimicrobials and therefore have an ever-growing demand for their usage in the treatment of skin diseases. In this review, an attempt will be made to brief the phytoconstituents present in various seed oils and their utilization against skin ailments. Furthermore, a mechanistic approach towards the benefit of oils in skin barrier repair, antiaging, and photo-aging with the help of extensive well-designed clinical trials carried out in the recent past is elaborated.

Methods

A literature search in the Scopus database, Pubmed, and Medline was carried out using the terminology “aging, photoaging, antioxidant, UV-protection, sunscreens, skin barrier repair, and fatty acids, formulations” in the study. Data were retrieved over the last twenty years.

Results

The review summarises the mechanistic approach and beneficial application of seed oils for healthy and glowing skin. The oils obtained from olives, sesame, borage, grape seeds, and carrot seeds have multitargeted effects. However, the variation in pharmacological effect may vary based on geographically differing varieties, skin type, and person-to-person variation. The need to standardize the varieties for their phytoactive ingredients and the composition of formulation used for skin care can help utilize the seeds as a potential source of actives against skin diseases.

Conclusion

The potential of seed oils can be increased with appropriate analytical tools, validation protocols, and systematic experimental studies at preclinical and clinical trials for their application to skin care products.

Loading

Article metrics loading...

/content/journals/cosci/10.2174/2666779702666230125142357
2023-03-20
2024-12-28
Loading full text...

Full text loading...

References

  1. GargC. Molecular mechanisms of skin photoaging and plant inhibitors.Int. J. Green Pharm.201711210.22377/ijgp.v11i02.1031
    [Google Scholar]
  2. ParradoC. Mercado-SaenzS. Perez-DavoA. GilaberteY. GonzalezS. JuarranzA. Environmental stressors on skin aging. mechanistic insights.Front. Pharmacol.20191075910.3389/fphar.2019.0075931354480
    [Google Scholar]
  3. FisherG.J. KangS. VaraniJ. Bata-CsorgoZ. WanY. DattaS. VoorheesJ.J. Mechanisms of photoaging and chronological skin aging.Arch. Dermatol.2002138111462147010.1001/archderm.138.11.146212437452
    [Google Scholar]
  4. RabeJ.H. MamelakA.J. McElgunnP.J.S. MorisonW.L. SauderD.N. Photoaging: Mechanisms and repair.J. Am. Acad. Dermatol.20065511910.1016/j.jaad.2005.05.01016781287
    [Google Scholar]
  5. BoschR. PhilipsN. Suárez-PérezJ. JuarranzA. DevmurariA. Chalensouk-KhaosaatJ. GonzálezS. Mechanisms of photoaging and cutaneous photocarcinogenesis, and photoprotective strategies with phytochemicals.Antioxidants20154224826810.3390/antiox402024826783703
    [Google Scholar]
  6. ChenL. HuJ.Y. WangS.Q. The role of antioxidants in photoprotection: A critical review.J. Am. Acad. Dermatol.20126751013102410.1016/j.jaad.2012.02.00922406231
    [Google Scholar]
  7. PrasadA. PospíšilP. Ultraweak photon emission induced by visible light and ultraviolet A radiation via photoactivated skin chromophores: in vivo charge coupled device imaging.J. Biomed. Opt.201217808500410.1117/1.JBO.17.8.08500423224187
    [Google Scholar]
  8. MadanK. NandaS. In-vitro evaluation of antioxidant, anti-elastase, anti-collagenase, anti-hyaluronidase activities of safranal and determination of its sun protection factor in skin photoaging.Bioorg. Chem.20187715916710.1016/j.bioorg.2017.12.03029353733
