Skip to content
2000
Volume 5, Issue 1
  • ISSN: 2665-9786
  • E-ISSN: 2665-9794

Abstract

Background

Functional foods play an important role in the prevention and amelioration of metabolic syndromes leading to type 2 diabetes. Plant resources that have anti-metabolic syndromes activity, such as and Cha (.), have been used in functional foods against diabetes. Since Morus and Cha have different mechanisms of action against metabolic syndromes, such as prevention of sugar uptake and lipidosis, respectively, the combination of both resources will be a reliable approach for developing more efficient functional food against type 2 diabetes because certain synergism is expected in their functions.

Methods

Male Wister Rats were fed the high fat-high sucrose (HFHS) diet for 12 weeks, with and without supplementation of Morus and Cha alone and their combination, and the effect of their supplementation on the markers of the metabolic syndrome such as obesity, lipidosis, and fatty liver formation, were examined.

Results

Several metabolic syndrome markers, including body weight gain, lipid deposit, and fatty liver formation, were more significantly prevented by the diet supplemented with Morus and Cha combination compared to Morus or Cha given separately.

Conclusion

Appropriate formulation of food resources with different functional mechanisms is a promising strategy for developing effective dietary treatment of type 2 diabetes that is a typical Mibyou.

Loading

Article metrics loading...

/content/journals/cnt/10.2174/0126659786302883240517050829
2024-05-22
2024-12-24
Loading full text...

Full text loading...

