Skip to content
2000
Volume 1, Issue 1
  • ISSN: 2665-9786
  • E-ISSN: 2665-9794

Abstract

In animals, the 21st amino acid selenocysteine is incorporated into a restricted subset of proteins by recoding of a UGA stop codon. This recoding requires a distinctive selenocysteine insertion sequence in selenoprotein encoding mRNAs, trans-acting factors and in most cases, adequate dietary intake of selenium. With one exception, selenoproteins contain a single selenocysteine, which is incorporated with low translational efficiency. The exception is selenoprotein P, which in some species is predicted to contain as many as 132 selenocysteines and which is considered to play roles in selenium transport and storage.

This study aimed to develop comparative physiological and evolutionary perspectives on the function(s) of selenoprotein P.

The review of the literature on the roles of selenoprotein P in diverse animals.

Selenoprotein P contains multiple selenocysteines, making it energetically costly to produce. Furthermore, it is often associated with detrimental effects to the animals that produce it. Possible benefits that outweigh these costs include the general storage and transport of selenium; the transport of both toxic and useful metal ions; and specific functions in reproduction and in the nervous system.

A probable reconciliation of the negative effects of producing Selenoprotein P is its benefit in terms of promoting reproductive success.

Loading

Article metrics loading...

/content/journals/cnt/10.2174/2665978601666200213120929
2020-05-01
2025-01-19
Loading full text...

Full text loading...

/deliver/fulltext/cnt/1/1/CNT-1-1-42.html?itemId=/content/journals/cnt/10.2174/2665978601666200213120929&mimeType=html&fmt=ahah

References

  1. RaymanM.P. Selenium intake, status, and health: a complex relationship.Hormones20201991410.1007/s42000‑019‑00125‑5
    [Google Scholar]
  2. NuttallK.L. Evaluating selenium poisoning.Ann. Clin. Lab. Sci.200636440942017127727
    [Google Scholar]
  3. BurkR.F. HillK.E. Regulation of selenium metabolism and transport.Annu. Rev. Nutr.20153510913410.1146/annurev‑nutr‑071714‑03425025974694
    [Google Scholar]
  4. ZhouH. WangT. LiQ. LiD. Prevention of keshan disease by selenium supplementation: A systematic review and meta-analysis.Biol. Trace Elem. Res.201818619810510.1007/s12011‑018‑1302‑529627894
    [Google Scholar]
  5. RobberechtH. De BruyneT. Davioud-CharvetE. MackrillJ. HermansN. Selenium status in elderly people: Longevity and age-related diseases.Curr. Pharm. Des.201925151694170610.2174/138161282566619070114470931267854
    [Google Scholar]
  6. SchweizerU. Fradejas-VillarN. Why 21? The significance of selenoproteins for human health revealed by inborn errors of metabolism.FASEB J.201630113669368110.1096/fj.20160042427473727
    [Google Scholar]
  7. HatfieldD.L. TsujiP.A. CarlsonB.A. GladyshevV.N. Selenium and selenocysteine: roles in cancer, health, and development.Trends Biochem. Sci.201439311212010.1016/j.tibs.2013.12.00724485058
    [Google Scholar]
  8. FlohéL. The labour pains of biochemical selenology: the history of selenoprotein biosynthesis.Biochim. Biophys. Acta20091790111389140310.1016/j.bbagen.2009.03.03119358874
    [Google Scholar]
  9. WhiteP.J. Selenium metabolism in plants.Biochim. Biophys. Acta, Gen. Subj.2018pii: S0304-416518301387 29751098
    [Google Scholar]
  10. SuzukiK.T. KurasakiK. SuzukiN. Selenocysteine beta-lyase and methylselenol demethylase in the metabolism of Se-methylated selenocompounds into selenide.Biochim. Biophys. Acta2007177071053106110.1016/j.bbagen.2007.03.00717451884
    [Google Scholar]
