Skip to content
2000
Volume 2, Issue 1
  • ISSN: 2666-7797
  • E-ISSN: 2666-7800

Abstract

Background

Skin pigmentation is a complex process; thus, skin equivalent methodologies that can reproduce the main skin structures and pigmentation have been studied. To improve the skin equivalent model, bioprinting technology has emerged, allowing for the reproduction of the complex, functional, and personalized three-dimensional architecture of the skin.

Objective

Our aim was to develop a skin equivalent model and a pigmented skin equivalent model and compare the manually produced models with the bioprinted models.

Methods

The study was conducted using fibroblasts, keratinocytes, and melanocytes cell lines with a 3D cell culture technique, either through bioprinting or manual production. Additionally, the bleaching potential of the model was evaluated by applying kojic acid.

Results

It was observed that the bioprinted skin equivalent model demonstrated similar cell architecture and gene expression compared to the manually produced model. A pigmented skin equivalent model was developed and also bioprinted. The pigmented bioprinted skin equivalent model exhibited similar pigmentation behavior and lightening potential as the manual model.

Conclusion

We have validated the use of bioprinting for reproducing skin equivalent model and cost-effective scaling of skin production.

Loading

Article metrics loading...

/content/journals/cosci/10.2174/0126667797250440231001193020
2023-10-10
2025-02-20
Loading full text...

Full text loading...

