Skip to content
2000
Volume 2, Issue 1
  • ISSN: 2665-9786
  • E-ISSN: 2665-9794

Abstract

Epidemiological data illustrates that there is a strong relationship between dietary intake of natural bioactive compounds and their beneficial properties against various diseases, and this stimulates academic and industrial interest in using plant-derived compounds for health and making medicines. For this reason, recent health related studies in the literature have focused on a variety of many plant-derived bioactive compounds. Even though the bioactivities of such compounds have widely been investigated, there are few studies about oligomeric species and their activities.

In this review, extraction and isolation methods of the plant-derived oligomers and the use of such oligomers in health applications are summarised.

In the literature, many studies state that oligomeric compounds have benefits to human health. To maximize these beneficial properties, various ways to use oligomeric compounds have been examined and summarised.

A better understanding of the specific activities of distinct components of plant-derived oligomers is expected to open new avenues for drug discovery. This review gives an overview of oligomers with health beneficial properties and their possible applications in healthcare.

Loading

Article metrics loading...

/content/journals/cnt/10.2174/2665978601999200727103858
2021-03-01
2024-12-24
Loading full text...

Full text loading...

References

  1. HailuG. BoeckerA. HensonS. CranfieldJ. Consumer valuation of functional foods and nutraceuticals in Canada. A conjoint study using probiotics.Appetite200952225726510.1016/j.appet.2008.10.002 19007828
    [Google Scholar]
  2. ShahidiF. Nutraceuticals and functional foods: Whole versus processed foods.Trends Food Sci. Technol.200920937638710.1016/j.tifs.2008.08.004
    [Google Scholar]
  3. ArtsI.C.W. HollmanP.C.H. Polyphenols and disease risk in epidemiologic studies.Am. J. Clin. Nutr.200581Suppl. 1317S325S10.1093/ajcn/81.1.317S 15640497
    [Google Scholar]
  4. YahiaE.M. De Jesus Ornelas-PazJ. Gonzalez-AguilarG.A. Nutritional and health-promoting properties of tropical and subtropical fruits. Postharvest Biology and Technology of Tropical and Subtropical Fruits.Elsevier Ltd.2011217810.1533/9780857093622.21
    [Google Scholar]
  5. Tomé-CarneiroJ. LarrosaM. González-SarríasA. Tomás-BarberánF.A. García-ConesaM.T. EspínJ.C. Resveratrol and clinical trials: the crossroad from in vitro studies to human evidence.Curr. Pharm. Des.201319346064609310.2174/13816128113199990407 23448440
    [Google Scholar]
  6. KoseM.D. BayraktarO. Encapsulated Plant- Derived Polyphenols as Potential Cancer Treatment Agents. Herbal Medicine: Back to the Future Cancer Therapy; Murad, F.; Rahman, A.; Bian, K.Eds.; Bentham Science20199112210.2174/9789811411205119030005
    [Google Scholar]
  7. JenkinsA.D. SteptoR.F.T. KratochvílP. SuterU.W. Glossary of basic terms in polymer science (IUPAC Recommendations 1996).Pure Appl. Chem.199668122287231110.1351/pac199668122287
    [Google Scholar]
  8. IbrahimO.O. Functional oligo-saccharides: Chemicals structure, Manufacturing, health benefits, applications and regulations.J Food Chem Nanotechnol201844657610.17756/jfcn.2018‑060
    [Google Scholar]
  9. CourtoisJ. Oligosaccharides from land plants and algae: production and applications in therapeutics and biotechnology.Curr. Opin. Microbiol.200912326127310.1016/j.mib.2009.04.007 19467920
    [Google Scholar]
  10. OuelletteR.J. RawnJ.D. Organic Chemistry.2nd edAcademic Press2018889928
    [Google Scholar]
  11. KunzC. RudloffS. Health promoting aspects of milk oligosaccharides.Int. Dairy J.200616111341134610.1016/j.idairyj.2006.06.020