  11. YamashitaY. YamashitaM. Identification of a novel selenium-containing compound, selenoneine, as the predominant chemical form of organic selenium in the blood of bluefin tuna.J. Biol. Chem.201028524181341813810.1074/jbc.C110.10637720388714
    [Google Scholar]
  12. ElhodakyM. DiamondA.M. Selenium-binding protein 1 in human health and disease.Int. J. Mol. Sci.20181911 E343710.3390/ijms1911343730400135
    [Google Scholar]
  13. KimI.Y. GuimarãesM.J. ZlotnikA. BazanJ.F. StadtmanT.C. Fetal mouse selenophosphate synthetase 2 (SPS2): characterization of the cysteine mutant form overproduced in a baculovirus-insect cell system.Proc. Natl. Acad. Sci. USA199794241842110.1073/pnas.94.2.4189012797
    [Google Scholar]
  14. AmbergR. MizutaniT. WuX.Q. GrossH.J. Selenocysteine synthesis in mammalia: an identity switch from tRNA(Ser) to tRNA(Sec).J. Mol. Biol.1996263181910.1006/jmbi.1996.05528890909
    [Google Scholar]
  15. BerryM.J. BanuL. HarneyJ.W. LarsenP.R. Functional characterization of the eukaryotic SECIS elements which direct selenocysteine insertion at UGA codons.EMBO J.19931283315332210.1002/j.1460‑2075.1993.tb06001.x8344267
    [Google Scholar]
  16. WessjohannL.A. SchneiderA. AbbasM. BrandtW. Selenium in chemistry and biochemistry in comparison to sulfur.Biol. Chem.200738810997100610.1515/BC.2007.13817937613
    [Google Scholar]
  17. ReichH.J. HondalR.J. Why nature chose selenium.ACS Chem. Biol.201611482184110.1021/acschembio.6b0003126949981
    [Google Scholar]
  18. CastellanoS. AndrésA.M. BoschE. BayesM. GuigóR. ClarkA.G. Low exchangeability of selenocysteine, the 21st amino acid, in vertebrate proteins.Mol. Biol. Evol.20092692031204010.1093/molbev/msp10919487332
    [Google Scholar]
  19. GoblerC.J. LobanovA.V. TangY.Z. TuranovA.A. ZhangY. DoblinM. TaylorG.T. Sañudo-WilhelmyS.A. GrigorievI.V. GladyshevV.N. The central role of selenium in the biochemistry and ecology of the harmful pelagophyte, Aureococcus anophagefferens.ISME J.2013771333134310.1038/ismej.2013.2523466703
    [Google Scholar]
  20. WuS. MariottiM. SantesmassesD. HillK.E. BaclaocosJ. Aparicio-PratE. LiS. MackrillJ. WuY. HowardM.T. CapecchiM. GuigóR. BurkR.F. AtkinsJ.F. Human selenoprotein P and S variant mRNAs with different numbers of SECIS elements and inferences from mutant mice of the roles of multiple SECIS elements.Open Biol.2016611 16024110.1098/rsob.16024127881738
    [Google Scholar]
  21. HillK.E. ZhouJ. McMahanW.J. MotleyA.K. AtkinsJ.F. GestelandR.F. BurkR.F. Deletion of selenoprotein P alters distribution of selenium in the mouse.J. Biol. Chem.200327816136401364610.1074/jbc.M30075520012574155
    [Google Scholar]
  22. SchomburgL. SchweizerU. HoltmannB. FlohéL. SendtnerM. KöhrleJ. Gene disruption discloses role of selenoprotein P in selenium delivery to target tissues.Biochem. J.2003370Pt 239740210.1042/bj2002185312521380
    [Google Scholar]
  23. OlsonG.E. WinfreyV.P. NagdasS.K. HillK.E. BurkR.F. Apolipoprotein E receptor-2 (ApoER2) mediates selenium uptake from selenoprotein P by the mouse testis.J. Biol. Chem.200728216122901229710.1074/jbc.M61140320017314095
    [Google Scholar]
  24. HillK.E. ZhouJ. McMahanW.J. MotleyA.K. BurkR.F. Neurological dysfunction occurs in mice with targeted deletion of the selenoprotein P gene.J. Nutr.2004134115716110.1093/jn/134.1.15714704310
    [Google Scholar]
  25. SchweizerU. StreckfussF. PeltP. CarlsonB.A. HatfieldD.L. KöhrleJ. SchomburgL. Hepatically derived selenoprotein P is a key factor for kidney but not for brain selenium supply.Biochem. J.2005386Pt 222122610.1042/BJ2004197315638810
    [Google Scholar]
  26. HillK.E. LloydR.S. BurkR.F. Conserved nucleotide sequences in the open reading frame and 3′ untranslated region of selenoprotein P mRNA.Proc. Natl. Acad. Sci. USA199390253754110.1073/pnas.90.2.5378421687
