Skip to content
2000
Volume 2, Issue 2
  • ISSN: 2665-9786
  • E-ISSN: 2665-9794

Abstract

The concept of nutraceuticals has gained increased attention recently as it is based on using natural substances for therapeutic applications. However, limitations such as low bioavailability have restricted the use of these substances thus far. Nanoencapsulation of nutraceuticals has been proposed as a promising solution to circumvent such issues by increasing their bioavailability and targeting their release. Metal and metal oxide nanoparticles are amongst the inorganic nanocarriers that have been studied for their ability to encapsulate nutraceuticals.

The aim of this article is to provide an overview of metal and metal oxide nanoparticles and their synthesis and applications. Furthermore, the conjugation of these nanoparticles with nutraceuticals will be discussed, along with their potential applications.

It has been observed that the conjugation of nutraceuticals with metal nanoparticles resulted in the cumulative properties of both these factors with increased effectiveness. Such advancements are crucial for nutraceutical use in important theranostic applications that combine diagnosis and therapy.

Loading

Article metrics loading...

/content/journals/cnt/10.2174/2665978601666201207212204
2021-07-01
2025-01-10
Loading full text...

Full text loading...

References

  1. KeservaniR.K. KesharwaniR.K. VyasN. JainS. RaghuvanshiR. SharmaA.K. Nutraceutical and functional food as future food: a review.Pharm. Lett.20102106116
    [Google Scholar]
  2. JampilekJ. KosJ. KralovaK. Potential of nanomaterial applications in dietary supplements and foods for special medical purposes.Nanomaterials (Basel)20199229610.3390/nano902029630791492
    [Google Scholar]
  3. ShahidiF. Nutraceuticals, functional foods and dietary supplements in health and disease.Yao Wu Shi Pin Fen Xi201220226230
    [Google Scholar]
  4. PooleC.P.Jr OwensF.J. Introduction to nanotechnology.1st edNew JerseyJohn Wiley & Sons2003
    [Google Scholar]
  5. European commissionhttps://ec.europa.eu/environment/chemicals/nanotech/faq/definition_en.htm
    [Google Scholar]
  6. SantosC.S.C. GabrielB. BlanchyM. MenesO. GarcíaD. BlancoM. ArconadaN. NetoV. Industrial applications of nanoparticles – a prospective overview.Mater. Today Proc.2015245646510.1016/j.matpr.2015.04.056
    [Google Scholar]
  7. WhitesidesG.M. Nanoscience, nanotechnology, and chemistry.Small20051217217910.1002/smll.20040013017193427
    [Google Scholar]
  8. KhanI. SaeedK. KhanI. Nanoparticles: Properties, applications and toxicities.Arab. J. Chem.20191290893110.1016/j.arabjc.2017.05.011
    [Google Scholar]
  9. ChellaramC. MurugaboopathiG. JohnA.A. SivakumarR. GanesanS. KrithikaS. PriyaG. Significance of nanotechnology in food industry.APCBEE Procedia2014810911310.1016/j.apcbee.2014.03.010
    [Google Scholar]
  10. HandyR.D. OwenR. Valsami-JonesE. The ecotoxicology of nanoparticles and nanomaterials: current status, knowledge gaps, challenges, and future needs.Ecotoxicology200817531532510.1007/s10646‑008‑0206‑018408994
    [Google Scholar]
  11. PrichardH.M. FisherP.C. Identification of platinum and palladium particles emitted from vehicles and dispersed into the surface environment.Environ. Sci. Technol.20124663149315410.1021/es203666h22313190
    [Google Scholar]
  12. JeevanandamJ. BarhoumA. ChanY.S. DufresneA. DanquahM.K. Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations.Beilstein J. Nanotechnol.201891050107410.3762/bjnano.9.9829719757
