Skip to content
2000
Volume 3, Issue 2
  • ISSN: 2665-9786
  • E-ISSN: 2665-9794

Abstract

Glioblastoma Multiforme (GBM) is a malignant central nervous system tumor. GBM is produced by aggressive proliferation of cells and invasion of normal brain tissue. The current conventional therapies for GBM include surgery, chemotherapy, and radiation therapies which are challenging and produce adverse effects. Thus, polyphenolic nutraceuticals are effective natural compounds for preventing and treating GBM due to their chemoprotective activity. Polyphenols are bioactive, non-nutrient plant chemicals structurally sub-divided into 5 groups; among these groups, phenolics and flavonoids are widely studied as they have lesser side effects and a more significant potential to pass the Blood-Brain Barrier (BBB). These polyphenolic nutraceuticals have the potential to advance current GBM treatment options. This review throws light on the anti-cancer efficacy of major polyphenol classes (Phenolic acid, Flavonoids, Stilbenes, Lignans) and discusses their prospective mechanisms of action in GBM.

Loading

Article metrics loading...

/content/journals/cnt/10.2174/2665978603666220525161010
2022-05-01
2025-01-09
Loading full text...

Full text loading...

References

  1. HollandE.C. Glioblastoma multiforme: The terminator.Proc. Natl. Acad. Sci.200097126242624410.1073/pnas.97.12.624210841526
    [Google Scholar]
  2. LouisD.N. PerryA. ReifenbergerG. von DeimlingA. Figarella-BrangerD. CaveneeW.K. OhgakiH. WiestlerO.D. KleihuesP. EllisonD.W. The 2016 world health organization classification of tumors of the central nervous system: A summary.Acta Neuropathol.2016131680382010.1007/s00401‑016‑1545‑127157931
    [Google Scholar]
  3. OhgakiH. KleihuesP. Genetic pathways to primary and secondary glioblastoma.Am. J. Pathol.200717051445145310.2353/ajpath.2007.07001117456751
    [Google Scholar]
  4. PreusserM. de RibaupierreS. WöhrerA. ErridgeS.C. HegiM. WellerM. StuppR. Current concepts and management of glioblastoma.Ann. Neurol.201170192110.1002/ana.2242521786296
    [Google Scholar]
  5. FernandesC. AndreiaC. OsórioL. LagoC. LinharesP. CarvalhoB. CaeiroC. Current Standards of Care in Glioblastoma Therapy.Exon Publ.2017197241
    [Google Scholar]
  6. BartekJ.Jr NgK. BartekJ. FischerW. CarterB. ChenC.C. Key concepts in glioblastoma therapy.J. Neurol. Neurosurg. Psychiatry201283775376010.1136/jnnp‑2011‑30070922396442
    [Google Scholar]
  7. Campos-SandovalJ.A. Gómez-GarcíaM.C. Santos-JiménezJ.L. MatésJ.M. AlonsoF.J. MárquezJ. Antioxidant responses related to temozolomide resistance in glioblastoma.Neurochem. Int.202114910513610.1016/j.neuint.2021.10513634274381
    [Google Scholar]
  8. SalamiA. SeydiE. PourahmadJ. Use of nutraceuticals for prevention and treatment of cancer.Iran. J. Pharm. Res.201312321922024250626
    [Google Scholar]
  9. AsensiM. OrtegaA. MenaS. FeddiF. EstrelaJ.M. Natural polyphenols in cancer therapy.Crit. Rev. Clin. Lab. Sci.2011485-619721610.3109/10408363.2011.63126822141580
    [Google Scholar]
  10. ArabzadehA. MortezazadehT. AryafarT. GharepapaghE. MajdaeenM. FarhoodB. Therapeutic potentials of resveratrol in combination with radiotherapy and chemotherapy during glioblastoma treatment: A mechanistic review.Cancer Cell Int.202121139110.1186/s12935‑021‑02099‑034289841
    [Google Scholar]