    [Google Scholar]
  27. BaclaocosJ. SantesmassesD. MariottiM. BierłaK. VetickM.B. LynchS. McAllenR. MackrillJ.J. LoughranG. GuigóR. SzpunarJ. CopelandP.R. GladyshevV.N. AtkinsJ.F. Processive Recoding and Metazoan Evolution of Selenoprotein P: Up to 132 UGAs in Molluscs.J. Mol. Biol.2019431224381440710.1016/j.jmb.2019.08.00731442478
    [Google Scholar]
  28. AnderssonJ.O. Lateral gene transfer in eukaryotes.Cell. Mol. Life Sci.200562111182119710.1007/s00018‑005‑4539‑z15761667
    [Google Scholar]
  29. GoulasT. ArolasJ.L. Gomis-RüthF.X. Structure, function and latency regulation of a bacterial enterotoxin potentially derived from a mammalian adamalysin/ADAM xenolog.Proc. Natl. Acad. Sci. USA201110851856186110.1073/pnas.101217310821233422
    [Google Scholar]
  30. UnderrinerA. SilverwoodT. KelleyC. MacLeaK.S. Genome Sequence of the Halophilic Bacterium Kangiella spongicola ATCC BAA-2076(T).Microbiol Resour Announc201872pii: e00847e1810.1128/MRA.00847‑1830533801
    [Google Scholar]
  31. SaitoY. SatoN. HirashimaM. TakebeG. NagasawaS. TakahashiK. Domain structure of bi-functional selenoprotein P.Biochem. J.2004381Pt 384184610.1042/BJ2004032815117283
    [Google Scholar]
  32. ShettyS.P. ShahR. CopelandP.R. Regulation of selenocysteine incorporation into the selenium transport protein, selenoprotein P.J. Biol. Chem.201428936253172532610.1074/jbc.M114.59043025063811
    [Google Scholar]
  33. SaitoY. HayashiT. TanakaA. WatanabeY. SuzukiM. SaitoE. TakahashiK. Selenoprotein P in human plasma as an extracellular phospholipid hydroperoxide glutathione peroxidase. Isolation and enzymatic characterization of human selenoprotein p.J. Biol. Chem.199927452866287110.1074/jbc.274.5.28669915822
    [Google Scholar]
  34. KurokawaS. ErikssonS. RoseK.L. WuS. MotleyA.K. HillS. WinfreyV.P. McDonaldW.H. CapecchiM.R. AtkinsJ.F. ArnérE.S. HillK.E. BurkR.F. Sepp1(UF) forms are N-terminal selenoprotein P truncations that have peroxidase activity when coupled with thioredoxin reductase-1.Free Radic. Biol. Med.201469677610.1016/j.freeradbiomed.2014.01.01024434121
    [Google Scholar]
  35. BosschaertsT. GuilliamsM. NoelW. HérinM. BurkR.F. HillK.E. BrysL. RaesG. GhassabehG.H. De BaetselierP. BeschinA. Alternatively activated myeloid cells limit pathogenicity associated with African trypanosomiasis through the IL-10 inducible gene selenoprotein P.J. Immunol.200818096168617510.4049/jimmunol.180.9.616818424738
    [Google Scholar]
  36. OlsonG.E. WinfreyV.P. HillK.E. BurkR.F. Megalin mediates selenoprotein P uptake by kidney proximal tubule epithelial cells.J. Biol. Chem.2008283116854686010.1074/jbc.M70994520018174160
    [Google Scholar]
  37. BurkR.F. HillK.E. OlsonG.E. WeeberE.J. MotleyA.K. WinfreyV.P. AustinL.M. Deletion of apolipoprotein E receptor-2 in mice lowers brain selenium and causes severe neurological dysfunction and death when a low-selenium diet is fed.J. Neurosci.200727236207621110.1523/JNEUROSCI.1153‑07.200717553992
    [Google Scholar]
  38. KurokawaS. BellingerF.P. HillK.E. BurkR.F. BerryM.J. Isoform-specific binding of selenoprotein P to the β-propeller domain of apolipoprotein E receptor 2 mediates selenium supply.J. Biol. Chem.2014289139195920710.1074/jbc.M114.54901424532792
    [Google Scholar]
  39. MotsenbockerM.A. TappelA.L. A selenocysteine-containing selenium-transport protein in rat plasma.Biochim. Biophys. Acta1982719114715310.1016/0304‑4165(82)90318‑X6216918
    [Google Scholar]
  40. HybsierS. SchulzT. WuZ. DemuthI. MinichW.B. RenkoK. RijntjesE. KöhrleJ. StrasburgerC.J. Steinhagen-ThiessenE. SchomburgL. Sex-specific and inter-individual differences in biomarkers of selenium status identified by a calibrated ELISA for selenoprotein P.Redox Biol.20171140341410.1016/j.redox.2016.12.02528064116