    [Google Scholar]
  13. VentolaC.L. Progress in Nanomedicine: Approved and Investigational Nanodrugs.P&T2017421274275529234213
    [Google Scholar]
  14. KumarS.S.D. RajendranN.K. HoureldN.N. AbrahamseH. Recent advances on silver nanoparticle and biopolymer-based biomaterials for wound healing applications.Int. J. Biol. Macromol.201811516517510.1016/j.ijbiomac.2018.04.00329627463
    [Google Scholar]
  15. McClementsD.J. XiaoH. Is nano safe in foods? Establishing the factors impacting the gastrointestinal fate and toxicity of organic and inorganic food-grade nanoparticles.NPJ Sci Food20171610.1038/s41538‑017‑0005‑131304248
    [Google Scholar]
  16. ThillA. ZeyonsO. SpallaO. ChauvatF. RoseJ. AuffanM. FlankA.M. Cytotoxicity of CeO2 nanoparticles for Escherichia coli. Physico-chemical insight of the cytotoxicity mechanism.Environ. Sci. Technol.200640196151615610.1021/es060999b17051814
    [Google Scholar]
  17. SoenenS.J. Rivera-GilP. MontenegroJ. ParakW.J. De SmedtS.C. BraeckmansK. Cellular toxicity of inorganic nanoparticles: Common aspects and guidelines for improved nanotoxicity evaluation.Nano Today2011644646510.1016/j.nantod.2011.08.001
    [Google Scholar]
  18. HajipourM.J. FrommK.M. AshkarranA.A. Jimenez de AberasturiD. de LarramendiI.R. RojoT. SerpooshanV. ParakW.J. MahmoudiM. Antibacterial properties of nanoparticles.Trends Biotechnol.2012301049951110.1016/j.tibtech.2012.06.00422884769
    [Google Scholar]
  19. HeL. LiuY. MustaphaA. LinM. Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum. Microbiol. Res.2011166320721510.1016/j.micres.2010.03.00320630731
    [Google Scholar]
  20. NasrollahiA. PourshamsianKh. MansourkiaeeP. Antifungal activity of silver nanoparticles on some of fungi.Int. J. Nanodimens.20111233
    [Google Scholar]
  21. ParveenS. WaniA.H. ShahM.A. DeviH.S. BhatM.Y. KokaJ.A. Preparation, characterization and antifungal activity of iron oxide nanoparticles.Microb. Pathog.201811528729210.1016/j.micpath.2017.12.06829306005
    [Google Scholar]
  22. VietP. V. NguyenH. T. CaoT. M. HieuL. V. Fusarium antifungal activities of copper nanoparticles synthesized by a chemical reduction method.J. Nanomater2016
    [Google Scholar]
  23. LipovskyA. NitzanY. GedankenA. LubartR. Antifungal activity of ZnO nanoparticles-the role of ROS mediated cell injury.Nanotechnology2011221010510110.1088/0957‑4484/22/10/10510121289395
    [Google Scholar]
  24. RaiM. DeshmukhS.D. IngleA.P. GuptaI.R. GaldieroM. GaldieroS. Metal nanoparticles: The protective nanoshield against virus infection.Crit. Rev. Microbiol.2016421465610.3109/1040841X.2013.87984924754250
    [Google Scholar]
  25. HangX. PengH. SongH. QiZ. MiaoX. XuW. Antiviral activity of cuprous oxide nanoparticles against Hepatitis C Virus in vitro. J. Virol. Methods201522215015710.1016/j.jviromet.2015.06.01026116793
    [Google Scholar]
  26. LiY. LinZ. ZhaoM. XuT. WangC. HuaL. WangH. XiaH. ZhuB. Silver nanoparticle based codelivery of oseltamivir to inhibit the activity of the H1N1 influenza virus through ROS-mediated signaling pathways.ACS Appl. Mater. Interfaces2016837243852439310.1021/acsami.6b0661327588566
    [Google Scholar]
  27. HalliwellB. GutteridgeJ.M. Free radicals in biology and medicine.(5th ed.), New York: Oxford University Press 2015.10.1093/acprof:oso/9780198717478.001.0001
    [Google Scholar]
  28. BirbenE. SahinerU.M. SackesenC. ErzurumS. KalayciO. Oxidative stress and antioxidant defense.World Allergy Organ. J.20125191910.1097/WOX.0b013e318243961323268465