    [Google Scholar]
  9. CaoC. XiaoZ. WuY. GeC. Diet and skin aging-from the perspective of food nutrition.Nutrients202012387010.3390/nu1203087032213934
    [Google Scholar]
  10. UrbachF. ForbesP.D. DaviesR.E. BergerD. Cutaneous photobiology: Past, present and future.J. Invest. Dermatol.19766720922410.1111/1523‑1747.ep12513042778294
    [Google Scholar]
  11. YaarM. EllerM.S. GilchrestB.A. Fifty years of skin aging.J. Investig. Dermatol. Symp. Proc.20027515810.1046/j.1523‑1747.2002.19636.x12518793
    [Google Scholar]
  12. MakrantonakiE. ZouboulisC.C. Molecular mechanisms of skin aging: State of the art.Ann. N. Y. Acad. Sci.20071119405010.1196/annals.1404.02718056953
    [Google Scholar]
  13. McCabeM.C. HillR.C. CalderoneK. CuiY. YanY. QuanT. FisherG.J. HansenK.C. Alterations in extracellular matrix composition during aging and photoaging of the skin.Matrix Biol. Plus2020810004110.1016/j.mbplus.2020.10004133543036
    [Google Scholar]
  14. BaumannL. Skin ageing and its treatment.J. Pathol.2007211224125110.1002/path.209817200942
    [Google Scholar]
  15. GancevicieneR. LiakouA.I. TheodoridisA. MakrantonakiE. ZouboulisC.C. Skin anti-aging strategies.Dermatoendocrinol20124330831910.4161/derm.2280423467476
    [Google Scholar]
  16. StadtmanE.R. Protein oxidation and aging.Science199225750741220122410.1126/science.13556161355616
    [Google Scholar]
  17. KohenR. Skin antioxidants: Their role in aging and in oxidative stress - New approaches for their evaluation.Biomed. Pharmacother.199953418119210.1016/S0753‑3322(99)80087‑010392290
    [Google Scholar]
  18. FisherG.J. QuanT. PurohitT. ShaoY. ChoM.K. HeT. VaraniJ. KangS. VoorheesJ.J. Collagen fragmentation promotes oxidative stress and elevates matrix metalloproteinase-1 in fibroblasts in aged human skin.Am. J. Pathol.200917410111410.2353/ajpath.2009.08059919116368
    [Google Scholar]
  19. QuanT. QinZ. XiaW. ShaoY. VoorheesJ.J. FisherG.J. Matrix-degrading metalloproteinases in photoaging.J. Investig. Dermatol. Symp. Proc.200914202410.1038/jidsymp.2009.819675548
    [Google Scholar]
  20. FligielS.E.G. VaraniJ. DattaS.C. KangS. FisherG.J. VoorheesJ.J. Collagen degradation in aged/photodamaged skin in vivo and after exposure to matrix metalloproteinase-1 in vitro.J. Invest. Dermatol.2003120584284810.1046/j.1523‑1747.2003.12148.x12713591
    [Google Scholar]
  21. FisherG.J. DattaS.C. TalwarH.S. WangZ.Q. VaraniJ. KangS. VoorheesJ.J. Molecular basis of sun-induced premature skin ageing and retinoid antagonism.Nature1996379656333533910.1038/379335a08552187
    [Google Scholar]
  22. ChungJ.H. SeoJ.Y. ChoiH.R. LeeM.K. YounC.S. RhieG. ChoK.H. KimK.H. ParkK.C. EunH.C. Modulation of skin collagen metabolism in aged and photoaged human skin in vivo.J. Invest. Dermatol.200111751218122410.1046/j.0022‑202x.2001.01544.x11710936
    [Google Scholar]
  23. TzellosT.G. SinopidisX. KyrgidisA. VahtsevanosK. TriaridisS. PrintzaA. KlagasI. KarakiulakisG. PapakonstantinouE. Differential hyaluronan homeostasis and expression of proteoglycans in juvenile and adult human skin.J. Dermatol. Sci.201161697210.1016/j.jdermsci.2010.10.01021087840
    [Google Scholar]
  24. ReedR.K. LiljaK. LaurentT.C. Hyaluronan in the rat with special reference to the skin.Acta Physiol. Scand.1988134340541110.1111/j.1748‑1716.1988.tb08508.x3227957
    [Google Scholar]
