Skip to content
2000
Volume 2, Issue 1
  • ISSN: 2666-7797
  • E-ISSN: 2666-7800

Abstract

Aim

This work aimed to determine whether the oxybenzone-loaded nanocapsule gel (NC gel) can reduce the degree of skin penetration and, thereby, the skin irritation caused by the drug.

Background

Sunscreens must be retained on the uppermost skin surface, forming a protective film throughout the entire UV exposure period. Skin penetration and/or light-induced decomposition of sunscreens is undesirable as this would decrease the expected UV protection. The changes in colour and appearance of the sunscreen, as well as the possible increase in the phototoxicity and allergenic potential of sunscreen breakdown products, are also of concern.

Furthermore, exposure to UVB radiation leads to impairment in the stratum corneum and hence enhances the skin's penetration of sunscreen actives, leading to systemic absorption. Currently, available sunscreen agents are low-molecular-weight lipophilic molecules, which make them capable of penetrating the skin and being systemically absorbed.

Oxybenzone is an organic compound widely used in commercial sunscreen preparations. The low molecular weight and lipophilic nature of oxybenzone facilitate penetration through the stratum corneum, leading to irritation and allergic reactions.

Polymeric nanocapsules (NCs) have been developed to ensure a controlled release of pharmaceutical and cosmetic agents and/or exert a preventive effect against the harmful side effects induced by direct contact of tissues with high amounts of the drug. Hence, we hypothesised that encapsulating the oxybenzone polymeric nanocapsule system would reduce the irritation and its allergic potential upon topical application.

Objective

The current study aimed to develop a polymeric nanocapsule-based gel of oxybenzone and investigate its skin deposition by permeation studies.

Methods

The polymeric nanocapsules were prepared by the solvent displacement method using a combination of Eudragit RSPO and Eudragit RLPO polymers. Further nanocapsules were incorporated into the xanthan gum gel base. It was evaluated for particle size, PDI, zeta potential, drug content, release, permeation, sunscreen efficacy and skin irritation potential by the HET CAM test.

Results

Particle size, PDI, zeta potential, percent encapsulation, and loading of drug-loaded nanocapsule suspension were found to be 237.1 nm, 0.189 + 58.4 mV, 852 ± 0.5%, and 19.45 ± 0.94%, respectively. DSC results indicate the suitability of selected excipients. release studies indicated 68.99% oxybenzone release from NC suspension, while NC gel showed 58.87% at the end of 24 hrs. permeation results showed significantly higher drug permeation from plain oxybenzone gel than NC gel. Permeation flux and reduction ratio suggest a three-fold reduction in skin permeation by NC gel. The gel offered medium-level sun protection with an SPF value of 22.12. According to the HET CAM study, there was no evidence of skin irritation caused by NC gel.

Conclusion

It is concluded that the encapsulation of oxybenzone prevents direct interaction with the skin, reducing the chances of skin irritation and penetration. Results suggest that nanocapsules in gel bases can provide a promising formula for safer topical delivery of sunscreen.

Loading

Article metrics loading...

/content/journals/cosci/10.2174/2666779702666230412140202
2023-06-23
2024-12-29
Loading full text...

Full text loading...