    [Google Scholar]
  12. DilworthL.L. RileyC.K. StennettD.K. Plant Constituents: Carbohydrates, oils, resins, balsams, and plant hormones.Pharmacognosy: Fundamentals, Applications and Strategy.Elsevier Inc.2017Vol. 16180
    [Google Scholar]
  13. QiangX. YongLie C, QianBing W. Health benefit application of functional oligosaccharides.Carbohydr. Polym.200977343544110.1016/j.carbpol.2009.03.016
    [Google Scholar]
  14. RoberfroidM. SlavinJ. Nondigestible oligosaccharides.Crit. Rev. Food Sci. Nutr.200040646148010.1080/10408690091189239 11186236
    [Google Scholar]
  15. YanY. JiY. SuN. MeiX. WangY. DuS. ZhuW. ZhangC. LuY. XingX.H. Non-anticoagulant effects of low molecular weight heparins in inflammatory disorders: A review.Carbohydr. Polym.2017160718110.1016/j.carbpol.2016.12.037
    [Google Scholar]
  16. OhtaA. Prevention of osteoporosis by foods and dietary supplements. The effect of fructooligosaccharides (FOS) on the calcium absorption and bone.Clin. Calcium200616101639164517012821
    [Google Scholar]
  17. LiaoS.F. NyachotiM. Using probiotics to improve swine gut health and nutrient utilization.Anim Nutr.20173331343
    [Google Scholar]
  18. AlyS.E. SabryB.A. ShaheenM.S. HathoutA.S. Assessment of antimycotoxigenic and antioxidant activity of star anise (Illicium verum) in vitro.J. Saudi Soc. Agric. Sci.2016151202710.1016/j.jssas.2014.05.003
    [Google Scholar]
  19. LucheseR.H. PrudencioE.R. GuerraA.F. Honey as a Functional Food, Honey Analysis.InTech201710.5772/67020
    [Google Scholar]
  20. Van LaereK.M.J. WissingE. Nutritional composition with health promoting action containing oligosaccharides. US 8,227,448 B2, 2012, Vol. 2.
    [Google Scholar]
  21. GuoZ. ZengS. ZhangY. LuX. TianY. ZhengB. The effects of ultra-high pressure on the structural, rheological and retrogradation properties of lotus seed starch.Food Hydrocoll.20154428529110.1016/j.foodhyd.2014.09.014
    [Google Scholar]
  22. GuoZ. ZhaoB. LiH. MiaoS. ZhengB. Optimization of ultrasound-microwave synergistic extraction of prebiotic oligosaccharides from sweet potatoes (Ipomoea batatas L.).Innov. Food Sci. Emerg. Technol.201954516310.1016/j.ifset.2019.03.009
    [Google Scholar]
  23. LiangL. LiuG. YuG. SongY. LiQ. Simultaneous decoloration and purification of crude oligosaccharides from pumpkin (Cucurbita moschata Duch) by macroporous adsorbent resin.Food Chem.201927774475210.1016/j.foodchem.2018.10.138 30502211
    [Google Scholar]
  24. Sanches LopesS.M. FranciscoM.G. HigashiB. de AlmeidaR.T.R. KrausováG. PilauE.J. GonçalvesJ.E. GonçalvesR.A.C. OliveiraA.J.B. Chemical characterization and prebiotic activity of fructo-oligosaccharides from Stevia rebaudiana (Bertoni) roots and in vitro adventitious root cultures.Carbohydr. Polym.201615271872510.1016/j.carbpol.2016.07.043 27516323
    [Google Scholar]
  25. LuX. ZhengZ. LiH. CaoR. ZhengY. YuH. XiaoJ. MiaoS. ZhengB. Optimization of ultrasonic-microwave assisted extraction of oligosaccharides from lotus (Nelumbo nucifera Gaertn.) seeds.Ind. Crops Prod.201710754655710.1016/j.indcrop.2017.05.060
    [Google Scholar]
  26. KhuituanP. K-da, S.; Bannob, K.; Hayeeawaema, F.; Peerakietkhajorn, S.; Tipbunjong, C.; Wichienchot, S.; Charoenphandhu, N. Prebiotic oligosaccharides from dragon fruits alter gut motility in mice.Biomed. Pharmacother.201911410882110.1016/j.biopha.2019.108821 30951951
    [Google Scholar]
  27. DesaiN.M. MarthaG.S. HarohallyN.V. MurthyP.S. Non-digestible oligosaccharides of green coffee spent and their prebiotic efficiency.LWT202011810878410.1016/j.lwt.2019.108784
    [Google Scholar]
  28. MarsegliaA. SforzaS. FacciniA. BencivenniM. PallaG. CaligianiA. Extraction, identification and semi-quantification of oligopeptides in cocoa beans.Food Res. Int.20146338238910.1016/j.foodres.2014.03.046