  25. GirishK.S. KemparajuK. The magic glue hyaluronan and its eraser hyaluronidase: A biological overview.Life Sci.200780211921194310.1016/j.lfs.2007.02.03717408700
    [Google Scholar]
  26. AntonicelliF. BellonG. DebelleL. HornebeckW. Elastin-elastases and inflamm-aging.Curr. Top. Dev. Biol.2007799915510.1016/S0070‑2153(06)79005‑617498549
    [Google Scholar]
  27. OikarinenA. Connective tissue and aging.Int. J. Cosmet. Sci.200426210710810.1111/j.1467‑2494.2004.213_6.x
    [Google Scholar]
  28. Faria-SilvaC. AscensoA. CostaA.M. MartoJ. CarvalheiroM. RibeiroH.M. SimõesS. Feeding the skin: A new trend in food and cosmetics convergence.Trends Food Sci. Technol.202095213210.1016/j.tifs.2019.11.015
    [Google Scholar]
  29. VedamurthyM. Antiaging therapies.Indian J. Dermatol. Venereol. Leprol.200672318318610.4103/0378‑6323.2577616766830
    [Google Scholar]
  30. NgT.B. LiuF. WangZ.T. Antioxidative activity of natural products from plants.Life Sci.200066870972310.1016/S0024‑3205(99)00642‑610680579
    [Google Scholar]
  31. LinT.K. ZhongL. SantiagoJ. Anti-inflammatory and skin barrier repair effects of topical application of some plant oils.Int. J. Mol. Sci.2017197010.3390/ijms1901007029280987
    [Google Scholar]
  32. GuidoniM. de Christo SchererM.M. FigueiraM.M. SchmittE.F.P. de AlmeidaL.C. SchererR. BoguszS. FronzaM. Fatty acid composition of vegetable oil blend and in vitro effects of pharmacotherapeutical skin care applications.Braz. J. Med. Biol. Res.2019522e820910.1590/1414‑431x2018820930785481
    [Google Scholar]
  33. ChoiH.J. SongB.R. KimJ.E. BaeS.J. ChoiY.J. LeeS.J. Therapeutic effects of cold-pressed perilla oil mainly consisting of linolenic acid, oleic acid, and linoleic acid on uv-induced photoaging in nhdf cells and skh-1 hairless mice.Molecules202025498910.3390/molecules25040989
    [Google Scholar]
  34. BajerskiL. MichelsL.R. ColoméL.M. BenderE.A. FreddoR.J. BruxelF. HaasS.E. The use of Brazilian vegetable oils in nanoemulsions: an update on preparation and biological applications.Braz. J. Pharm. Sci.201652334736310.1590/s1984‑82502016000300001
    [Google Scholar]
  35. MichalakM. Kiełtyka-Dadasiewicz, A. Oils from fruit seeds and their dietetic and cosmetic significance.Herba Pol.2018644637010.2478/hepo‑2018‑0026
    [Google Scholar]
  36. Zielińska, A.; Nowak, I. Fatty acids in vegetable oils and their importance in the cosmetic industry.Chemik.2014682103110
    [Google Scholar]
  37. FeingoldK.R. Thematic review series: Skin Lipids. The role of epidermal lipids in cutaneous permeability barrier homeostasis.J. Lipid Res.200748122531254610.1194/jlr.R700013‑JLR20017872588
    [Google Scholar]
  38. DavisG.D.J. MasilamoniJ.G. ArulV. KumarM.S.M. BaraneedharanU. PaulS.F.D. SakthiveluI.V. JesudasonE.P. JayakumarR. Radioprotective effect of dl-α-lipoic acid on mice skin fibroblasts.Cell Biol. Toxicol.200925433134010.1007/s10565‑008‑9087‑518553143
    [Google Scholar]
  39. AkamatsuH. NiwaY. MatsunagaK. Effect of palmitic acid on neutrophil functions in vitro. Int. J. Dermatol.2001401064064310.1046/j.1365‑4362.2001.01292.x11737424
    [Google Scholar]
  40. KimE.J. KimM.K. JinX.J. OhJ.H. KimJ.E. ChungJ.H. Skin aging and photoaging alter fatty acids composition, including 11,14,17-eicosatrienoic acid, in the epidermis of human skin.J. Korean Med. Sci.201025698098310.3346/jkms.2010.25.6.98020514327
    [Google Scholar]