    [Google Scholar]
  29. CelardoI. PedersenJ.Z. TraversaE. GhibelliL. Pharmacological potential of cerium oxide nanoparticles.Nanoscale2011341411142010.1039/c0nr00875c21369578
    [Google Scholar]
  30. AkhtarM.J. AhamedM. AlhadlaqH.A. AlshamsanA. Mechanism of ROS scavenging and antioxidant signalling by redox metallic and fullerene nanomaterials: Potential implications in ROS associated degenerative disorders.Biochim. Biophys. Acta, Gen. Subj.20171861480281310.1016/j.bbagen.2017.01.01828115205
    [Google Scholar]
  31. KimT. HyeonT. Applications of inorganic nanoparticles as therapeutic agents.Nanotechnology201425101200110.1088/0957‑4484/25/1/01200124334327
    [Google Scholar]
  32. ZhangY. XiongX. HuaiY. DeyA. HossenM.N. RoyR.V. ElechalawarC.K. RaoG. BhattacharyaR. MukherjeeP. Gold Nanoparticles Disrupt Tumor Microenvironment - Endothelial Cell Cross Talk To Inhibit Angiogenic Phenotypes in Vitro. Bioconjug. Chem.20193061724173310.1021/acs.bioconjchem.9b0026231067032
    [Google Scholar]
  33. BishtG. RayamajhiS. ZnO Nanoparticles: A Promising Anticancer Agent.Nanobiomedicine (Rij)20163910.5772/6343729942384
    [Google Scholar]
  34. ElsayedE.A. MoussaS.A. El-EnshasyH.A. WadaanM.A. Anticancer Potentials of Zinc Oxide Nanoparticles against Liver and Breast Cancer Cell Lines.J. Sci. Ind. Res. (India)2020795659
    [Google Scholar]
  35. KumarC.G. SirishaK. PrasadP.N. Synthesis, Characterization, and Applications of Silica Nanomaterials from a Nanobiotechnological Perspective.Nanotechnology in Biology and Medicine Research Advancements & Future Perspectives.Boca Raton: CRC Press 2019; pp. 11-28.10.1201/9780429259333‑2
    [Google Scholar]
  36. IravaniS. KorbekandiH. MirmohammadiS.V. ZolfaghariB. Synthesis of silver nanoparticles: chemical, physical and biological methods.Res. Pharm. Sci.20149638540626339255
    [Google Scholar]
  37. KhandelP. YadawR. SoniD. KanwarL. ShahiS. Biogenesis of metal nanoparticles and their pharmacological applications: present status and application prospects.J. Nanostruct. Chem.2018821725410.1007/s40097‑018‑0267‑4
    [Google Scholar]
  38. MarchiolL. Synthesis of metal nanoparticles in living plants.Ital. J. Agron.2012727428210.4081/ija.2012.e37
    [Google Scholar]
  39. KharissovaO.V. DiasH.V.R. KharisovB.I. PérezB.O. PérezV.M.J. The greener synthesis of nanoparticles.Trends Biotechnol.201331424024810.1016/j.tibtech.2013.01.00323434153
    [Google Scholar]
  40. MakarovV. V. LoveA. J. SinitsynaO. V. MakarovaS. S. YaminskyI. V. TalianskyM. E. KalininaN. O. "Green" nanotechnologies: synthesis of metal nanoparticles using plants.Acta naturae.201463544
    [Google Scholar]
  41. RajuD. MehtaU.J. AhmadA. Phytosynthesis of intracellular and extracellular gold nanoparticles by living peanut plant (Arachis hypogaea L.).Biotechnol. Appl. Biochem.201259647147810.1002/bab.104923586957
    [Google Scholar]
  42. El-SeediH.R. El-ShabasyR.M. KhalifaS.A.M. SaeedA. ShahA. ShahR. IftikharF.J. Abdel-DaimM.M. OmriA. HajrahandN.H. SabirJ.S.M. ZouX. HalabiM.F. SarhanW. GuoW. Metal nanoparticles fabricated by green chemistry using natural extracts: biosynthesis, mechanisms, and applications.RSC Advances20199245392455910.1039/C9RA02225B
    [Google Scholar]
  43. JemalK. SandeepB. V. PolaS. Synthesis, characterization, and evaluation of the antibacterial activity of Allophylus serratus leaf and leaf derived callus extracts mediated silver nanoparticles.J. Nanomater.2017