  11. AnjumK. ShaguftaB.I. AbbasS.Q. PatelS. KhanI. ShahS.A.A. AkhterN. HassanS.S.U. Current status and future therapeutic perspectives of glioblastoma multiforme (GBM) therapy: A review.Biomed. Pharmacother.20179268168910.1016/j.biopha.2017.05.12528582760
    [Google Scholar]
  12. Van de KelftE. Molecular pathogenesis of astrocytoma and glioblastoma multiforme.Acta Neurochir.1997139758959910.1007/BF014119929265950
    [Google Scholar]
  13. MaherE.A. BrennanC. WenP.Y. DursoL. LigonK.L. RichardsonA. KhatryD. FengB. SinhaR. LouisD.N. QuackenbushJ. BlackP.M.L. ChinL. DePinhoR.A. Marked genomic differences characterize primary and secondary glioblastoma subtypes and identify two distinct molecular and clinical secondary glioblastoma entities.Cancer Res.20066623115021151310.1158/0008‑5472.CAN‑06‑207217114236
    [Google Scholar]
  14. MaoH. LebrunD.G. YangJ. ZhuV.F. LiM. Deregulated signaling pathways in glioblastoma multiforme: Molecular mechanisms and therapeutic targets.Cancer Invest.2012301485610.3109/07357907.2011.63005022236189
    [Google Scholar]
  15. PearsonJ.R.D. RegadT. Targeting cellular pathways in glioblastoma multiforme.Signal Transduct. Target. Ther.2017211704010.1038/sigtrans.2017.4029263927
    [Google Scholar]
  16. LeeK.W. BodeA.M. DongZ. Molecular targets of phytochemicals for cancer prevention.Nat. Rev. Cancer201111321121810.1038/nrc301721326325
    [Google Scholar]
  17. WatanabeK. TachibanaO. SataK. YonekawaY. KleihuesP. OhgakiH. Overexpression of the EGF receptor and p53 mutations are mutually exclusive in the evolution of primary and secondary glioblastomas.Brain Pathol.19966321722310.1111/j.1750‑3639.1996.tb00848.x8864278
    [Google Scholar]
  18. RamosA.D. MaggeR.S. RamakrishnaR. Molecular pathogenesis and emerging treatment for glioblastoma.World Neurosurg.201811649550410.1016/j.wneu.2018.04.02130049044
    [Google Scholar]
  19. OhgakiH. KleihuesP. Genetic alterations and signaling pathways in the evolution of gliomas.Wiley Online Libr.2009100122235224110.1111/j.1349‑7006.2009.01308.x19737147
    [Google Scholar]
  20. ZhangY. DubeC. GibertM.Jr CruickshanksN. WangB. CoughlanM. YangY. SetiadyI. DeveauC. SaoudK. GrelloC. OxfordM. YuanF. AbounaderR. The p53 pathway in glioblastoma.Cancers201810929710.3390/cancers1009029730200436
    [Google Scholar]
  21. McBrayerS.K. MayersJ.R. DiNataleG.J. ShiD.D. KhanalJ. ChakrabortyA.A. SarosiekK.A. BriggsK.J. RobbinsA.K. SewastianikT. ShareefS.J. OlenchockB.A. ParkerS.J. TateishiK. SpinelliJ.B. IslamM. HaigisM.C. LooperR.E. LigonK.L. BernsteinB.E. CarrascoR.D. CahillD.P. AsaraJ.M. MetalloC.M. YennawarN.H. Vander HeidenM.G. KaelinW.G.Jr Transaminase inhibition by 2-hydroxyglutarate impairs glutamate biosynthesis and redox homeostasis in glioma.Cell2018175110111610.1016/j.cell.2018.08.03830220459
    [Google Scholar]
  22. ZugazagoitiaJ. GuedesC. PonceS. FerrerI. Molina-PineloS. Paz-AresL. Current challenges in cancer treatment.Clin. Ther.20163871551156610.1016/j.clinthera.2016.03.02627158009
    [Google Scholar]
  23. TohmeS. SimmonsR.L. TsungA. Surgery for cancer: A trigger for metastases.Cancer Res.20177771548155210.1158/0008‑5472.CAN‑16‑153628330928
    [Google Scholar]
  24. HuangC.Y. JuD.T. ChangC.F. Muralidhar ReddyP. VelmuruganB.K. A review on the effects of current chemotherapy drugs and natural agents in treating non-small cell lung cancer.Biomedicine2017742310.1051/bmdcn/201707042329130448
    [Google Scholar]