  41. KatsutaY. IidaT. InomataS. DendaM. Unsaturated fatty acids induce calcium influx into keratinocytes and cause abnormal differentiation of epidermis.J. Invest. Dermatol.200512451008101310.1111/j.0022‑202X.2005.23682.x15854043
    [Google Scholar]
  42. FujiwaraK. MaekawaF. YadaT. Oleic acid interacts with GPR40 to induce Ca2+ signaling in rat islet beta-cells: Mediation by PLC and L-type Ca2+ channel and link to insulin release.Am. J. Physiol. Endocrinol. Metab.20052894E670E67710.1152/ajpendo.00035.200515914509
    [Google Scholar]
  43. RennertB. MelzigM.F. Free fatty acids inhibit the activity of Clostridium histolyticum collagenase and human neutrophil elastase. Planta medica.2002680976776910.1055/s‑2002‑3441112357383
    [Google Scholar]
  44. CalderP.C. Omega-3 polyunsaturated fatty acids and inflammatory processes: nutrition or pharmacology?Br. J. Clin. Pharmacol.201375364566210.1111/j.1365‑2125.2012.04374.x22765297
    [Google Scholar]
  45. DasU. Essential Fatty acids - a review.Curr. Pharm. Biotechnol.20067646748210.2174/13892010677911685617168664
    [Google Scholar]
  46. KimH.H. ChoS. LeeS. KimK.H. ChoK.H. EunH.C. ChungJ.H. Photoprotective and anti-skin-aging effects of eicosapentaenoic acid in human skin in vivo.J. Lipid Res.200647592193010.1194/jlr.M500420‑JLR20016467281
    [Google Scholar]
  47. DeckelbaumR.J. TorrejonC. The omega-3 fatty acid nutritional landscape: health benefits and sources.J. Nutr.20121423587S591S10.3945/jn.111.14808022323763
    [Google Scholar]
  48. JinX.J. KimE.J. OhI.K. KimY.K. ParkC.H. ChungJ.H. Prevention of UV-induced skin damages by 11,14,17-eicosatrienoic acid in hairless mice in vivo.J. Korean Med. Sci.201025693093710.3346/jkms.2010.25.6.93020514317
    [Google Scholar]
  49. KimE.J. KimY.K. KimM.K. KimS. KimJ.Y. LeeD.H. ChungJ.H. UV-induced inhibition of adipokine production in subcutaneous fat aggravates dermal matrix degradation in human skin.Sci. Rep.201662561610.1038/srep2561627161953
    [Google Scholar]
  50. OsterR.T. TishinskyJ.M. YuanZ. RobinsonL.E. Docosahexaenoic acid increases cellular adiponectin mRNA and secreted adiponectin protein, as well as PPARγ mRNA, in 3T3-L1 adipocytes.Appl. Physiol. Nutr. Metab.201035678378910.1139/H10‑07621164549
    [Google Scholar]
  51. ByunH.J. ChoK.H. EunH.C. LeeM.J. LeeY. LeeS. ChungJ.H. Lipid ingredients in moisturizers can modulate skin responses to UV in barrier-disrupted human skin in vivo.J. Dermatol. Sci.201265211011710.1016/j.jdermsci.2011.12.00522209282
    [Google Scholar]
  52. AburjaiT. NatshehF.M. Plants used in cosmetics.Phytother. Res.2003179987100010.1002/ptr.136314595575
    [Google Scholar]
  53. EliasP.M. BrownB.E. ZibohV.A. The permeability barrier in essential fatty acid deficiency: evidence for a direct role for linoleic acid in barrier function.J. Invest. Dermatol.198074423023310.1111/1523‑1747.ep125417757373078
    [Google Scholar]
  54. FeingoldK.R. The outer frontier: The importance of lipid metabolism in the skin.J. Lipid Res.200950Suppl Suppl.S417S42210.1194/jlr.R800039‑JLR20018980941
    [Google Scholar]
  55. NaikA. PechtoldL.A.R.M. PottsR.O. GuyR.H. Mechanism of oleic acid-induced skin penetration enhancement in vivo in humans.J. Control. Release199537329930610.1016/0168‑3659(95)00088‑7
    [Google Scholar]