References

  1. SambandanD.R. RatnerD. Sunscreens: An overview and update.J. Am. Acad. Dermatol.201164474875810.1016/j.jaad.2010.01.005 21292345
    [Google Scholar]
  2. SaitoG.P. BizariM. CebimM.A. CorreaM.A. Jafelicci JuniorM. DavolosM.R. Study of the colloidal stability and optical properties of sunscreen creams.Eclét. Quím.2019442263610.26850/1678‑4618eqj.v44.2.2019.p26‑36
    [Google Scholar]
  3. DamianiE. PugliaC. Nanocarriers and microcarriers for enhancing the UV protection of sunscreens: An overview.J. Pharm. Sci.2019108123769378010.1016/j.xphs.2019.09.009 31521640
    [Google Scholar]
  4. PsimadasD. GeorgouliasP. ValotassiouV. LoudosG. Lipid nanoparticles as carrier for octyl-methoxycinnamate: In vitro percutaneous absorption and photostability studies.J. Pharm. Sci.201210112271228010.1002/jps.23146 22488174
    [Google Scholar]
  5. KothamasuP. KanumurH. RavurN. MadduC. ParasuramrajamR. ThangavelS. Nanocapsules: The weapons for novel drug delivery systems.Bioimpacts201222718110.5681/bi.2012.011 23678444
    [Google Scholar]
  6. GuterresS.S. AlvesM.P. PohlmannA.R. Polymeric nanoparticles, nanospheres and nanocapsules, for cutaneous applications.Drug Target Insights2007210.1177/117739280700200002 21901071
    [Google Scholar]
  7. GilbertE. RousselL. SerreC. SandoukR. SalmonD. KirilovP. HaftekM. FalsonF. PirotF. Percutaneous absorption of benzophenone-3 loaded lipid nanoparticles and polymeric nanocapsules: A comparative study.Int. J. Pharm.20165041-2485810.1016/j.ijpharm.2016.03.018 26976501
    [Google Scholar]
  8. KrauseM. KlitA. Blomberg JensenM. SøeborgT. FrederiksenH. SchlumpfM. LichtensteigerW. SkakkebaekN.E. DrzewieckiK.T. Sunscreens: Are they beneficial for health? An overview of endocrine disrupting properties of UV-filters.Int. J. Androl.201235342443610.1111/j.1365‑2605.2012.01280.x 22612478
    [Google Scholar]
  9. JiménezM.M. PelletierJ. BobinM.F. MartiniM.C. FessiH. Poly-epsilon-caprolactone nanocapsules containing octyl methoxycinnamate: Preparation and characterization.Pharm. Dev. Technol.20059332933910.1081/PDT‑200031456 15458238
    [Google Scholar]
  10. ElmowafyM. IbrahimH.M. AhmedM.A. ShalabyK. SalamaA. HefeshaH. Atorvastatin-loaded nanostructured lipid carriers (NLCs): Strategy to overcome oral delivery drawbacks.Drug Deliv.201724193294110.1080/10717544.2017.1337823 28617150
    [Google Scholar]
  11. RodneyH. LópezG. Design and development of Aloe vera lotions and determination of their sun protection factor.J. Chem. Inf. Model.20135391689169910.1017/CBO9781107415324.004
    [Google Scholar]
  12. BachhavY. PatravaleV. Microemulsion based vaginal gel of fluconazole: Formulation, in vitro and in vivo evaluation.Int. J. Pharm.20093651-217517910.1016/j.ijpharm.2008.08.021 18790032
    [Google Scholar]
  13. GulbakeA. JainA. KhareP. JainS.K. Solid lipid nanoparticles bearing oxybenzone: In-vitro and in-vivo evaluation.J. Microencapsul.201027322623310.3109/02652040903067844 19622017
    [Google Scholar]
  14. KamalyN. YameenB. WuJ. FarokhzadO.C. Degradable controlled-release polymers and polymeric nanoparticles: Mechanisms of controlling drug release.Chem. Rev.201611642602266310.1021/acs.chemrev.5b00346 26854975
    [Google Scholar]
  15. TakeuchiH. ManoY. TerasakaS. SakuraiT. FuruyaA. UranoH. SugibayashiK. Usefulness of rat skin as a substitute for human skin in the in vitro skin permeation study.Exp. Anim.201160437338410.1538/expanim.60.373 21791877
    [Google Scholar]
  16. BeberT.C. de AndradeD.F. Santos ChavesP. PohlmannA.R. GuterresS.S. Ruver BeckR.C. Cationic polymeric nanocapsules as a strategy to target dexamethasone to viable epidermis: Skin penetration and permeation studies.J. Nanosci. Nanotechnol.20161621331133810.1166/jnn.2016.11670 27433583
    [Google Scholar]
  17. TampucciS. BurgalassiS. ChetoniP. MontiD. Cutaneous permeation and penetration of sunscreens: Formulation strategies and in vitro methods.Cosmetics20175111710.3390/cosmetics5010001
    [Google Scholar]