  25. FairchildA. TirumaniS.H. RosenthalM.H. HowardS.A. KrajewskiK.M. NishinoM. ShinagareA.B. JagannathanJ.P. RamaiyaN.H. Hormonal therapy in oncology: A primer for the radiologist.AJR Am. J. Roentgenol.20152046W620-3010.2214/AJR.14.1360426001251
    [Google Scholar]
  26. BaskarR. LeeK.A. YeoR. YeohK.W. Cancer and radiation therapy: Current advances and future directions.Int. J. Med. Sci.20129319319910.7150/ijms.363522408567
    [Google Scholar]
  27. ChenC.J. HsuW.L. YangH.I. LeeM.H. ChenH.C. ChienY.C. YouS.L. Epidemiology of virus infection and human cancer.Recent Results Cancer Res.2014193113210.1007/978‑3‑642‑38965‑8_224008291
    [Google Scholar]
  28. DillmanR.O. Monoclonal antibodies for treating cancer.Ann. Intern. Med.1989111759260310.7326/0003‑4819‑111‑7‑5922672932
    [Google Scholar]
  29. Kimiz GebologluI. Gulce-IzS. Monoclonal antibodies in cancer immunotherapy.Springer20184562935-2940
    [Google Scholar]
  30. RescignoM. AvogadriF. CuriglianoG. Challenges and prospects of immunotherapy as cancer treatment.Biochim. Biophys. Acta20071776110812317720322
    [Google Scholar]
  31. Le RhunE. PreusserM. RothP. ReardonD.A. van den BentM. WenP. ReifenbergerG. WellerM. Molecular targeted therapy of glioblastoma.Cancer Treat.20198010189610.1016/j.ctrv.2019.10189631541850
    [Google Scholar]
  32. PiccolellaS. CrescenteG. CandelaL. PacificoS. Nutraceutical polyphenols: New analytical challenges and opportunities.J. Pharm. Biomed. Anal.201917511277410.1016/j.jpba.2019.07.02231336288
    [Google Scholar]
  33. MajidiniaM. BishayeeA. YousefiB. Polyphenols: Major regulators of key components of DNA damage response in cancer.DNA Repair20198210267910.1016/j.dnarep.2019.10267931450085
    [Google Scholar]
  34. BriguglioG. CostaC. PollicinoM. GiambòF. CataniaS. FengaC. Polyphenols in cancer prevention: New insights.Int. J. Funct. Nutr.2020121110.3892/ijfn.2020.9
    [Google Scholar]
  35. KaleemM. AhmadA. Flavonoids as nutraceuticals. Ther. Probiotic, Unconv.Foods2018137155
    [Google Scholar]
  36. AnantharajuP.G. GowdaP.C. VimalambikeM.G. MadhunapantulaS.V. An overview on the role of dietary phenolics for the treatment of cancers.Nutr. J.20161519910.1186/s12937‑016‑0217‑227903278
    [Google Scholar]
  37. Carlos-ReyesÁ. López-GonzálezJ.S. Meneses-FloresM. Gallardo-RincónD. Ruíz-GarcíaE. MarchatL.A. Astudillo-de la VegaH. Hernández de la CruzO.N. López-CamarilloC. Dietary compounds as epigenetic modulating agents in cancer.Front. Genet.20191037910.3389/fgene.2019.0007930881375
    [Google Scholar]
  38. MileoA.M. NisticòP. MiccadeiS. Polyphenols: Immunomodulatory and therapeutic implication in colorectal cancer.Front. Immunol.201910472910.3389/fimmu.2019.0072931031748
    [Google Scholar]
  39. RomagnoloD.F. SelminO.I. Flavonoids and cancer prevention: A review of the evidence.J. Nutr. Gerontol. Geriatr.201231320623810.1080/21551197.2012.70253422888839
    [Google Scholar]
  40. ChabotG.G. TouilY.S. PhamM.H. DauzonneD. Flavonoids in cancer prevention and therapy: Chemistry, pharmacology, mechanisms of action, and perspectives for cancer drug discovery. InAlternative and Complementary Therapies for Cancer2010, pp. 583-612
    [Google Scholar]
  41. LeaM.A. Flavonol regulation in tumor cells.J. Cell. Biochem.201511671190119410.1002/jcb.2509825676457
    [Google Scholar]
  42. SahinI. BilirB. AliS. SahinK. KucukO. Soy isoflavones in integrative oncology: Increased efficacy and decreased toxicity of cancer therapy.Integr. Cancer Ther.201918153473541983531010.1177/153473541983531030897972