    [Google Scholar]
  29. D’SouzaR.N. GrimbsA. GrimbsS. BehrendsB. CornoM. UllrichM.S. KuhnertN. Degradation of cocoa proteins into oligopeptides during spontaneous fermentation of cocoa beans.Food Res. Int.201810950651610.1016/j.foodres.2018.04.068 29803477
    [Google Scholar]
  30. RenY. LiangK. JinY. ZhangM. ChenY. WuH. LaiF. Identification and characterization of two novel α-glucosidase inhibitory oligopeptides from hemp (Cannabis sativa L.) seed protein.J. Funct. Foods20162643945010.1016/j.jff.2016.07.024
    [Google Scholar]
  31. RojasM.J. SiqueiraP.F. MirandaL.C. TardioliP.W. GiordanoR.L.C. Sequential proteolysis and cellulolytic hydrolysis of soybean hulls for oligopeptides and ethanol production.Ind. Crops Prod.20146120221010.1016/j.indcrop.2014.07.002
    [Google Scholar]
  32. ChengD. ShaoY. HartmanR. RoderE. ZhaoK. Oligopeptides from Aster tataricus.Phytochemistry199436494594810.1016/S0031‑9422(00)90468‑0 7765211
    [Google Scholar]
  33. JiangL. HuaD. WangZ. XuS. Aqueous enzymatic extraction of peanut oil and protein hydrolysates.Food Bioprod. Process.2010882-323323810.1016/j.fbp.2009.08.002
    [Google Scholar]
  34. PrabalK.G. DigvirS.J. YogeshC.A. Enzymatic Hydrolysis of Oilseeds for Enhanced Oil Extraction: Current Status. In: 2007 Minneapolis, Minnesota, June 17-20, 2007.St. Joseph, MI, 2007.
  35. Soto-SierraL. StoykovaP. NikolovZ.L. Extraction and fractionation of microalgae-based protein products.Algal Res.201836175192
    [Google Scholar]
  36. JiaQ. LiuX. WuX. WangR. HuX. LiY. HuangC. Hypoglycemic activity of a polyphenolic oligomer-rich extract of Cinnamomum parthenoxylon bark in normal and streptozotocin-induced diabetic rats.Phytomedicine200916874475010.1016/j.phymed.2008.12.012 19464860
    [Google Scholar]
  37. SugiyamaH. AkazomeY. ShojiT. YamaguchiA. YasueM. KandaT. OhtakeY. Oligomeric procyanidins in apple polyphenol are main active components for inhibition of pancreatic lipase and triglyceride absorption.J. Agric. Food Chem.200755114604460910.1021/jf070569k 17458979
    [Google Scholar]
  38. YanagidaA. KandaT. ShojiT. OhnishiKameyama, M.; Nagata, T. Fractionation of apple procyanidins by size-exclusion chromatography.J. Chromatogr. A1999855118119010.1016/S0021‑9673(99)00684‑6 10514983
    [Google Scholar]
  39. StrandåsC. Kamal-EldinA. AnderssonR. ÅmanP. Composition and properties of flaxseed phenolic oligomers.Food Chem.2008110110611210.1016/j.foodchem.2008.01.064 26050172
    [Google Scholar]
  40. LuY. FooL.Y. WongH. Sagecoumarin, a novel caffeic acid trimer from Salvia officinalis.Phytochemistry19995261149115210.1016/S0031‑9422(99)00368‑4
    [Google Scholar]
  41. LuY. Yeap FooL. Antioxidant activities of polyphenols from sage (Salvia officinalis).Food Chem.200175219720210.1016/S0308‑8146(01)00198‑4
    [Google Scholar]
  42. BorsW. MichelC. StettmaierK. LuY. FooL.Y. Antioxidant mechanisms of polyphenolic caffeic acid oligomers, constituents of Salvia officinalis.Biol. Res.200437230131110.4067/S0716‑97602004000200017 15455660
    [Google Scholar]
  43. González-SarríasA. GromekS. NiesenD. SeeramN.P. HenryG.E. Resveratrol oligomers isolated from Carex species inhibit growth of human colon tumorigenic cells mediated by cell cycle arrest.J. Agric. Food Chem.201159168632863810.1021/jf201561e 21761862
    [Google Scholar]
  44. ItoT. HoshinoR. IinumaM. Absolute configuration of resveratrol oligomers isolated from hopea utilis.Helv. Chim. Acta2015981324610.1002/hlca.201400146
    [Google Scholar]