References

  1. KeS.X. The principles of health, illness and treatment - The key concepts from “The Yellow Emperor’s Classic of Internal Medicine”.J. Ayurveda Integr. Med.202314110063710.1016/j.jaim.2022.100637 36460575
    [Google Scholar]
  2. LeeJ. KimS.H. LeeY. SongS. KimY. LeeS. The concept of Mibyeong (sub-health) in Korea: A Delphi study.Eur. J. Integr. Med.20135651451810.1016/j.eujim.2013.07.010
    [Google Scholar]
  3. FukuoY. Destructive creation in the Reiwa Era Utilization of “The concept of Modern Mibyou” as Presymptomatic Medicine.J. Int. Soc. Inf. Sci20103815
    [Google Scholar]
  4. KonishiT. Mibyou care is a key for healthy life elongation: the role of mibyou-care functional foods.Complementary Therapies. Bernardo-FilhoM. London, UKIntechOpen2021
    [Google Scholar]
  5. MiyataT. Novel approach to curatives of Mibyou (presymptomatic diseases).Yakugaku Zasshi201113191289129810.1248/yakushi.131.1289 21881301
    [Google Scholar]
  6. KonishiT. Mibyou-care functional food: Integrated role and use of functional foods in mibyou-care.Glob J Nutri Food Sci20244
    [Google Scholar]
  7. Diabetes center for diseases control and prevention.Available from: https://www.cdc.gov/diabetes/basics/symptoms.html
  8. TomicD. ShawJ.E. MaglianoD.J. The burden and risks of emerging complications of diabetes mellitus.Nat. Rev. Endocrinol.202218952553910.1038/s41574‑022‑00690‑7 35668219
    [Google Scholar]
  9. Rao Kondapally SeshasaiS. KaptogeS. ThompsonA. Di AngelantonioE. GaoP. SarwarN. WhincupP.H. MukamalK.J. GillumR.F. HolmeI. NjølstadI. FletcherA. NilssonP. LewingtonS. CollinsR. GudnasonV. ThompsonS.G. SattarN. SelvinE. HuF.B. Danesh, J. Diabetes mellitus, fasting glucose, and risk of cause-specific death.N. Engl. J. Med.2011364982984110.1056/NEJMoa1008862 21366474
    [Google Scholar]
  10. SinghK.B. NnadozieM.C. AbdalM. ShresthaN. AbeR.A.M. MasroorA. KhorochkovA. PrietoJ. MohammedL. Type 2 diabetes and causes of sudden cardiac death: A systematic review.Cureus2021139e1814510.7759/cureus.18145 34692349
    [Google Scholar]
  11. BjornstadP. ChaoL.C. Cree-GreenM. DartA.B. KingM. LookerH.C. MaglianoD.J. NadeauK.J. Pinhas-HamielO. ShahA.S. van RaalteD.H. PavkovM.E. NelsonR.G. Youth-onset type 2 diabetes mellitus: An urgent challenge.Nat. Rev. Nephrol.202319316818410.1038/s41581‑022‑00645‑1 36316388
    [Google Scholar]
  12. XueM. XuW. OuY.N. CaoX.P. TanM.S. TanL. YuJ.T. Diabetes mellitus and risks of cognitive impairment and dementia: A systematic review and meta-analysis of 144 prospective studies.Ageing Res. Rev.20195510094410.1016/j.arr.2019.100944 31430566
    [Google Scholar]
  13. KannelW.B. McGeeD.L. Diabetes and cardiovascular disease. The Framingham study.JAMA1979241192035203810.1001/jama.1979.03290450033020 430798
    [Google Scholar]
  14. CholertonB. BakerL.D. MontineT.J. CraftS. Type 2 diabetes, cognition, and dementia in older adults: Toward a precision health approach.Diabetes Spectr.201629421021910.2337/ds16‑0041 27899872
    [Google Scholar]
  15. SunH. SaeediP. KarurangaS. PinkepankM. OgurtsovaK. DuncanB.B. SteinC. BasitA. ChanJ.C.N. MbanyaJ.C. PavkovM.E. RamachandaranA. WildS.H. JamesS. HermanW.H. ZhangP. BommerC. KuoS. BoykoE.J. MaglianoD.J. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045.Diabetes Res. Clin. Pract.202218310911910.1016/j.diabres.2021.109119 34879977
    [Google Scholar]
  16. ColditzG.A. WillettW.C. RotnitzkyA. MansonJ.E. Weight gain as a risk factor for clinical diabetes mellitus in women.Ann. Intern. Med.1995122748148610.7326/0003‑4819‑122‑7‑199504010‑00001 7872581
    [Google Scholar]
  17. SelmanA. BurnsS. ReddyA.P. CulbersonJ. ReddyP.H. The role of obesity and diabetes in dementia.Int. J. Mol. Sci.20222316926710.3390/ijms23169267 36012526
    [Google Scholar]
  18. DerosaG. LimasC.P. MacíasP.C. EstrellaA. MaffioliP. State of the art papers Dietary and nutraceutical approach to type 2 diabetes.Arch. Med. Sci.20142233634410.5114/aoms.2014.42587 24904670
    [Google Scholar]
  19. RahmanM.M. DharP.S. Sumaia; Anika, F.; Ahmed, L.; Islam, M.R.; Sultana, N.A.; Cavalu, S.; Pop, O.; Rauf, A. Exploring the plant-derived bioactive substances as antidiabetic agent: An extensive review.Biomed. Pharmacother.202215211321710.1016/j.biopha.2022.113217 35679719
