Skip to content
2000
Volume 3, Issue 2
  • ISSN: 2665-9786
  • E-ISSN: 2665-9794

Abstract

COVID-19 has spread worldwide and become a great cause of economic and social loss. Due to the non-availability of effective medicine/drug, its control has become a difficult task.

In the present study, the effect of some selected natural plant products was studied on the Hemagglutinin-esterase of the human coronavirus by performing molecular docking.

Molecular docking study for some selected natural plant products against Hemagglutinin-Esterase (HE) of human coronavirus was performed using the HEX 8.0.0 software.

The free binding energy ranged from -298.14 to -161, with that of curcumin being the highest.

The results suggest that the natural plant products could act as possible anti-viral agents and may be used as natural therapeutic agents.

Loading

Article metrics loading...

/content/journals/cnt/10.2174/2665978603666220223093343
2022-05-01
2025-01-10
Loading full text...

Full text loading...

References

  1. van der HoekL. PyrcK. JebbinkM.F. Vermeulen-OostW. BerkhoutR.J. WolthersK.C. Wertheim-van DillenP.M. KaandorpJ. SpaargarenJ. BerkhoutB. Identification of a new human coronavirus.Nat. Med.200410436837310.1038/nm102415034574
    [Google Scholar]
  2. GuyJ.S. BreslinJ.J. BreuhausB. VivretteS. SmithL.G. Characterization of a coronavirus isolated from a diarrheic foal.J. Clin. Microbiol.200038124523452610.1128/JCM.38.12.4523‑4526.200011101590
    [Google Scholar]
  3. WeissS.R. Forty years with coronaviruses.J. Exp. Med.202021751410.1084/jem.2020053732232339
    [Google Scholar]
  4. WangW. TangJ. WeiF. Updated understanding of the outbreak of 2019 novel coronavirus (2019-nCoV) in Wuhan, China.J. Med. Virol.202092444144710.1002/jmv.2568931994742
    [Google Scholar]
  5. BelouzardS. MilletJ.K. LicitraB.N. WhittakerG.R. Mechanisms of coronavirus cell entry mediated by the viral spike protein.Viruses2012461011103310.3390/v406101122816037
    [Google Scholar]
  6. PerlmanS. NetlandJ. Coronaviruses post-SARS: update on replication and pathogenesis.Nat. Rev. Microbiol.20097643945010.1038/nrmicro214719430490
    [Google Scholar]
  7. ZengQ. LangereisM.A. van VlietA.L. HuizingaE.G. de GrootR.J. Structure of coronavirus hemagglutinin-esterase offers insight into corona and influenza virus evolution.Proc. Natl. Acad. Sci. USA2008105269065906910.1073/pnas.080050210518550812
    [Google Scholar]
  8. RitchieD.W. VenkatramanV. Ultra-fast FFT protein docking on graphics processors.Bioinform.201026192398240510.1093/bioinformatics/btq44420685958
    [Google Scholar]
  9. ShahidM. SiddiqueA. AshafaqM. RaizadaM. SamaF. AhamadM.N. MantashaI. AnsariI.A. KhanI.M. KumarP. FatmaK. Spectroscopic investigations on La3+, Pr3+, Nd3+ and Gd3+ complexes with a multidentate ligating system: Luminescence properties and biological activities.J. Mol. Struct.2018117391893010.1016/j.molstruc.2018.07.035
    [Google Scholar]
  10. SamaF. RaizadaM. AshafaqM. AhamadM.N. MantashaI. ImanK. ShahidM. ArifR. ShahN.A. SalehH.A. Synthesis, structure and DNA binding properties of a homodinuclear Cu (II) complex: An experimental and theoretical approach.J. Mol. Struct.2019117628328910.1016/j.molstruc.2018.08.081
    [Google Scholar]
  11. AkhtarM.N. AlDamenM.A. ZierkiewiczW. MichalczykM. KhalidM. IdrisiM. ShahidM. Synthesis, crystal structure, DFT calculations, molecular docking study and Hirshfeld surface analysis of alkoxido-bridged dinuclear iron (III) complex.Res. Chem. Intermed.2020464155417110.1007/s11164‑020‑04198‑5
    [Google Scholar]
  12. SiddiqueY.H. Rahul; Mantasha, I.; Shahid, M. Effect of cabergoline on cognitive impairments in transgenic drosophila model of Parkinson’s disease.Lett. Drug Des. Discov.202017101261126910.2174/1570180817999200514100917
    [Google Scholar]