  18. BleaselM.D. AldousS. In vitro evaluation of sun protection factors of sunscreen agents using a novel UV spectrophotometric technique.Int. J. Cosmet. Sci.200830425927010.1111/j.1468‑2494.2008.00453.x 18713072
    [Google Scholar]
  19. DutraE.A. Da CostaE. Oliveira DAG, Kedor-Hackmann ERM, Miritello Santoro MIR. Determination of sun protection factor (SPF) of sunscreens by ultraviolet spectrophotometry.Rev. Bras. Cienc. Farm. J. Pharm. Sci.2004403381385
    [Google Scholar]
  20. Reis MansurM.C.P.P. LeitãoS.G. Cerqueira-CoutinhoC. VermelhoA.B. SilvaR.S. PresgraveO.A.F. LeitãoÁ.A.C. LeitãoG.G. Ricci-JúniorE. SantosE.P. In vitro and in vivo evaluation of efficacy and safety of photoprotective formulations containing antioxidant extracts.Rev. Bras. Farmacogn.201626225125810.1016/j.bjp.2015.11.006
    [Google Scholar]
  21. ICCVAM. Recommended test method protocol: Hen’s egg test-chorioallantoic Membrane (HET-CAM) test method.Res. Triangle. Park NC Natl. Inst. Environ. Health. Sci.2010110
    [Google Scholar]
  22. Palmeira-de-OliveiraR. Monteiro MachadoR. Martinez-de-OliveiraJ. Palmeira-de-OliveiraA. Testing vaginal irritation with the Hen’s Egg Test-Chorioallantoic Membrane assay.Altern. Anim. Exp.201835449550310.14573/altex.1710091 29534246
    [Google Scholar]
  23. ChatelainE. GabardB. SurberC. Skin penetration and sun protection factor of five UV filters: Effect of the vehicle.Skin Pharmacol. Physiol.2003161283510.1159/000068291 12566826
    [Google Scholar]
  24. NaseriN. ValizadehH. Zakeri-MilaniP. Solid lipid nanoparticles and nanostructured lipid carriers: Structure preparation and application.Adv. Pharm. Bull.20155330531310.15171/apb.2015.043 26504751
    [Google Scholar]
  25. ApuA.S. PathanA.H. ShresthaD. KibriaG. JalilR. Investigation of in vitro release kinetics of carbamazepine from Eudragit® RS PO and RL PO matrix tablets.Trop. J. Pharm. Res.20098214515210.4314/tjpr.v8i2.44523
    [Google Scholar]
  26. BaishyaH. Application of Mathematical Models in Drug Release Kinetics of Carbidopa and Levodopa ER Tablets.J. Dev. Drugs2017621810.4172/2329‑6631.1000171
    [Google Scholar]
  27. JiangR. RobertsM.S. CollinsD.M. BensonH.A.E. Absorption of sunscreens across human skin: An evaluation of commercial products for children and adults.Br. J. Clin. Pharmacol.199948463563710.1046/j.1365‑2125.1999.00056.x 10583038
    [Google Scholar]
  28. ContriR.V. FielL.A. AlnasifN. PohlmannA.R. GuterresS.S. Schäfer-KortingM. Skin penetration and dermal tolerability of acrylic nanocapsules: Influence of the surface charge and a chitosan gel used as vehicle.Int. J. Pharm.20165071-2122010.1016/j.ijpharm.2016.03.046 27130364
    [Google Scholar]
  29. MestresJ.P. DuracherL. BauxC. VianL. Marti-MestresG. Benzophenone-3 entrapped in solid lipid microspheres: Formulation and in vitro skin evaluation.Int. J. Pharm.20104001-21710.1016/j.ijpharm.2010.07.028 20670679
    [Google Scholar]
  30. NgocL.T.N. Tran, MoonJ.Y. ChaeM. ParkD. LeeY.C. Recent trends of sunscreen cosmetic: An update review.Cosmetics2019646410.3390/cosmetics6040064
    [Google Scholar]
  31. NascimentoD.F. SilvaA.C. MansurC.R.E. PresgraveR.F. AlvesE.N. SilvaR.S. Ricci-JúniorE. de FreitasZ.M.F. SantosE.P. Characterization and evaluation of poly(ε-caprolactone) nanoparticles containing 2-ethylhexyl-p-methoxycinnamate, octocrylene, and benzophenone-3 in anti-solar preparations.J. Nanosci. Nanotechnol.20121297155716610.1166/jnn.2012.5832 23035447
    [Google Scholar]
  32. BarbosaT.C. NascimentoL.É.D. BaniC. AlmeidaT. NeryM. SantosR.S. MenezesL.R.O. ZielińskaA. FernandesA.R. CardosoJ.C. JägerA. JägerE. Sanchez-LopezE. NaloneL. SoutoE.B. SeverinoP. Development, cytotoxicity and eye irritation profile of a new sunscreen formulation based on benzophenone-3-poly (ε-caprolactone) nanocapsules.Toxics2019745110.3390/toxics7040051 31546707
    [Google Scholar]
/content/journals/cosci/10.2174/2666779702666230412140202
Loading
/content/journals/cosci/10.2174/2666779702666230412140202
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test