  45. ShankarG.M. BloodgoodB.L. TownsendM. WalshD.M. SelkoeD.J. SabatiniB.L. Natural oligomers of the Alzheimer amyloid-beta protein induce reversible synapse loss by modulating an NMDA-type glutamate receptor-dependent signaling pathway.J. Neurosci.200727112866287510.1523/JNEUROSCI.4970‑06.2007 17360908
    [Google Scholar]
  46. PhanH.T. GreschU. ConradU. In vitro-formulated oligomers of strep-tagged avian influenza haemagglutinin produced in plants cause neutralizing immune responses.Front. Bioeng. Biotechnol.20186AUG11510.3389/fbioe.2018.00115 30177967
    [Google Scholar]
  47. JiY. QiaoH. HeJ. LiW. ChenR. WangJ. WuL. HuR. DuanJ. ChenZ. Functional oligopeptide as a novel strategy for drug delivery.J. Drug Target.201725759760710.1080/1061186X.2017.1309044 28338354
    [Google Scholar]
  48. BansodeR.R. RandolphP. AhmednaM. HurleyS. HannerT. BaxterS.A.S. JohnstonT.A. SuM. HolmesB.M. YuJ. WilliamsL.L. Bioavailability of polyphenols from peanut skin extract associated with plasma lipid lowering function.Food Chem.2014148242910.1016/j.foodchem.2013.09.129 24262521
    [Google Scholar]
  49. YangC. HuC. ZhangH. ChenW. DengQ. TangH. HuangF. Optimation for preparation of oligosaccharides from flaxseed gum and evaluation of antioxidant and antitumor activities in vitro.Int. J. Biol. Macromol.20201531107111610.1016/j.ijbiomac.2019.10.241 31756466
    [Google Scholar]
  50. ÖzdemirF. ApaydınE. ÖnderN.İ. ŞenM. AyrımA. ÖğünçY. İncesuZ. Apoptotic effects of ε-viniferin in combination with cis-platin in C6 cells.Cytotechnology20187031061107310.1007/s10616‑018‑0197‑5 29476302
    [Google Scholar]
  51. PaiR.V. VaviaP.R. Chitosan oligosaccharide enhances binding of nanostructured lipid carriers to ocular mucins: Effect on ocular disposition.Int. J. Pharm.202057711909510.1016/j.ijpharm.2020.119095 32004680
    [Google Scholar]
  52. ChiL. KhanI. LinZ. ZhangJ. LeeM.Y.S. LeongW. HsiaoW.L.W. ZhengY. Fructo-oligosaccharides from Morinda officinalis remodeled gut microbiota and alleviated depression features in a stress rat model.Phytomedicine20206715315710.1016/j.phymed.2019.153157 31896054
    [Google Scholar]
  53. GongL. WangH. WangT. LiuY. WangJ. SunB. Feruloylated oligosaccharides modulate the gut microbiota in vitro via the combined actions of oligosaccharides and ferulic acid.J. Funct. Foods20196010345310.1016/j.jff.2019.103453
    [Google Scholar]
  54. LiE. YangH. ZouY. WangH. HuT. LiQ. LiaoS. In-vitro digestion by simulated gastrointestinal juices of Lactobacillus rhamnosus cultured with mulberry oligosaccharides and subsequent fermentation with human fecal inocula.LWT2019101616810.1016/j.lwt.2018.11.029
    [Google Scholar]
  55. SouzaC.A. LiS. LinA.Z. BoutrotF. GrossmannG. ZipfelC. SomervilleS.C. Cellulose-derived oligomers act as damage-associated molecular patterns and trigger defense-like responses.Plant Physiol.201717342383239810.1104/pp.16.01680 28242654
    [Google Scholar]
  56. SegunP.A. OgboleO.O. IsmailF.M.D. NaharL. EvansA.R. AjaiyeobaE.O. SarkerS.D. Resveratrol derivatives from Commiphora africana (A. Rich.) Endl. display cytotoxicity and selectivity against several human cancer cell lines.Phytother. Res.201933115916610.1002/ptr.6209 30346066
    [Google Scholar]
  57. BoseS.K. HowladerP. JiaX. WangW. YinH. Alginate oligosaccharide postharvest treatment preserve fruit quality and increase storage life via Abscisic acid signaling in strawberry.Food Chem.201928366567410.1016/j.foodchem.2019.01.060 30722925
    [Google Scholar]
  58. ChenX. ZhangY. TangC. TianC. SunQ. SuZ. XueL. YinY. JuC. ZhangC. Co-delivery of paclitaxel and anti-survivin siRNA via redox-sensitive oligopeptide liposomes for the synergistic treatment of breast cancer and metastasis.Int. J. Pharm.20175291-210211510.1016/j.ijpharm.2017.06.071 28642204
    [Google Scholar]