  13. MantashaI. ShahidM. KumarM. AnsariA. AkhtarM.N. AlDamenM.A. SongY. AhmadM. KhanI.M. Exploring solvent dependent catecholase activity in transition metal complexes: An experimental and theoretical approach.New J. Chem.20204441371138810.1039/C9NJ04374H
    [Google Scholar]
  14. KunchandyE. RaoM.N.A. Oxygen radical scavenging activity of curcumin.Int. J. Pharm.199058323724010.1016/0378‑5173(90)90201‑E
    [Google Scholar]
  15. ZhangD. HouL. PengW. Tangeritin attenuates oxidative stress, apoptosis and inflammation in cadmium-induced cardiotoxicity in rats by activating Nrf2 signaling pathway.Trop. J. Pharm. Res.201817122421242610.4314/tjpr.v17i12.16
    [Google Scholar]
  16. FatimaA. KhanamS. RahulR. JyotiS. NazF. AliF. SiddiqueY.H. Protective effect of tangeritin in transgenic Drosophila model of Parkinson’s disease.Front. Biosci. (Elite Ed.)20179445310.2741/e78427814588
    [Google Scholar]
  17. OngK.C. KhooH.E. Biological effects of myricetin.Gen. Pharmacol.199729212112610.1016/S0306‑3623(96)00421‑19251891
    [Google Scholar]
  18. LinY. ShiR. WangX. ShenH.M. Luteolin, a flavonoid with potential for cancer prevention and therapy.Curr. Cancer Drug Targets20088763464610.2174/15680090878624105018991571
    [Google Scholar]
  19. Calderón-MontañoJ.M. Burgos-MorónE. Pérez-GuerreroC. López-LázaroM. A review on the dietary flavonoid kaempferol.Mini Rev. Med. Chem.201111429834410.2174/13895571179530533521428901
    [Google Scholar]
  20. MieanK.H. MohamedS. Flavonoid (myricetin, quercetin, kaempferol, luteolin, and apigenin) content of edible tropical plants.J. Agric. Food Chem.20014963106311210.1021/jf000892m11410016
    [Google Scholar]
  21. AvalloneR. ZanoliP. PuiaG. KleinschnitzM. SchreierP. BaraldiM. Pharmacological profile of apigenin, a flavonoid isolated from Matricaria chamomilla.Biochem. Pharmacol.200059111387139410.1016/S0006‑2952(00)00264‑110751547
    [Google Scholar]
  22. GargA. GargS. ZaneveldL.J. SinglaA.K. Chemistry and pharmacology of the citrus bioflavonoid hesperidin.Phytother. Res.200115865566910.1002/ptr.107411746857
    [Google Scholar]
  23. TeraoJ. PiskulaM. YaoQ. Protective effect of epicatechin, epicatechin gallate, and quercetin on lipid peroxidation in phospholipid bilayers.Arch. Biochem. Biophys.1994308127828410.1006/abbi.1994.10398311465
    [Google Scholar]
  24. FrémontL. Biological effects of resveratrol.Life Sci.200066866367310.1016/S0024‑3205(99)00410‑510680575
    [Google Scholar]
  25. BaurJ.A. SinclairD.A. Therapeutic potential of resveratrol: the in vivo evidence.Nat. Rev. Drug Discov.20065649350610.1038/nrd206016732220
    [Google Scholar]
  26. VerdrenghM. JonssonI.M. HolmdahlR. TarkowskiA. Genistein as an anti-inflammatory agent.Inflamm. Res.200352834134610.1007/s00011‑003‑1182‑814504672
    [Google Scholar]
  27. SarkarF.H. LiY. Mechanisms of cancer chemoprevention by soy isoflavone genistein.Cancer Metastasis Rev.2002213-426528010.1023/A:102121091082112549765
    [Google Scholar]
  28. BadaryO.A. Abdel-MaksoudS. AhmedW.A. OwiedaG.H. Naringenin attenuates cisplatin nephrotoxicity in rats.Life Sci.200576182125213510.1016/j.lfs.2004.11.00515826879
    [Google Scholar]
  29. KanazeF.I. BounartziM.I. GeorgarakisM. NiopasI. Pharmacokinetics of the citrus flavanone aglycones hesperetin and naringenin after single oral administration in human subjects.Eur. J. Clin. Nutr.200761447247710.1038/sj.ejcn.160254317047689
    [Google Scholar]
  30. SalariH. BraquetP. BorgeatP. Comparative effects of indomethacin, acetylenic acids, 15-HETE, nordihydroguaiaretic acid and BW755C on the metabolism of arachidonic acid in human leukocytes and platelets.Prostaglandins Leukot. Med.1984131536010.1016/0262‑1746(84)90102‑16424136
    [Google Scholar]
  31. OnawunmiG.O. Evaluation of the antimicrobial activity of citral.Lett. Appl. Microbiol.19899310510810.1111/j.1472‑765X.1989.tb00301.x