    [Google Scholar]
  20. TranN. PhamB. LeL. Bioactive compounds in anti-diabetic plants: From herbal medicine to modern drug discovery.Biology20209925210.3390/biology9090252 32872226
    [Google Scholar]
  21. SalehiB. AtaA. Sharopov; Ramírez-Alarcón; Ruiz-Ortega; Abdulmajid Ayatollahi; Tsouh Fokou; Kobarfard; Amiruddin Zakaria; Iriti; Taheri; Martorell; Sureda; Setzer; Durazzo; Lucarini; Santini; Capasso; Ostrander; Atta-ur-Rahman; Choudhary, M.I.; Cho, W.C.; Sharifi-Rad, J. Antidiabetic potential of medicinal plants and their active components.Biomolecules201991055110.3390/biom9100551 31575072
    [Google Scholar]
  22. KhatunM.A. SatoS. KonishiT. Obesity preventive function of novel edible mushroom, Basidiomycetes-X (Echigoshirayukidake): Manipulations of insulin resistance and lipid metabolism.J. Tradit. Complement. Med.202010324525110.1016/j.jtcme.2020.03.004 32670819
    [Google Scholar]
  23. CardulloN. MuccilliV. PulvirentiL. C-glucosidic ellagitannins and galloylated glucoses as potential functional food ingredients with anti-diabetic properties: a study of alfa-glucosidase and alfa-amylase inhibition.Food Chem.2020202031310.1016/j.foodchem.2019.126099
    [Google Scholar]
  24. Vivó-BarrachinaL. Rojas-ChacónM.J. Navarro-SalazarR. Belda-SanchisV. Pérez-MurilloJ. Peiró-PuigA. Herran-GonzálezM. Pérez-BermejoM. The role of natural products on diabetes mellitus treatment: A systematic review of randomized controlled trials.Pharmaceutics202214110110.3390/pharmaceutics14010101 35056997
    [Google Scholar]
  25. ChanE.W.C. LyeP.Y. WongS.K. Phytochemistry, pharmacology, and clinical trials of Morus alba.Chin. J. Nat. Med.2016141730
    [Google Scholar]
  26. TianS. TangM. ZhaoB. Current anti-diabetes mechanisms and clinical trials using Morus alba L. J Trad Chin.Med. Sci.2016338
    [Google Scholar]
  27. Morales RamosJ.G. Esteves PairazamánA.T. Mocarro WillisM.E.S. Collantes SantistebanS. Caldas HerreraE. Medicinal properties of Morus alba for the control of type 2 diabetes mellitus: A systematic review.F1000 Res.202110102210.12688/f1000research.55573.1 34912543
    [Google Scholar]
  28. SakuraiM. SatoS. FukushimaT. KonishiT. Characteristics of Morus alba L. Cultured by in-room hydroponics.Am. J. Plant Sci.20221319110810.4236/ajps.2022.131007
    [Google Scholar]
  29. DinhT.C. Thi PhuongT.N. MinhL.B. Minh ThucV.T. BacN.D. Van TienN. PhamV.H. ShowP.L. TaoY. Nhu NgocV.T. Bich NgocN.T. JurgońskiA. Thimiri Govinda RajD.B. Van TuP. HaV.N. CzarzastaJ. ChuD.T. The effects of green tea on lipid metabolism and its potential applications for obesity and related metabolic disorders - An existing update.Diabetes Metab. Syndr.20191321667167310.1016/j.dsx.2019.03.021 31336539
    [Google Scholar]
  30. XuR. YangK. LiS. DaiM. ChenG. Effect of green tea consumption on blood lipids: A systematic review and meta-analysis of randomized controlled trials.Nutr. J.20201914810.1186/s12937‑020‑00557‑5 32434539
    [Google Scholar]
  31. AsaiA. NakagawaK. Effect of mulberry leaf extract with enriched 1-deoxynojirimycin content on post prandial glycemic control in subjects with impaired glucose metabolism.Diabetes Care200730318323
    [Google Scholar]
  32. SatoS. SakuraiM. KonishiT. Anti-obesity effect of echigoshirayukidake (basidiomycetes-x) in rats.Glycat Stress Res20196198211
    [Google Scholar]
  33. FolchJ. LeesM. StanleyG.H.S. A simple method for the isolation and purification of total lipides from animal tissues.J. Biol. Chem.1957226149750910.1016/S0021‑9258(18)64849‑5 13428781
    [Google Scholar]
  34. DasL. BhaumikE. RaychaudhuriU. ChakrabortyR. Role of nutraceuticals in human health.J. Food Sci. Technol.201249217318310.1007/s13197‑011‑0269‑4 23572839
    [Google Scholar]
  35. KoizumiK. OkuM. HayashiS. InujimaA. ShibaharaN. ChenL. IgarashiY. TobeK. SaitoS. KadowakiM. AiharaK. Suppression of dynamical network biomarker signals at the predisease state (mibyou) before metabolic syndrome in mice by a traditional japanese medicine (kampo formula) bofutsushosan.Evid. Based Complement. Alternat. Med.202020201910.1155/2020/9129134 32831883
    [Google Scholar]