References

  1. ChakrabortyJ. MuX. PramanickA. KaplanD.L. GhoshS. Recent advances in bioprinting using silk protein-based bioinks.Biomaterials202228712167210.1016/j.biomaterials.2022.121672 35835001
    [Google Scholar]
  2. AntezanaP.E. MunicoyS. Álvarez-EchazúM.I. Santo-OrihuelaP.L. CatalanoP.N. Al-TelT.H. KadumudiF.B. Dolatshahi-PirouzA. OriveG. DesimoneM.F. The 3D bioprinted scaffolds for wound healing.Pharmaceutics202214246410.3390/pharmaceutics14020464 35214197
    [Google Scholar]
  3. TanB. GanS. WangX. LiuW. LiX. Applications of 3D bioprinting in tissue engineering: Advantages, deficiencies, improvements, and future perspectives.J. Mater. Chem. B Mater. Biol. Med.20219275385541310.1039/D1TB00172H 34124724
    [Google Scholar]
  4. ThayerP. MartinezH. GatenholmE. History and trends of 3D bioprinting.Methods Mol. Biol.2020214031810.1007/978‑1‑0716‑0520‑2_1 32207102
    [Google Scholar]
  5. KimB.S. LeeJ.S. GaoG. ChoD.W. Direct 3D cell-printing of human skin with functional transwell system.Biofabrication20179202503410.1088/1758‑5090/aa71c8 28586316
    [Google Scholar]
  6. PhangS.J. BasakS. TehH.X. PackirisamyG. FauziM.B. KuppusamyU.R. NeoY.P. LooiM.L. Advancements in extracellular matrix-based biomaterials and biofabrication of 3D organotypic skin models.ACS Biomater. Sci. Eng.2022883220324110.1021/acsbiomaterials.2c00342 35861577
    [Google Scholar]
  7. Del BinoS. DuvalC. BernerdF. Clinical and biological characterization of skin pigmentation diversity and its consequences on UV impact.Int. J. Mol. Sci.2018199266810.3390/ijms19092668 30205563
    [Google Scholar]
  8. XiaoL. MochizukiM. NakaharaT. MiwaN. Hydrogen-generating silica material prevents uva-ray-induced cellular oxidative stress, cell death, Collagen loss and melanogenesis in human cells and 3D skin equivalents.Antioxidants20211017610.3390/antiox10010076 33430157
    [Google Scholar]
  9. LeeS.H. BaeI.H. LeeE.S. KimH.J. LeeJ. LeeC.S. Glucose exerts an Anti-Melanogenic effect by indirect inactivation of tyrosinase in melanocytes and a human skin equivalent.Int. J. Mol. Sci.2020215173610.3390/ijms21051736 32138354
    [Google Scholar]
  10. LeeJ.H. LeeE.S. BaeI.H. HwangJ.A. KimS.H. KimD.Y. ParkN.H. RhoH.S. KimY.J. OhS.G. LeeC.S. Antimelanogenic efficacy of melasolv (3,4,5-Trimethoxycinnamate Thymol Ester) in melanocytes and three-dimensional human skin equivalent.Skin Pharmacol. Physiol.201730419019610.1159/000477356 28662511
    [Google Scholar]
  11. AbdE. YousufS. PastoreM. TelaproluK. MohammedY. NamjoshiS. GriceJ. RobertsM. Skin models for the testing of transdermal drugs.Clin. Pharmacol.20168816317610.2147/CPAA.S64788 27799831
    [Google Scholar]
  12. PottsR.O. GuyR.H. Predicting skin permeability.Pharm. Res.19929566366910.1023/A:1015810312465 1608900
    [Google Scholar]
  13. PughW.J. DegimI.T. HadgraftJ. Epidermal permeability–penetrant structure relationships: 4, QSAR of permeant diffusion across human stratum corneum in terms of molecular weight, H-bonding and electronic charge.Int. J. Pharm.20001971-220321110.1016/S0378‑5173(00)00326‑4 10704807
    [Google Scholar]
  14. FlynnG.L. Physicochemical determinants of skin absorption. Principles of route-to route extrapolation for risk assessment. GarrityT.R. HenryC.J. New YorkElsevier199093127
    [Google Scholar]
  15. NeupaneR. BodduS.H.S. RenukuntlaJ. BabuR.J. TiwariA.K. Alternatives to biological skin in permeation studies: current trends and possibilities.Pharmaceutics202012215210.3390/pharmaceutics12020152 32070011
    [Google Scholar]
  16. MiniC.A. DreossiS.A.C. AbeF.R. Maria-EnglerS.S. OliveiraD.P. Immortalized keratinocytes cells generates an effective model of epidermal human equivalent for irritation and corrosion tests.Toxicol. In Vitro20217110506910.1016/j.tiv.2020.105069 33309870
    [Google Scholar]
  17. MarkiewiczE. JeromeJ. MammoneT. IdowuO.C. Anti-glycation and anti-aging properties of resveratrol derivatives in the in-vitro 3d models of human skin.Clin. Cosmet. Investig. Dermatol.20221591192710.2147/CCID.S364538 35615726
    [Google Scholar]
  18. LeeV. SinghG. TrasattiJ.P. BjornssonC. XuX. TranT.N. YooS.S. DaiG. KarandeP. Design and fabrication of human skin by three-dimensional bioprinting.Tissue Eng. Part C Methods201420647348410.1089/ten.tec.2013.0335 24188635
    [Google Scholar]
  19. RamasamyS. DavoodiP. VijayavenkataramanS. TeohJ.H. ThamizhchelvanA.M. RobinsonK.S. WuB. FuhJ.Y.H. DiColandreaT. ZhaoH. LaneE.B. WangC.H. Optimized construction of a full thickness human skin equivalent using 3D bioprinting and a PCL/collagen dermal scaffold.Bioprinting202121e0012310.1016/j.bprint.2020.e00123
    [Google Scholar]
  20. CuboN. GarciaM. del CañizoJ.F. VelascoD. JorcanoJ.L. 3D bioprinting of functional human skin: Production and in vivo analysis.Biofabrication20169101500610.1088/1758‑5090/9/1/015006 27917823
    [Google Scholar]
  21. DuvalK. GroverH. HanL.H. MouY. PegoraroA.F. FredbergJ. ChenZ. Modeling physiological events in 2D vs. 3D cell culture.Physiology201732426627710.1152/physiol.00036.2016 28615311
    [Google Scholar]
  22. NgW.L. QiJ.T.Z. YeongW.Y. NaingM.W. Proof-of-concept: 3D bioprinting of pigmented human skin constructs.Biofabrication201810202500510.1088/1758‑5090/aa9e1e 29360631
    [Google Scholar]
  23. BaswanS.M. YimS. LeverettJ. ScholtenJ. PawelekJ. Cytidine decreases melanin content in a reconstituted three-dimensional human epidermal model.Arch. Dermatol. Res.2019311324925010.1007/s00403‑019‑01897‑x 30788567
    [Google Scholar]
/content/journals/cosci/10.2174/0126667797250440231001193020
Loading
/content/journals/cosci/10.2174/0126667797250440231001193020
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test