    [Google Scholar]
  41. MaS. HillK.E. CaprioliR.M. BurkR.F. Mass spectrometric characterization of full-length rat selenoprotein P and three isoforms shortened at the C terminus. Evidence that three UGA codons in the mRNA open reading frame have alternative functions of specifying selenocysteine insertion or translation termination.J. Biol. Chem.200227715127491275410.1074/jbc.M11146220011821412
    [Google Scholar]
  42. MariottiM. RidgeP.G. ZhangY. LobanovA.V. PringleT.H. GuigoR. HatfieldD.L. GladyshevV.N. Composition and evolution of the vertebrate and mammalian selenoproteomes.PLoS One201273 e3306610.1371/journal.pone.003306622479358
    [Google Scholar]
  43. ReadR. BellewT. YangJ.G. HillK.E. PalmerI.S. BurkR.F. Selenium and amino acid composition of selenoprotein P, the major selenoprotein in rat serum.J. Biol. Chem.19902652917899179052211667
    [Google Scholar]
  44. TuranovA.A. EverleyR.A. HybsierS. RenkoK. SchomburgL. GygiS.P. HatfieldD.L. GladyshevV.N. Regulation of selenocysteine content of human selenoprotein p by dietary selenium and insertion of cysteine in place of selenocysteine.PLoS One20151010 e014035310.1371/journal.pone.014035326452064
    [Google Scholar]
  45. RenkoK. MartitzJ. HybsierS. HeynischB. VossL. EverleyR.A. GygiS.P. StoedterM. WisniewskaM. KöhrleJ. GladyshevV.N. SchomburgL. Aminoglycoside-driven biosynthesis of selenium-deficient Selenoprotein P.Sci. Rep.201771439110.1038/s41598‑017‑04586‑928663583
    [Google Scholar]
  46. MéplanC. NicolF. BurtleB.T. CrosleyL.K. ArthurJ.R. MathersJ.C. HeskethJ.E. Relative abundance of selenoprotein P isoforms in human plasma depends on genotype, se intake, and cancer status.Antioxid. Redox Signal.200911112631264010.1089/ars.2009.253319453253
    [Google Scholar]
  47. MéplanC. CrosleyL.K. NicolF. BeckettG.J. HowieA.F. HillK.E. HorganG. MathersJ.C. ArthurJ.R. HeskethJ.E. Genetic polymorphisms in the human selenoprotein P gene determine the response of selenoprotein markers to selenium supplementation in a gender-specific manner (the SELGEN study).FASEB J.200721123063307410.1096/fj.07‑8166com17536041
    [Google Scholar]
  48. KoppT.I. OutzenM. OlsenA. VogelU. Ravn-HarenG. Genetic polymorphism in selenoprotein P modifies the response to selenium-rich foods on blood levels of selenium and selenoprotein P in a randomized dietary intervention study in Danes.Genes Nutr.2018132010.1186/s12263‑018‑0608‑430008961
    [Google Scholar]
  49. DonadioJ.L.S. RogeroM.M. CockellS. HeskethJ. CozzolinoS.M.F. Influence of genetic variations in selenoprotein genes on the pattern of gene expression after supplementation with Brazil Nuts.Nutrients201797 E73910.3390/nu907073928696394
    [Google Scholar]
  50. LobanovA.V. FomenkoD.E. ZhangY. SenguptaA. HatfieldD.L. GladyshevV.N. Evolutionary dynamics of eukaryotic selenoproteomes: large selenoproteomes may associate with aquatic life and small with terrestrial life.Genome Biol.200789R19810.1186/gb‑2007‑8‑9‑r19817880704
    [Google Scholar]
  51. LobanovA.V. HatfieldD.L. GladyshevV.N. Reduced reliance on the trace element selenium during evolution of mammals.Genome Biol.200893R6210.1186/gb‑2008‑9‑3‑r6218377657
    [Google Scholar]
  52. SarangiG.K. RomagnéF. CastellanoS. Distinct Patterns of Selection in Selenium-Dependent Genes between Land and Aquatic Vertebrates.Mol. Biol. Evol.20183571744175610.1093/molbev/msy07029669130
    [Google Scholar]
  53. WhiteL. RomagnéF. MüllerE. ErlebachE. WeihmannA. ParraG. AndrésA.M. CastellanoS. Genetic adaptation to levels of dietary selenium in recent human history.Mol. Biol. Evol.20153261507151810.1093/molbev/msv04325739735