    [Google Scholar]
  44. SinghP. KimY.J. ZhangD. YangD.C. Biological Synthesis of Nanoparticles from Plants and Microorganisms.Trends Biotechnol.201634758859910.1016/j.tibtech.2016.02.00626944794
    [Google Scholar]
  45. Mobeen AmanullaA. SundaramR. Green synthesis of TiO2 nanoparticles using orange peel extract for antibacterial, cytotoxicity and humidity sensor applications.Mater. Today Proc.2019832333110.1016/j.matpr.2019.02.118
    [Google Scholar]
  46. GroissS. SelvarajR. VaradavenkatesanT. VinayagamR. Structural characterization, antibacterial and catalytic effect of iron oxide nanoparticles synthesised using the leaf extract of Cynometra ramiflora. J. Mol. Struct.2017112857257810.1016/j.molstruc.2016.09.031
    [Google Scholar]
  47. SrivatsanK.V. DuraipandyN. BegumS. LakraR. RamamurthyU. KorrapatiP.S. KiranM.S. Effect of curcumin caged silver nanoparticle on collagen stabilization for biomedical applications.Int. J. Biol. Macromol.20157530631510.1016/j.ijbiomac.2015.01.05025661876
    [Google Scholar]
  48. AssadpourE. Mahdi JafariS. A systematic review on nanoencapsulation of food bioactive ingredients and nutraceuticals by various nanocarriers.Crit. Rev. Food Sci. Nutr.201959193129315110.1080/10408398.2018.148468729883187
    [Google Scholar]
  49. JafariS.M. An Introduction to Nanoencapsulation Techniques for the Food Bioactive Ingredients.Nanoencapsulation of Food Bioactive Ingredients. London: Academic Press 2017; pp. 1-62.10.1016/B978‑0‑12‑809740‑3.00001‑5
    [Google Scholar]
  50. Moreno-ÁlvarezS. Martínez-CastañónG. Niño-MartínezN. Reyes-MacíasJ. Patiño-MarínN. Loyola-RodríguezJ. RuizF. Preparation and bactericide activity of gallic acid stabilized gold nanoparticles.J. Nanopart. Res.2010122741274610.1007/s11051‑010‑0060‑x
    [Google Scholar]
  51. DuraipandyN. LakraR. Vinjimur SrivatsanK. RamamoorthyU. KorrapatiP.S. KiranM.S. Plumbagin caged silver nanoparticle stabilized collagen scaffold for wound dressing.J. Mater. Chem. B Mater. Biol. Med.2015371415142510.1039/C4TB01791A32264492
    [Google Scholar]
  52. YallapuM.M. OthmanS.F. CurtisE.T. BauerN.A. ChauhanN. KumarD. JaggiM. ChauhanS.C. Curcumin-loaded magnetic nanoparticles for breast cancer therapeutics and imaging applications.Int. J. Nanomedicine201271761177922619526
    [Google Scholar]
  53. LothaR. SundaramoorthyN.S. ShamprasadB.R. NagarajanS. SivasubramanianA. Plant nutraceuticals (Quercetrin and Afzelin) capped silver nanoparticles exert potent antibiofilm effect against food borne pathogen Salmonella enterica serovar Typhi and curtail planktonic growth in zebrafish infection model.Microb. Pathog.201812010911810.1016/j.micpath.2018.04.04429715535
    [Google Scholar]
  54. DuraipandyN. LakraR. Kunnavakkam VinjimurS. SamantaD. KP.S. KiranM.S. Caging of plumbagin on silver nanoparticles imparts selectivity and sensitivity to plumbagin for targeted cancer cell apoptosis.Metallomics20146112025203310.1039/C4MT00165F25188862
    [Google Scholar]
  55. YangX.X. LiC.M. HuangC.Z. Curcumin modified silver nanoparticles for highly efficient inhibition of respiratory syncytial virus infection.Nanoscale2016853040304810.1039/C5NR07918G26781043
    [Google Scholar]
  56. RattanataN. DaduangS. WongwattanakulM. LeelayuwatC. LimpaiboonT. LekphromR. SandeeA. BoonsiriP. Chio-SrichanS. DaduangJ. Gold Nanoparticles Enhance the Anticancer Activity of Gallic Acid against Cholangiocarcinoma Cell Lines.Asian Pac. J. Cancer Prev.201516167143714710.7314/APJCP.2015.16.16.714326514503