    [Google Scholar]
  43. LinB.W. GongC.C. SongH.F. CuiY.Y. Effects of anthocyanins on the prevention and treatment of cancer.Br. J. Pharmacol.2017174111226124310.1111/bph.1362727646173
    [Google Scholar]
  44. KumarN. GoelN. Phenolic acids: Natural versatile molecules with promising therapeutic applications.Biotechnol. Rep.201924e0037010.1016/j.btre.2019.e0037031516850
    [Google Scholar]
  45. WahleK.W.J. BrownI. RotondoD. HeysS.D. Plant phenolics in the prevention and treatment of cancer.Adv. Exp. Med. Biol.2010698365110.1007/978‑1‑4419‑7347‑4_421520702
    [Google Scholar]
  46. AbotalebM. LiskovaA. KubatkaP. BüsselbergD. Therapeutic potential of plant phenolic acids in the treatment of cancer.Biomolecules202010222110.3390/biom1002022132028623
    [Google Scholar]
  47. SuC.M. LeeW.H. WuA.T.H. LinY.K. WangL.S. WuC.H. YehC.T. Pterostilbene inhibits triple-negative breast cancer metastasis via inducing microRNA-205 expression and negatively modulates epithelial-to-mesenchymal transition.J. Nutr. Biochem.201526667568510.1016/j.jnutbio.2015.01.00525792283
    [Google Scholar]
  48. VidakM. RozmanD. KomelR. Effects of flavonoids from food and dietary supplements on glial and glioblastoma multiforme cells.Molecules20152010194061943210.3390/molecules20101940626512639
    [Google Scholar]
  49. JangY.G. KoE.B. ChoiK.C. Gallic acid, a phenolic acid, hinders the progression of prostate cancer by inhibition of histone deacetylase 1 and 2 expression.J. Nutr. Biochem.20208410844410.1016/j.jnutbio.2020.10844432615369
    [Google Scholar]
  50. AishwaryaV. ResT.S. Enhanced blood–brain barrier transmigration using the novel chrysin embedded solid lipid nanoformulation: A salient approach on physico-chemical characterization, pharmacokinetics and biodistribution studies.Int. J. Pharm. Clin. Res.201681215741582
    [Google Scholar]
  51. WangJ. WangH. SunK. WangX. PanH. ZhuJ. JiX. LiX. Chrysin suppresses proliferation, migration, and invasion in glioblastoma cell lines via mediating the ERK/Nrf2 signaling pathway.Drug Des. Devel. Ther.2018121272173310.2147/DDDT.S16002029662304
    [Google Scholar]
  52. WengM.S. HoY.S. LinJ.K. Chrysin induces G1 phase cell cycle arrest in C6 glioma cells through inducing p21Waf1/Cip1 expression: Involvement of p38 mitogen-activated protein kinase.Biochem. Pharmacol.200569121815182710.1016/j.bcp.2005.03.01115869744
    [Google Scholar]
  53. Anand DavidA.V. ArulmoliR. ParasuramanS. Overviews of biological importance of quercetin: A bioactive flavonoid.Pharmacogn. Rev.20161020848910.4103/0973‑7847.19404428082789
    [Google Scholar]
  54. TavanaE. MollazadehH. MohtashamiE. ModaresiS.M.S. HosseiniA. SabriH. SoltaniA. JavidH. AfshariA.R. SahebkarA. Quercetin: A promising phytochemical for the treatment of glioblastoma multiforme.Biofactors202046335636610.1002/biof.160531880372
    [Google Scholar]
  55. KimH.I. LeeS.J. ChoiY.J. KimM.J. KimT.Y. KoS.G. Quercetin induces apoptosis in glioblastoma cells by suppressing Axl/IL-6/STAT3 signaling pathway.Am. J. Chin. Med.202149376778410.1142/S0192415X2150036133657989
    [Google Scholar]
  56. LeeK.W. KangN.J. HeoY.S. RogozinE.A. PuglieseA. HwangM.K. BowdenG.T. BodeA.M. LeeH.J. DongZ. Raf and MEK protein kinases are direct molecular targets for the chemopreventive effect of quercetin, a major flavonol in red wine.Cancer Res.200868394695510.1158/0008‑5472.CAN‑07‑314018245498