    [Google Scholar]
  54. TamuraK. PetersonD. PetersonN. StecherG. NeiM. KumarS. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods.Mol. Biol. Evol.201128102731273910.1093/molbev/msr12121546353
    [Google Scholar]
  55. FixsenS.M. HowardM.T. Processive selenocysteine incorporation during synthesis of eukaryotic selenoproteins.J. Mol. Biol.2010399338539610.1016/j.jmb.2010.04.03320417644
    [Google Scholar]
  56. FletcherJ.E. CopelandP.R. DriscollD.M. Polysome distribution of phospholipid hydroperoxide glutathione peroxidase mRNA: evidence for a block in elongation at the UGA/selenocysteine codon.RNA20006111573158410.1017/S135583820000062511105757
    [Google Scholar]
  57. StoytchevaZ. TujebajevaR.M. HarneyJ.W. BerryM.J. Efficient incorporation of multiple selenocysteines involves an inefficient decoding step serving as a potential translational checkpoint and ribosome bottleneck.Mol. Cell. Biol.200626249177918410.1128/MCB.00856‑0617000762
    [Google Scholar]
  58. MisuH. TakamuraT. TakayamaH. HayashiH. Matsuzawa-NagataN. KuritaS. IshikuraK. AndoH. TakeshitaY. OtaT. SakuraiM. YamashitaT. MizukoshiE. YamashitaT. HondaM. MiyamotoK. KubotaT. KubotaN. KadowakiT. KimH.J. LeeI.K. MinokoshiY. SaitoY. TakahashiK. YamadaY. TakakuraN. KanekoS. A liver-derived secretory protein, selenoprotein P, causes insulin resistance.Cell Metab.201012548349510.1016/j.cmet.2010.09.01521035759
    [Google Scholar]
  59. MitaY. NakayamaK. InariS. NishitoY. YoshiokaY. SakaiN. SotaniK. NagamuraT. KuzuharaY. InagakiK. IwasakiM. MisuH. IkegawaM. TakamuraT. NoguchiN. SaitoY. Selenoprotein P-neutralizing antibodies improve insulin secretion and glucose sensitivity in type 2 diabetes mouse models.Nat. Commun.201781165810.1038/s41467‑017‑01863‑z29162828
    [Google Scholar]
  60. SpeckmannB. SiesH. SteinbrennerH. Attenuation of hepatic expression and secretion of selenoprotein P by metformin.Biochem. Biophys. Res. Commun.2009387115816310.1016/j.bbrc.2009.06.14319576170
    [Google Scholar]
  61. CetindağlıI. KaraM. TanogluA. OzalperV. AribalS. HancerliY. UnalM. OzarıO. HiraS. KaplanM. YazganY. Evaluation of endothelial dysfunction in patients with nonalcoholic fatty liver disease: Association of selenoprotein P with carotid intima-media thickness and endothelium-dependent vasodilation.Clin. Res. Hepatol. Gastroenterol.201741551652410.1016/j.clinre.2017.01.00528760353
    [Google Scholar]
  62. ChoiH.Y. HwangS.Y. LeeC.H. HongH.C. YangS.J. YooH.J. SeoJ.A. KimS.G. KimN.H. BaikS.H. ChoiD.S. ChoiK.M. Increased selenoprotein p levels in subjects with visceral obesity and nonalcoholic Fatty liver disease.Diabetes Metab. J.2013371637110.4093/dmj.2013.37.1.6323439771
    [Google Scholar]
  63. PolyzosS.A. KountourasJ. GoulasA. DuntasL. Selenium and selenoprotein P in nonalcoholic fatty liver disease.Hormones (Athens)2020191617210.1007/s42000‑019‑00127‑3
    [Google Scholar]
  64. StraussE. OszkinisG. StaniszewskiR. SEPP1 gene variants and abdominal aortic aneurysm: gene association in relation to metabolic risk factors and peripheral arterial disease coexistence.Sci. Rep.20144706110.1038/srep0706125395084
    [Google Scholar]
  65. KikuchiN. SatohK. KurosawaR. YaoitaN. Elias-Al-MamunM. SiddiqueM.A.H. OmuraJ. SatohT. NogiM. SunamuraS. MiyataS. SaitoY. HoshikawaY. OkadaY. ShimokawaH. Selenoprotein P Promotes the Development of Pulmonary Arterial Hypertension.Circulation2018138660062310.1161/CIRCULATIONAHA.117.03311329636330
    [Google Scholar]
  66. ChadaniH. UsuiS. InoueO. KusayamaT. TakashimaS.I. KatoT. MuraiH. FurushoH. NomuraA. MisuH. TakamuraT. KanekoS. TakamuraM. Endogenous selenoprotein P, a liver-derived secretory protein, mediates myocardial ischemia/reperfusion injury in mice.Int. J. Mol. Sci.2018193 E87810.3390/ijms1903087829547524