  59. NoorN.M. SheikhK. SomavarapuS. TaylorK.M.G. Preparation and characterization of dutasteride-loaded nanostructured lipid carriers coated with stearic acid-chitosan oligomer for topical delivery.Eur. J. Pharm. Biopharm.201711737238410.1016/j.ejpb.2017.04.012 28412472
    [Google Scholar]
  60. OharaK. KusanoK. KitaoS. YanaiT. TakataR. KanauchiO. ε-Viniferin, a resveratrol dimer, prevents diet-induced obesity in mice.Biochem. Biophys. Res. Commun.2015468487788210.1016/j.bbrc.2015.11.047 26596701
    [Google Scholar]
  61. OseR. HiranoK. MaenoS. NakagawaJ. SalminenS. TochioT. EndoA. The ability of human intestinal anaerobes to metabolize different oligosaccharides: Novel means for microbiota modulation?Anaerobe20185111011910.1016/j.anaerobe.2018.04.018 29734011
    [Google Scholar]
  62. ZhengZ-Q. GengZ-H. LiuJ-X. GuoS-T. Compressed food with added functional oligopeptides improves performance during military endurance training.Asia Pac. J. Clin. Nutr.20172661066107528917232
    [Google Scholar]
  63. BuckleyM.L. RamjiD.P. The influence of dysfunctional signaling and lipid homeostasis in mediating the inflammatory responses during atherosclerosis.Biochimica et Biophysica Acta - Molecular Basis of Disease.Elsevier20151498151010.1016/j.bbadis.2015.04.011
    [Google Scholar]
  64. LiX. ChenY. LiS. ChenM. XiaoJ. XieB. SunZ. Oligomer Procyanidins from Lotus Seedpod Regulate Lipid Homeostasis Partially by Modifying Fat Emulsification and Digestion.J. Agric. Food Chem.201967164524453410.1021/acs.jafc.9b01469 30945544
    [Google Scholar]
  65. WangX. TsangY.F. LiY. MaX. CuiS. ZhangT.A. HuJ. GaoM.T. Inhibitory effects of phenolic compounds of rice straw formed by saccharification during ethanol fermentation by Pichia stipitis.Bioresour. Technol.2017244Pt 11059106710.1016/j.biortech.2017.08.096 28851161
    [Google Scholar]
  66. ShiJ. WangY. WeiH. HuJ. GaoM.T. Structure analysis of condensed tannin from rice straw and its inhibitory effect on Staphylococcus aureus.Ind. Crops Prod.202014511213010.1016/j.indcrop.2020.112130
    [Google Scholar]
  67. XiaoJ. LiS. SuiY. LiX. WuQ. ZhangR. ZhangM. XieB. SunZ. In vitro antioxidant activities of proanthocyanidins extracted from the lotus seedpod and ameliorative effects on learning and memory impairment in scopolamine-induced amnesia mice.Food Sci. Biotechnol.20152441487149410.1007/s10068‑015‑0192‑y
    [Google Scholar]
  68. ChenY. ZhangR. XieB. SunZ. McClementsD.J. Lotus seedpod proanthocyanidin-whey protein complexes: Impact on physical and chemical stability of β-carotene-nanoemulsions.Food Res. Int.202012710873810.1016/j.foodres.2019.108738 31882082
    [Google Scholar]
  69. KawaharaS.I. IshiharaC. MatsumotoK. SengaS. KawaguchiK. YamamotoA. SuwannachotJ. HamauzuY. MakabeH. FujiiH. Identification and characterization of oligomeric proanthocyanidins with significant anti-cancer activity in adzuki beans (Vigna angularis).Heliyon2019510e0261010.1016/j.heliyon.2019.e02610 31687492
    [Google Scholar]
  70. CastroM.C. VillagarcíaH. NazarA. ArbeláezL.G. MassaM.L. Del ZottoH. RíosJ.L. SchinellaG.R. FranciniF. Cacao extract enriched in polyphenols prevents endocrine-metabolic disturbances in a rat model of prediabetes triggered by a sucrose rich diet.J. Ethnopharmacol.202024711226310.1016/j.jep.2019.112263 31580944
    [Google Scholar]
  71. BalaA.E.A. KollmannA. DucrotP-H. MajiraA. KerhoasL. LerouxP. DelormeR. EinhornJ. Cise-viniferin: A New Antifungal Resveratrol Dehydrodimer from Cyphostemma crotalarioides Roots. J. Phytopathol., 2000, 148(1), 29-32.10.1046/j.1439‑0434.2000.00071.x
/content/journals/cnt/10.2174/2665978601999200727103858
Loading
/content/journals/cnt/10.2174/2665978601999200727103858
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test