    [Google Scholar]
  32. LiuH. WangY. CaoJ. JiangH. YaoJ. GongG. ChenX. XuW. HeX. Antimicrobial activity and virulence attenuation of citral against the fish pathogen Vibrio alginolyticus.Aquaculture202051511010.1016/j.aquaculture.2019.734578
    [Google Scholar]
  33. LiraM.H. Andrade JúniorF.P. MoraesG.F. MacenaG.D. PereiraF.D. LimaI.O. Antimicrobial activity of geraniol: An integrative review.J. Essent. Oil Res.202032318719710.1080/10412905.2020.1745697
    [Google Scholar]
  34. HosseiniS.M. HejazianL.B. AmaniR. Siahchehreh BadeliN. Geraniol attenuates oxidative stress, bioaccumulation, serological and histopathological changes during aluminum chloride-hepatopancreatic toxicity in male Wistar rats.Environ. Sci. Pollut. Res. Int.20202716200762008910.1007/s11356‑020‑08128‑132232762
    [Google Scholar]
  35. KarkiN. AggarwalS. LaineR.A. GreenwayF. LossoJ.N. Cytotoxicity of juglone and thymoquinone against pancreatic cancer cells.Chem. Biol. Interact.202010914214310.1016/j.cbi.2020.10914232610056
    [Google Scholar]
  36. WooC.C. KumarA.P. SethiG. TanK.H. Thymoquinone: Potential cure for inflammatory disorders and cancer.Biochem. Pharmacol.201283444345110.1016/j.bcp.2011.09.02922005518
    [Google Scholar]
  37. GuptaJ. SiddiqueY.H. BegT. AraG. AfzalM. A review on the beneficial effects of tea polyphenols on human health.Int. J. Pharmacol.20084531433810.3923/ijp.2008.314.338
    [Google Scholar]
  38. SiddiqueY.H. BegT. AfzalM. Antigenotoxic effect of apigenin against anti-cancerous drugs.Toxicol. In Vitro200822362563110.1016/j.tiv.2007.12.00218206345
    [Google Scholar]
  39. SiddiqueY.H. JyotiS. NazF. Effect of epicatechin gallate dietary supplementation on transgenic Drosophila model of Parkinson’s disease.J. Diet. Suppl.201411212113010.3109/19390211.2013.85920724670116
    [Google Scholar]
  40. AliF. Rahul; Naz, F.; Jyoti, S.; Siddique, Y.H. Health functionality of apigenin: A review.Int. J. Food Prop.20172061197123810.1080/10942912.2016.1207188
    [Google Scholar]
  41. SiddiqueY.H. BegT. AfzalM. Protective effect of nordihydroguaiaretic acid (NDGA) against norgestrel induced genotoxic damage.Toxicol. In Vitro200620222723310.1016/j.tiv.2005.06.02716061348
    [Google Scholar]
  42. SiddiqueY.H. AraG. JyotiS. AfzalM. Protective effect of curcumin in transgenic Drosophila melanogaster model of Parkinson’s disease.Alt. Med. Stud.2012211710.4081/ams.2012.e3
    [Google Scholar]
  43. SiddiqueY.H. NazF. JyotiS. Effect of curcumin on lifespan, activity pattern, oxidative stress, and apoptosis in the brains of transgenic Drosophila model of Parkinson’s disease.BioMed Res. Int.2014201460692810.1155/2014/60692824860828
    [Google Scholar]
  44. SiddiqueY.H. NazF. JyotiS. AliF. FatimaA. Rahul; Khanam, S. Protective effect of Geraniol on the transgenic Drosophila model of Parkinson’s disease.Environ. Toxicol. Pharmacol.20164322523110.1016/j.etap.2016.03.01827026137
    [Google Scholar]
  45. BegT. JyotiS. NazF. Rahul; Ali, F.; Ali, S.K.; Reyad, A.M.; Siddique, Y.H. Protective effect of kaempferol on the transgenic Drosophila model of Alzheimer’s disease.CNS Neurol. Dis. Drug Tar.201817642142910.2174/187152731766618050812305029745345
    [Google Scholar]
  46. ManiJ.S. JohnsonJ.B. SteelJ.C. BroszczakD.A. NeilsenP.M. WalshK.B. NaikerM. Natural product-derived phytochemicals as potential agents against coronaviruses: A review.Virus Res.202028419798910.1016/j.virusres.2020.19798932360300
    [Google Scholar]
  47. NewmanD.J. CraggG.M. natural products as sources of new drugs from 1981 to 2014.J. Nat. Prod.201679362966110.1021/acs.jnatprod.5b0105526852623
    [Google Scholar]
/content/journals/cnt/10.2174/2665978603666220223093343
Loading
/content/journals/cnt/10.2174/2665978603666220223093343
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test