  36. PearsonE.R. Type 2 diabetes: A multifaceted disease.Diabetologia20196271107111210.1007/s00125‑019‑4909‑y 31161345
    [Google Scholar]
  37. PanM.H. ZhuS.R. DuanW.J. MaX.H. LuoX. LiuB. KuriharaH. LiY.F. ChenJ.X. HeR.R. “Shanghuo” increases disease susceptibility: Modern significance of an old TCM theory.J. Ethnopharmacol.202025011249110.1016/j.jep.2019.112491 31863858
    [Google Scholar]
  38. NakraniM.N. WinelandR.H. AnjumF. Physiology, glucose metabolism NCBI bookshelf.A service of the National Library of Medicine, National Institute of HealthStatPearls Publishing2023
    [Google Scholar]
  39. IyengarR. Complex diseases require complex therapies.EMBO Rep.201314121039104210.1038/embor.2013.177 24232184
    [Google Scholar]
  40. TempleN.J. A rational definition for functional foods: A perspective.Front. Nutr.20222022910.3389/fnut.2022.957516
    [Google Scholar]
  41. HeB. LuC. ZhengG. HeX. WangM. ChenG. ZhangG. LuA. Combination therapeutics in complex diseases.J. Cell. Mol. Med.201620122231224010.1111/jcmm.12930 27605177
    [Google Scholar]
  42. YiY.D. ChangI.M. An overview of traditional chinese herbal formulae and a proposal of a new code system for expressing the formula titles.Evid. Based Complement. Alternat. Med.20041212513210.1093/ecam/neh019 15480438
    [Google Scholar]
  43. WeiR. SuZ. MackenzieG.G. Chlorogenic acid combined with epigallocatechin-3-gallate mitigates D -galactose-induced gut aging in mice.Food Funct.20231462684269710.1039/D2FO03306B 36752162
    [Google Scholar]
  44. YanagimotoA. MatsuiY. YamaguchiT. SaitoS. HanadaR. HibiM. Acute dose–response effectiveness of combined catechins and chlorogenic acids on postprandial glycemic responses in healthy men: Results from two randomized studies.Nutrients202315377710.3390/nu15030777 36771483
    [Google Scholar]
  45. AndrysikZ. SullivanK.D. KieftJ.S. EspinosaJ.M. PPM1D suppresses p53-dependent transactivation and cell death by inhibiting the integrated stress response.Nat. Commun.2022131740010.1038/s41467‑022‑35089‑5 36456590
    [Google Scholar]
  46. PattiA.M. TothP.P. GiglioR.V. BanachM. NotoM. NikolicD. MontaltoG. RizzoM. Nutraceuticals as an important part of combination therapy in dyslipidaemia.Cur Pharamaceut Design2017231724962503 28317482
    [Google Scholar]
  47. YatsunamiK. IchidaM. OnoderaS. The relationship between 1-deoxynojirimycin content and α-glucosidase inhibitory activity in leaves of 276 mulberry cultivars (Morus spp.) in Kyoto, Japan.J. Nat. Med.2007621636610.1007/s11418‑007‑0185‑0 18404344
    [Google Scholar]
  48. HeH. LuY.H. Comparison of inhibitory activities and mechanisms of five mulberry plant bioactive components against α-glucosidase.J. Agric. Food Chem.201361348110811910.1021/jf4019323 23909841
    [Google Scholar]
  49. KwonR.H. ThakuN. TimalsinaB. ParkS.E. ChoiJ.S. JungH.A. Inhibition mechanism of components isolated from Morus alba branches on diabetes and diabetic complications via experimental and molecular docking analyses.Antioxidants202211238310.3390/antiox11020383 35204264
    [Google Scholar]
  50. Sae-tanS. GroveK.A. KennettM.J. LambertJ.D. (−)-Epigallocatechin-3-gallate increases the expression of genes related to fat oxidation in the skeletal muscle of high fat-fed mice.Food Funct.20112211111610.1039/c0fo00155d 21779555
    [Google Scholar]
  51. TunS. SpainhowerC.J. CottrillC.L. Therapeutic efficacy of antioxidants in ameliorating obesity phenotype and associated comobidities.Front. Pharmacol.202011202
    [Google Scholar]
  52. DeyA. LakshmananJ. The role of antioxidants and other agents in alleviating hyperglycemia mediated oxidative stress and injury in liver.Food Funct.2013481148118410.1039/c3fo30317a 23760593
    [Google Scholar]
  53. MatsugoS. SakamotoT. WakameK. NakamuraY. WatanabeK. KonishiT. Mushrooms as a resource for mibyou-care functional food; the role of basidiomycetes-x (shirayukidake) and its major components.Nutraceuticals20222313214910.3390/nutraceuticals2030010
    [Google Scholar]
/content/journals/cnt/10.2174/0126659786302883240517050829
Loading
/content/journals/cnt/10.2174/0126659786302883240517050829
Loading

Data & Media loading...

Supplements

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test