    [Google Scholar]
  67. MaS. LeeS.G. KimE.B. ParkT.J. SeluanovA. GorbunovaV. BuffensteinR. SeravalliJ. GladyshevV.N. Organization of the mammalian ionome according to organ origin, lineage specialization, and longevity.Cell Rep.20151371319132610.1016/j.celrep.2015.10.01426549444
    [Google Scholar]
  68. KasaikinaM.V. LobanovA.V. MalinouskiM.Y. LeeB.C. SeravalliJ. FomenkoD.E. TuranovA.A. FinneyL. VogtS. ParkT.J. MillerR.A. HatfieldD.L. GladyshevV.N. Reduced utilization of selenium by naked mole rats due to a specific defect in GPx1 expression.J. Biol. Chem.201128619170051701410.1074/jbc.M110.21626721372135
    [Google Scholar]
  69. PenglaseS. HamreK. EllingsenS. The selenium content of SEPP1 versus selenium requirements in vertebrates.PeerJ20153 e124410.7717/peerj.124426734501
    [Google Scholar]
  70. JiangL. LiuQ. NiJ. In silico identification of the sea squirt selenoproteome.BMC Genomics20101128910.1186/1471‑2164‑11‑28920459719
    [Google Scholar]
  71. LuW. LiW.W. JinX.K. HeL. JiangH. WangQ. Reproductive function of Selenoprotein M in Chinese mitten crabs (Eriocheir sinesis).Peptides201234116817610.1016/j.peptides.2011.04.02221557973
    [Google Scholar]
  72. JiangL. ZhuH.Z. XuY.Z. NiJ.Z. ZhangY. LiuQ. Comparative selenoproteome analysis reveals a reduced utilization of selenium in parasitic platyhelminthes.PeerJ20131 e20210.7717/peerj.20224255816
    [Google Scholar]
  73. OkeT.T. MoskovitzJ. WilliamsD.L. Characterization of the methionine sulfoxide reductases of Schistosoma mansoni.J. Parasitol.20099561421142810.1645/GE‑2062.119604033
    [Google Scholar]
  74. HughesD.J. Duarte-SallesT. HybsierS. TrichopoulouA. StepienM. AleksandrovaK. OvervadK. TjønnelandA. OlsenA. AffretA. FagherazziG. Boutron-RuaultM.C. KatzkeV. KaaksR. BoeingH. BamiaC. LagiouP. PeppaE. PalliD. KroghV. PanicoS. TuminoR. SacerdoteC. Bueno-de-MesquitaH.B. PeetersP.H. EngesetD. WeiderpassE. LasherasC. AgudoA. SánchezM.J. NavarroC. ArdanazE. DorronsoroM. HemmingssonO. WarehamN.J. KhawK.T. BradburyK.E. CrossA.J. GunterM. RiboliE. RomieuI. SchomburgL. JenabM. Prediagnostic selenium status and hepatobiliary cancer risk in the European Prospective Investigation into Cancer and Nutrition cohort.Am. J. Clin. Nutr.2016104240641410.3945/ajcn.116.13167227357089
    [Google Scholar]
  75. WangQ. GongL. DongR. QiaoQ. HeX.L. ChuY.K. DuX.L. YangY. ZangL. NanJ. LinC. LuJ.G. Tissue microarray assessment of selenoprotein P expression in gastric adenocarcinoma.J. Int. Med. Res.200937116917410.1177/14732300090370012019215687
    [Google Scholar]
  76. Gonzalez-MorenoO. BoqueN. RedradoM. MilagroF. CampionJ. EndermannT. TakahashiK. SaitoY. CatenaR. SchomburgL. CalvoA. Selenoprotein-P is down-regulated in prostate cancer, which results in lack of protection against oxidative damage.Prostate201171882483410.1002/pros.2129821456065
    [Google Scholar]
  77. PenneyK.L. LiH. MucciL.A. LodaM. SessoH.D. StampferM.J. MaJ. Selenoprotein P genetic variants and mrna expression, circulating selenium, and prostate cancer risk and survival.Prostate201373770070510.1002/pros.2261123129481
    [Google Scholar]
  78. HughesD.J. KunickáT. SchomburgL. LiškaV. SwanN. SoučekP. Expression of selenoprotein genes and association with selenium status in colorectal adenoma and colorectal cancer.Nutrients20181011 E181210.3390/nu1011181230469315
    [Google Scholar]