  56. ChoH.S. LeeM.H. LeeJ.W. NoK.O. ParkS.K. LeeH.S. KangS. ChoW.G. ParkH.J. OhK.W. HongJ.T. Anti-wrinkling effects of the mixture of vitamin C, vitamin E, pycnogenol and evening primrose oil, and molecular mechanisms on hairless mouse skin caused by chronic ultraviolet B irradiation.Photodermatol. Photoimmunol. Photomed.200723515516210.1111/j.1600‑0781.2007.00298.x17803593
    [Google Scholar]
  57. BoskouD. BlekasG. TsimidouM. Olive oil composition. Olive Oil.AOCS press200610.1016/B978‑1‑893997‑88‑2.50008‑0
    [Google Scholar]
  58. BaldioliM. ServiliM. PerrettiG. MontedoroG.F. Antioxidant activity of tocopherols and phenolic compounds of virgin olive oil.J. Am. Oil Chem. Soc.199673111589159310.1007/BF02523530
    [Google Scholar]
  59. Romana-SouzaB. Monte-Alto-CostaA. Olive oil inhibits ageing signs induced by chronic stress in ex vivo human skin via inhibition of extracellular-signal-related kinase 1/2 and c- JUN pathways.Int. J. Cosmet. Sci.201941215616310.1111/ics.1252030740755
    [Google Scholar]
  60. Romana-SouzaB. Monte-Alto-CostaA. Olive oil reduces chronic psychological stress-induced skin aging in mice through the NF-κB and NRF2 pathways.J. Funct. Foods20195431031910.1016/j.jff.2019.01.036
    [Google Scholar]
  61. BudiyantoA. AhmedN.U. WuA. BitoT. NikaidoO. OsawaT. UedaM. IchihashiM. Protective effect of topically applied olive oil against photocarcinogenesis following UVB exposure of mice.Carcinogenesis200021112085209010.1093/carcin/21.11.208511062172
    [Google Scholar]
  62. CarvalhoR.H.R. GalvãoE.L. BarrosJ.Â.C. ConceiçãoM.M. SousaE.M.B.D. Extraction, fatty acid profile and antioxidant activity of sesame extract (Sesamum Indicum L.).Braz. J. Chem. Eng.201229240942010.1590/S0104‑66322012000200020
    [Google Scholar]
  63. DarA.A. ArumugamN. Lignans of sesame: Purification methods, biological activities and biosynthesis – A review.Bioorg. Chem.20135011010.1016/j.bioorg.2013.06.00923933354
    [Google Scholar]
  64. LinT.Y. WuP.Y. HouC.W. ChienT.Y. ChangQ.X. WenK.C. LinC.Y. ChiangH.M. Protective effects of sesamin against UVB-induced skin inflammation and photodamage in vitro and in vivo.Biomolecules20199947910.3390/biom909047931547364
    [Google Scholar]
  65. ZaidA.N. JaradatN. MalkiehN. Al-RimawiS. HusseinF. IsaL. Impact of sesame oil source: A quality assessment for cosmeceutical and pharmaceutical use.Fabada J. Pharm. Sci.2019443189196
    [Google Scholar]
  66. Altuntaş E.; Yener, G. Anti-aging potential of a cream containing herbal oils and honey: Formulation and in vivo evaluation of effectiveness using non-invasive biophysical techniques.IOSR J. Pharm. Biol. Sci.20151065160
    [Google Scholar]
  67. ChiangJ.P. HsuD.Z. TsaiJ.C. SheuH.M. LiuM.Y. Effects of topical sesame oil on oxidative stress in rats.Altern. Ther. Health Med.2005116404516320859
    [Google Scholar]
  68. FosterR.H. HardyG. AlanyR.G. Borage oil in the treatment of atopic dermatitis. Nutrition.2010267-87081810.1016/j.nut.2009.10.01420579590
    [Google Scholar]
  69. KaneharaS. OhtaniT. UedeK. FurukawaF. Clinical effects of undershirts coated with borage oil on children with atopic dermatitis: A double-blind, placebo-controlled clinical trial.J. Dermatol.2007341281181510.1111/j.1346‑8138.2007.00391.x18078406
    [Google Scholar]
  70. De SpirtS. StahlW. TronnierH. SiesH. BejotM. MauretteJ.M. HeinrichU. Intervention with flaxseed and borage oil supplements modulates skin condition in women.Br. J. Nutr.2009101344044510.1017/S000711450802032118761778
    [Google Scholar]