    [Google Scholar]
  57. ParkS.Y. ChaeS.Y. ParkJ.O. LeeK.J. ParkG. Gold-conjugated resveratrol nanoparticles attenuate the invasion and MMP-9 and COX-2 expression in breast cancer cells.Oncol. Rep.20163563248325610.3892/or.2016.471627035791
    [Google Scholar]
  58. MedheS. MedheS. BansalP. BansalP. SrivastavaM. SrivastavaM. Enhanced antioxidant activity of gold nanoparticle embedded 3,6-dihydroxyflavone: a combinational study.Appl. Nanosci.2014415316110.1007/s13204‑012‑0182‑9
    [Google Scholar]
  59. ShahabadiN. AkbariA. KarampourF. FalsafiM. Cytotoxicity and antibacterial activities of new chemically synthesized magnetic nanoparticles containing eugenol.J. Drug Deliv. Sci. Technol.20194911312210.1016/j.jddst.2018.11.001
    [Google Scholar]
  60. WangC. ZhangH. ChenY. ShiF. ChenB. Gambogic acid-loaded magnetic Fe(3)O(4) nanoparticles inhibit Panc-1 pancreatic cancer cell proliferation and migration by inactivating transcription factor ETS1.Int. J. Nanomedicine2012778178722393285
    [Google Scholar]
  61. VittorioO. VolianiV. FaraciP. KarmakarB. IemmaF. HampelS. KavallarisM. CirilloG. Magnetic catechin-dextran conjugate as targeted therapeutic for pancreatic tumour cells.J. Drug Target.201422540841510.3109/1061186X.2013.87894124432976
    [Google Scholar]
  62. ShahS.T. YehyaA.W. SaadO. SimaraniK. ChowdhuryZ. A AlhadiA. Al-AniL.A. Surface functionalization of iron oxide nanoparticles with gallic acid as potential antioxidant and antimicrobial agents.Nanomaterials (Basel)2017730610.3390/nano7100306
    [Google Scholar]
  63. SawantV.J. KupwadeR.V. Functionalization of TiO2 nanoparticles and curcumin loading for enhancement of biological activity.Pharm. Lett.201573744
    [Google Scholar]
  64. DaduangJ. PalasapA. DaduangS. BoonsiriP. SuwannalertP. LimpaiboonT. Gallic acid enhancement of gold nanoparticle anticancer activity in cervical cancer cells.Asian Pac. J. Cancer Prev.201516116917410.7314/APJCP.2015.16.1.16925640346
    [Google Scholar]
  65. IzuiS. SekineS. MaedaK. KuboniwaM. TakadaA. AmanoA. NagataH. Antibacterial activity of curcumin against periodontopathic bacteria.J. Periodontol.2016871839010.1902/jop.2015.15026026447754
    [Google Scholar]
  66. MohantyC. SahooS.K. Curcumin and its topical formulations for wound healing applications.Drug Discov. Today201722101582159210.1016/j.drudis.2017.07.00128711364
    [Google Scholar]
  67. ChinS.F. IyerK.S. SaundersM. St PierreT.G. BuckleyC. PaskeviciusM. RastonC.L. Encapsulation and sustained release of curcumin using superparamagnetic silica reservoirs.Chemistry200915235661566510.1002/chem.20080274719396886
    [Google Scholar]
  68. JaiswalV.D. DongreP.M. Biophysical interactions between silver nanoparticle-albumin interface and curcumin.J. Pharm. Anal.202010216417710.1016/j.jpha.2020.02.00432373388
    [Google Scholar]
  69. CaiL. QiuN. XiangM. TongR. YanJ. HeL. ShiJ. ChenT. WenJ. WangW. ChenL. Improving aqueous solubility and antitumor effects by nanosized gambogic acid-mPEG2 0 0 0 micelles.Int. J. Nanomedicine2014924325524403830
    [Google Scholar]
  70. LaurentS. BridotJ.L. ElstL.V. MullerR.N. Magnetic iron oxide nanoparticles for biomedical applications.Future Med. Chem.20102342744910.4155/fmc.09.16421426176
    [Google Scholar]
/content/journals/cnt/10.2174/2665978601666201207212204
Loading
/content/journals/cnt/10.2174/2665978601666201207212204
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test