  79. FedirkoV. JenabM. MéplanC. JonesJ.S. ZhuW. SchomburgL. SiddiqA. HybsierS. OvervadK. TjønnelandA. OmichessanH. PerducaV. Boutron-RuaultM.C. KühnT. KatzkeV. AleksandrovaK. TrichopoulouA. KarakatsaniA. KotanidouA. TuminoR. PanicoS. MasalaG. AgnoliC. NaccaratiA. Bueno-de-MesquitaB. VermeulenR.C.H. WeiderpassE. SkeieG. NøstT.H. Lujan-BarrosoL. QuirósJ.R. HuertaJ.M. Rodríguez-BarrancoM. BarricarteA. GyllingB. HarlidS. BradburyK.E. WarehamN. KhawK.T. GunterM. MurphyN. FreislingH. TsilidisK. AuneD. RiboliE. HeskethJ.E. HughesD.J. Association of selenoprotein and selenium pathway genotypes with risk of colorectal cancer and interaction with selenium status.Nutrients2019114 E93510.3390/nu1104093531027226
    [Google Scholar]
  80. BraunsteinM. KusmenkovT. ZuckC. AngstwurmM. BeckerN.P. BöckerW. Selenium and selenoprotein p deficiency correlates with complications and adverse outcome after major trauma.Shock2020531637030998646
    [Google Scholar]
  81. SchomburgL. Orho-MelanderM. StruckJ. BergmannA. MelanderO. Selenoprotein-P Deficiency Predicts Cardiovascular Disease and Death.Nutrients2019118 E185210.3390/nu1108185231404994
    [Google Scholar]
  82. SideniusU. FarverO. JønsO. GammelgaardB. Comparison of different transition metal ions for immobilized metal affinity chromatography of selenoprotein P from human plasma.J. Chromatogr. B Biomed. Sci. Appl.19997351859110.1016/S0378‑4347(99)00401‑610630893
    [Google Scholar]
  83. DuX. WangZ. ZhengY. LiH. NiJ. LiuQ. Inhibitory effect of selenoprotein P on Cu(+)/Cu(2+)-induced Aβ42 aggregation and toxicity.Inorg. Chem.20145331672167810.1021/ic402828224437729
    [Google Scholar]
  84. FujiiM. SaijohK. KobayashiT. FujiiS. LeeM.J. SuminoK. Analysis of bovine selenoprotein P-like protein gene and availability of metal responsive element (MRE) located in its promoter.Gene19971991-221121710.1016/S0378‑1119(97)00369‑79358058
    [Google Scholar]
  85. OsmanK. SchützA. AkessonB. MaciagA. VahterM. Interactions between essential and toxic elements in lead exposed children in Katowice, Poland.Clin. Biochem.199831865766510.1016/S0009‑9120(98)00071‑X9876899
    [Google Scholar]
  86. SmitsJ.E. KrohnR.M. AkhtarE. HoreS.K. YunusM. VandenbergA. RaqibR. Food as medicine: Selenium enriched lentils offer relief against chronic arsenic poisoning in Bangladesh.Environ. Res.2019176 10856110.1016/j.envres.2019.10856131299617
    [Google Scholar]
  87. SasakuraC. SuzukiK.T. Biological interaction between transition metals (Ag, Cd and Hg), selenide/sulfide and selenoprotein P.J. Inorg. Biochem.1998713-415916210.1016/S0162‑0134(98)10048‑X9833321
    [Google Scholar]
  88. YonedaS. SuzukiK.T. Equimolar Hg-Se complex binds to selenoprotein P.Biochem. Biophys. Res. Commun.1997231171110.1006/bbrc.1996.60369070209
    [Google Scholar]
  89. ChenC. YuH. ZhaoJ. LiB. QuL. LiuS. ZhangP. ChaiZ. The roles of serum selenium and selenoproteins on mercury toxicity in environmental and occupational exposure.Environ. Health Perspect.2006114229730110.1289/ehp.786116451871
    [Google Scholar]
  90. LiuY. ZhangW. ZhaoJ. LinX. LiuJ. CuiL. Selenoprotein P as the major transporter for mercury in serum from methylmercury-poisoned rats.J. Trace Elem. Med. Biol.201850589595
    [Google Scholar]
  91. KurasR. ReszkaE. WieczorekE. JablonskaE. GromadzinskaJ. MalachowskaB. Biomarkers of selenium status and antioxidant effect in workers occupationally exposed to mercury.J. Trace Elem. Med. Biol.201849435010.1016/j.jtemb.2018.04.032
    [Google Scholar]
  92. QaziI.H. AngelC. YangH. ZoidisE. PanB. WuZ. MingZ. ZengC.J. MengQ. HanH. ZhouG. Role of selenium and selenoproteins in male reproductive function: a review of past and present evidences.Antioxidants201988 E26810.3390/antiox808026831382427
    [Google Scholar]
  93. OlsonG.E. WinfreyV.P. NagdasS.K. HillK.E. BurkR.F. Selenoprotein P is required for mouse sperm development.Biol. Reprod.200573120121110.1095/biolreprod.105.04036015744015
    [Google Scholar]