  71. DabeticN.M. TodorovicV.M. DjuricicI.D. Antic StankovicJ.A. BasicZ.N. VujovicD.S. SobajicS.S. Grape seed oil characterization: A novel approach for oil quality assessment.Eur. J. Lipid Sci. Technol.20201226190044710.1002/ejlt.201900447
    [Google Scholar]
  72. MaierT. SchieberA. KammererD.R. CarleR. Residues of bgrape (Vitis vinifera L.) seed oil production as a valuable source of phenolic antioxidants.Food Chem.2009112355155910.1016/j.foodchem.2008.06.005
    [Google Scholar]
  73. GuoL. WangL.H. SunB. YangJ.Y. ZhaoY.Q. DongY.X. SprangerM.I. WuC.F. Direct in vivo evidence of protective effects of grape seed procyanidin fractions and other antioxidants against ethanol-induced oxidative DNA damage in mouse brain cells.J. Agric. Food Chem.200755145881589110.1021/jf070440a17567031
    [Google Scholar]
  74. Maffei FacinoR. CariniM. AldiniG. BombardelliE. MorazzoniP. MorelliR. Free radicals scavenging action and anti-enzyme activities of procyanidines from Vitis vinifera. A mechanism for their capillary protective action.Arzneimittelforschung19944455926018024628
    [Google Scholar]
  75. GumusZ.P. Ustun ArgonZ. CelenkV.U. Cold pressed pomegranate (Punica granatum) seed oil.InCold Pressed Oils20201597609[Academic Press.10.1016/B978‑0‑12‑818188‑1.00053‑0
    [Google Scholar]
  76. BogdanC. IurianS. TomutaI. MoldovanM.L. Improvement of skin condition in striae distensae: development, characterization and clinical efficacy of a cosmetic product containing Punica granatum seed oil and Croton lechleri resin extract.Drug Des. Devel. Ther.20171152153110.2147/DDDT.S12847028280300
    [Google Scholar]
  77. AfaqF. ZaidM.A. KhanN. DreherM. MukhtarH. Protective effect of pomegranate-derived products on UVB-mediated damage in human reconstituted skin.Exp. Dermatol.200918655356110.1111/j.1600‑0625.2008.00829.x19320737
    [Google Scholar]
  78. AbdellatifA.A. AlawadhS.H. BouazzaouiA. AlhowailA.H. MohammedH.A. Anthocyanins-rich pomegranate cream as a topical formulation with anti-aging activity.J. Dermatolog. Treat.202032898399010.1080/09546634.2020.172141832022625
    [Google Scholar]
  79. PugliaC. BoninaF. In vivo spectrophotometric evaluation of skin barrier recovery after topical application of soybean phytosterols.J. Cosmet. Sci.200859321722418528589
    [Google Scholar]
  80. PatzeltA. LademannJ. RichterH. DarvinM.E. SchanzerS. ThiedeG. SterryW. VergouT. HauserM. In vivo investigations on the penetration of various oils and their influence on the skin barrier.Skin Res. Technol.201218336436910.1111/j.1600‑0846.2011.00578.x22092829
    [Google Scholar]
  81. TsoyiK. ParkH.B. KimY.M. ChungJ.I. ShinS.C. ShimH.J. LeeW.S. SeoH.G. LeeJ.H. ChangK.C. KimH.J. Protective effect of anthocyanins from black soybean seed coats on UVB-induced apoptotic cell death in vitro and in vivo.J. Agric. Food Chem.20085622106001060510.1021/jf802112c18959412
    [Google Scholar]
  82. SeibergM. Non-denatured soybean extracts in skin care: Multiple anti-aging effects. In: Soybean - Biochemistry, Chemistry and Physiology; Ng, T.B. Intech Open: London,201165610.5772/15308
    [Google Scholar]
  83. Medeiros deAW; Ferreira, R.O.; Alves, AM; Tribuzy de, MC; Florentino da, SCDKS; Kelly de, A.N. Physicochemical characterization, fatty acid profile, antioxidant activity, and antibacterial potential of cacao oil, coconut oil, and cocoa butter.PLoS One2020154e023222410.1371/journal.pone.023222432343717
    [Google Scholar]