    [Google Scholar]
  57. NagleD.G. FerreiraD. ZhouY.D. Epigallocatechin-3-gallate (EGCG): Chemical and biomedical perspectives.Phytochemistry200667171849185510.1016/j.phytochem.2006.06.02016876833
    [Google Scholar]
  58. ZhangY. WangS.X. MaJ.W. LiH.Y. YeJ.C. XieS.M. DuB. ZhongX.Y. EGCG inhibits properties of glioma stem-like cells and synergizes with temozolomide through downregulation of P-glycoprotein inhibition.J. Neurooncol.20151211415210.1007/s11060‑014‑1604‑125173233
    [Google Scholar]
  59. SpagnuoloC. RussoG.L. OrhanI.E. HabtemariamS. DagliaM. SuredaA. NabaviS.F. DeviK.P. LoizzoM.R. TundisR. NabaviS.M. Genistein and cancer: Current status, challenges, and future directions.Adv. Nutr.20156440841910.3945/an.114.00805226178025
    [Google Scholar]
  60. KhoshyomnS. NathanD. ManskeG.C. OslerT.M. PenarP.L. Synergistic effect of genistein and BCNU on growth inhibition and cytotoxicity of glioblastoma cells.J. Neurooncol.200257319320010.1023/A:101576561648412125982
    [Google Scholar]
  61. KhawA.K. YongJ.W.Y. KalthurG. HandeM.P. Genistein induces growth arrest and suppresses telomerase activity in brain tumor cells.Genes Chromosomes Cancer2012511096197410.1002/gcc.2197922736505
    [Google Scholar]
  62. WangD. ChenQ. TanY. LiuB. LiuC. Ellagic acid inhibits human glioblastoma growth in vitro and in vivo.Oncol. Rep.20173721084109210.3892/or.2016.533128035411
    [Google Scholar]
  63. WangD. ChenQ. LiuB. LiY. TanY. YangB. Ellagic acid inhibits proliferation and induces apoptosis in human glioblastoma cells.Acta Cir. Bras.201631214314910.1590/S0102‑86502016002000001026959625
    [Google Scholar]
  64. PaoliniA. CurtiV. PasiF. MazziniG. NanoR. CapelliE. Gallic acid exerts a protective or an anti-proliferative effect on glioma T98G cells via dose-dependent epigenetic regulation mediated by miRNAs.Int. J. Oncol.20154641491149710.3892/ijo.2015.286425646699
    [Google Scholar]
  65. ThomassetS.C. BerryD.P. GarceaG. MarczyloT. StewardW.P. GescherA.J. Dietary polyphenolic phytochemicals--promising cancer chemopreventive agents in humans? A review of their clinical properties.Int. J. Cancer2007120345145810.1002/ijc.2241917131309
    [Google Scholar]
  66. WangX. DengJ. YuanJ. TangX. WangY. ChenH. LiuY. ZhouL. Curcumin exerts its tumor suppressive function via inhibition of NEDD4 oncoprotein in glioma cancer cells.Int. J. Oncol.201751246747710.3892/ijo.2017.403728627598
    [Google Scholar]
  67. MukherjeeS. BaidooJ. FriedA. AtwiD. DolaiS. BoockvarJ. SymonsM. RuggieriR. RajaK. BanerjeeP. Curcumin changes the polarity of tumor-associated microglia and eliminates glioblastoma.Int. J. Cancer2016139122838284910.1002/ijc.3039827543754
    [Google Scholar]
  68. GerseyZ.C. RodriguezG.A. BarbariteE. SanchezA. WaltersW.M. OhaetoK.C. KomotarR.J. GrahamR.M. Curcumin decreases malignant characteristics of glioblastoma stem cells via induction of reactive oxygen species.BMC Cancer20171719910.1186/s12885‑017‑3058‑228160777
    [Google Scholar]
  69. SquillaroT. SchettinoC. SampaoloS. GalderisiU. Di IorioG. GiordanoA. MeloneM.A.B. Adult-onset brain tumors and neurodegeneration: Are polyphenols protective?J. Cell. Physiol.201823353955396710.1002/jcp.2617028884813
    [Google Scholar]