  94. RenkoK. WernerM. Renner-MüllerI. CooperT.G. YeungC.H. HollenbachB. ScharpfM. KöhrleJ. SchomburgL. SchweizerU. Hepatic selenoprotein P (SePP) expression restores selenium transport and prevents infertility and motor-incoordination in Sepp-knockout mice.Biochem. J.2008409374174910.1042/BJ2007117217961124
    [Google Scholar]
  95. HillK.E. ZhouJ. AustinL.M. MotleyA.K. HamA.J. OlsonG.E. AtkinsJ.F. GestelandR.F. BurkR.F. The selenium-rich C-terminal domain of mouse selenoprotein P is necessary for the supply of selenium to brain and testis but not for the maintenance of whole body selenium.J. Biol. Chem.200728215109721098010.1074/jbc.M70043620017311913
    [Google Scholar]
  96. SchneiderM. FörsterH. BoersmaA. SeilerA. WehnesH. SinowatzF. NeumüllerC. DeutschM.J. WalchA. Hrabé de AngelisM. WurstW. UrsiniF. RoveriA. MaleszewskiM. MaiorinoM. ConradM. Mitochondrial glutathione peroxidase 4 disruption causes male infertility.FASEB J.20092393233324210.1096/fj.09‑13279519417079
    [Google Scholar]
  97. MichaelisM. GrallaO. BehrendsT. ScharpfM. EndermannT. RijntjesE. PietschmannN. HollenbachB. SchomburgL. Selenoprotein P in seminal fluid is a novel biomarker of sperm quality.Biochem. Biophys. Res. Commun.2014443390591010.1016/j.bbrc.2013.12.06724361887
    [Google Scholar]
  98. OlsonG.E. WinfreyV.P. HillK.E. BurkR.F. Sequential development of flagellar defects in spermatids and epididymal spermatozoa of selenium-deficient rats.Reproduction2004127333534210.1530/rep.1.0010315016953
    [Google Scholar]
  99. MessaoudiI. BanniM. SaïdL. SaïdK. KerkeniA. Involvement of selenoprotein P and GPx4 gene expression in cadmium-induced testicular pathophysiology in rat.Chem. Biol. Interact.201018819410110.1016/j.cbi.2010.07.01220643113
    [Google Scholar]
  100. KryukovG.V. GladyshevV.N. Selenium metabolism in zebrafish: multiplicity of selenoprotein genes and expression of a protein containing 17 selenocysteine residues.Genes Cells20005121049106010.1046/j.1365‑2443.2000.00392.x
    [Google Scholar]
  101. PenglaseS. HamreK. RasingerJ.D. EllingsenS. Selenium status affects selenoprotein expression, reproduction, and F1 generation locomotor activity in zebrafish (Danio rerio).Br. J. Nutr.2014111111918193110.1017/S000711451300439X24666596
    [Google Scholar]
  102. QaziI.H. AngelC. YangH. PanB. ZoidisE. ZengC.J. HanH. ZhouG.B. Selenium, Selenoproteins, and Female Reproduction: A Review.Molecules20182312 E305310.3390/molecules2312305330469536
    [Google Scholar]
  103. MyersJ.E. TuyttenR. ThomasG. LaroyW. KasK. VanpouckeG. RobertsC.T. KennyL.C. SimpsonN.A. BakerP.N. NorthR.A. Integrated proteomics pipeline yields novel biomarkers for predicting preeclampsia.Hypertension20136161281128810.1161/HYPERTENSIONAHA.113.0116823547239
    [Google Scholar]
  104. RaymanM.P. BathS.C. WestawayJ. WilliamsP. MaoJ. VanderlelieJ.J. PerkinsA.V. RedmanC.W. Selenium status in U.K. pregnant women and its relationship with hypertensive conditions of pregnancy.Br. J. Nutr.2015113224925810.1017/S000711451400364X25571960
    [Google Scholar]
  105. PerlmanR.L. Why disease persists: an evolutionary nosology.Med. Health Care Philos.20058334335010.1007/s11019‑005‑2655‑z16283497
    [Google Scholar]
  106. HedgeL.H. KnottN.A. JohnstonE.L. Dredging related metal bioaccumulation in oysters.Mar. Pollut. Bull.200958683284010.1016/j.marpolbul.2009.01.02019261303
    [Google Scholar]
/content/journals/cnt/10.2174/2665978601666200213120929
Loading
/content/journals/cnt/10.2174/2665978601666200213120929
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): comparative physiology; evolution; lifespan; reproduction; Selenium; selenoprotein P
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test