  84. Marina, AM; Che Man, YB; Nazimah, SA; Amin, I. Antioxidant capacity and phenolic acids of virgin coconut oil.Int. J. Food Sci. Nutr.200960S211412310.1080/09637480802549127
    [Google Scholar]
  85. KimS.Y. ImJ.O. AnI.S. AnS. AhnK.J. The effect of coconut oil on the skin barrier function.Kor. J. Aesthet. Cosmetol.2014126907914
    [Google Scholar]
  86. NevinK.G. RajamohanT. Effect of topical application of virgin coconut oil on skin components and antioxidant status during dermal wound healing in young rats.Skin Pharmacol. Physiol.201023629029710.1159/00031351620523108
    [Google Scholar]
  87. KulkarniS.S. BhalkeR.D. PandeV.V. KendreP.N. Herbal plants in photoprotection and sun screening action: An overview.Indo Am. J. Pharm.20144211041113
    [Google Scholar]
  88. VarmaS.R. SivaprakasamT.O. ArumugamI. DilipN. RaghuramanM. PavanK.B. RafiqM. ParameshR. In vitro anti-inflammatory and skin protective properties of Virgin coconut oil.J. Tradit. Complement. Med.2019951410.1016/j.jtcme.2017.06.01230671361
    [Google Scholar]
  89. KolaO. DuranH. OzerM.S. FenerciogluH. Fatty acid profile determination of cold pressed oil of some nut fruits.Riv. Ital. Sostanze Grasse2015922107111
    [Google Scholar]
  90. CopoloviciD. BungauS. BoscencuR. TitD.M. CopoloviciL. The fatty acids composition and antioxidant activity of walnut cold press oil.Revista de Chimie201768350750910.37358/RC.17.3.5489
    [Google Scholar]
  91. ZhaoH. LiJ. ZhaoJ. ChenY. RenC. ChenY. Antioxidant effects of compound walnut oil capsule in mice aging model induced by D-galactose.Food Nutr. Res.20186210.29219/fnr.v62.137129720929
    [Google Scholar]
  92. KodadO. Socias i Company, R. Variability of oil content and of major fatty acid composition in almond (Prunus amygdalus Batsch) and its relationship with kernel quality.J. Agric. Food Chem.200856114096410110.1021/jf800167918461963
    [Google Scholar]
  93. SarkarS. MiyajiT. SasakiJ. BiswasS. AliS. SalamA. Fatty acid composition, physicochemical and antioxidant properties of almond seed (Terminaliacatappia L.) oil and its therapeutic uses.J. Global Biosci.20209574197433
    [Google Scholar]
  94. AhmadZ. The uses and properties of almond oil.Complement. Ther. Clin. Pract.201016101210.1016/j.ctcp.2009.06.01520129403
    [Google Scholar]
  95. SultanaY. KohliK. AtharM. KharR.K. AqilM. Effect of pre-treatment of almond oil on ultraviolet B?induced cutaneous photoaging in mice.J. Cosmet. Dermatol.20076141910.1111/j.1473‑2165.2007.00293.x17348990
    [Google Scholar]
  96. AksuM. IncegulY. KiralanS.S. KiralanM. OzkanG. Cold pressed carrot (Daucus carota) seed oil. Cold Pressed Oils.Academic Press202033534310.1016/B978‑0‑12‑818188‑1.00030‑X
    [Google Scholar]
  97. SinghS. LohaniA. MishraA.K. VermaA. Formulation and evaluation of carrot seed oil-based cosmetic emulsions.J. Cosmet. Laser Ther.20192129910710.1080/14764172.2018.146976929737890
    [Google Scholar]
  98. MooreE.M. WagnerC. KomarnytskyS. The enigma of bioactivity and toxicity of botanical oils for skin care.Front. Pharmacol.20201178510.3389/fphar.2020.0078532547393
    [Google Scholar]
/content/journals/cosci/10.2174/2666779702666230125142357
Loading
/content/journals/cosci/10.2174/2666779702666230125142357
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): antioxidants; extracellular matrix; fatty acids; photoaging; Seed oils; skin aging; sunscreen
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test