  70. YangY.P. ChangY.L. HuangP.I. ChiouG.Y. TsengL.M. ChiouS.H. ChenM.H. ChenM.T. ShihY.H. ChangC.H. HsuC.C. MaH.I. WangC.T. TsaiL.L. YuC.C. ChangC.J. Resveratrol suppresses tumorigenicity and enhances radiosensitivity in primary glioblastoma tumor initiating cells by inhibiting the STAT3 axis.J. Cell. Physiol.2012227397699310.1002/jcp.2280621503893
    [Google Scholar]
  71. MirzazadehA. KheirollahiM. FarashahiE. Sadeghian-NodoushanF. SheikhhaM.H. AflatoonianB. Assessment effects of resveratrol on human telomerase reverse transcriptase messenger ribonucleic acid transcript in human glioblastoma.Adv. Biomed. Res.2017617310.4103/2277‑9175.20904728706881
    [Google Scholar]
  72. LuengoA. GuiD.Y. Vander HeidenM.G. Targeting metabolism for cancer therapy.Cell Chem. Biol.20172491161118010.1016/j.chembiol.2017.08.02828938091
    [Google Scholar]
  73. GuerraA.R. DuarteM.F. DuarteI.F. Targeting tumor metabolism with plant-derived natural products: Emerging trends in cancer therapy.J. Agric. Food Chem.20186641106631068510.1021/acs.jafc.8b0410430227704
    [Google Scholar]
  74. ShriwasP. ChenX. KinghornA.D. RenY. Plant-derived glucose transport inhibitors with potential antitumor activity.Phytother. Res.20203451027104010.1002/ptr.658731823431
    [Google Scholar]
  75. MoreiraL. AraújoI. CostaT. Correia-BrancoA. FariaA. MartelF. KeatingE. Quercetin and epigallocatechin gallate inhibit glucose uptake and metabolism by breast cancer cells by an estrogen receptor-independent mechanism.Exp. Cell Res.2013319121784179510.1016/j.yexcr.2013.05.00123664836
    [Google Scholar]
  76. YamagishiS. MatsuiT. FukamiK. Role of Receptor for Advanced Glycation End products (RAGE) and its ligands in cancer risk.Rejuvenation Res.2015181485610.1089/rej.2014.162525472493
    [Google Scholar]
  77. Cháirez-RamírezM.H. de la Cruz-LópezK.G. García-CarrancáA. Polyphenols as antitumor agents targeting key players in cancer-driving signaling pathways.Front. Pharmacol.2021121271030410.3389/fphar.2021.71030434744708
    [Google Scholar]
  78. SchieberM. ChandelN.S. ROS function in redox signaling and oxidative stress.Curr. Biol.20142410R453R46210.1016/j.cub.2014.03.03424845678
    [Google Scholar]
  79. NavaneethaKrishnanS.; Rosales, J.L.; Lee, K.Y. ROS-mediated cancer cell killing through dietary phytochemicals.Oxid. Med. Cell. Longev.2019201916
    [Google Scholar]
  80. MbavengA.T. KueteV. EfferthT. Potential of central, eastern and western africa medicinal plants for cancer therapy: Spotlight on resistant cells and molecular targets.Front. Pharmacol.20178634310.3389/fphar.2017.0034328626426
    [Google Scholar]
  81. BhaumikS. AnjumR. RangarajN. PardhasaradhiB.V.V. KharA. Curcumin mediated apoptosis in AK-5 tumor cells involves the production of reactive oxygen intermediates.FEBS Lett.1999456231131410.1016/S0014‑5793(99)00969‑210456330
    [Google Scholar]
  82. LambertJ.D. EliasR.J. The antioxidant and pro-oxidant activities of green tea polyphenols: A role in cancer prevention.Arch. Biochem. Biophys.20105011657210.1016/j.abb.2010.06.01320558130
    [Google Scholar]
  83. ChenY. TsengS.H. LaiH.S. ChenW.J. Resveratrol-induced cellular apoptosis and cell cycle arrest in neuroblastoma cells and antitumor effects on neuroblastoma in mice.Surgery20041361576610.1016/j.surg.2004.01.01715232540
    [Google Scholar]
/content/journals/cnt/10.2174/2665978603666220525161010
Loading
/content/journals/cnt/10.2174/2665978603666220525161010
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test