Skip to content
2000
Volume 5, Issue 1
  • ISSN: 2665-9786
  • E-ISSN: 2665-9794

Abstract

Diabetes is a chronic disease affecting millions worldwide, characterized by inadequate insulin production or malfunctioning insulin action, leading to elevated blood sugar levels. Its prevalence is escalating globally, with estimates projecting a rise from 2.8% to over 5.4% of the world's population by 2025. In India, diabetes poses a significant health challenge, especially in urban areas. While conventional medications are widely available, herbal remedies have gained popularity due to their potential for fewer side effects and lower costs. Herbal remedies have been employed for centuries in diabetes management and have been extensively studied for their blood sugar regulatory properties. Prominent herbs studied for their potential to manage diabetes include gymnema, cinnamon, fenugreek, and bitter melon. These herbs are believed to enhance insulin sensitivity, reduce glucose absorption in the intestines, and improve glucose metabolism. This review highlights emerging alternative treatment options, such as stem cell therapy and gene therapy, in the field of diabetes management. Stem cell therapy aims to regenerate insulin-producing cells or enhance their function, while gene therapy targets the underlying genetic factors contributing to diabetes. These innovative approaches hold promise for more effective and personalized treatments in the future. It is essential to emphasize that any diabetes treatment or remedy should be discussed with a healthcare professional. Diabetes management requires a personalized approach based on individual needs and medical history. The integration of herbal remedies and alternative treatment options into conventional diabetes management warrants further research to determine their efficacy, safety, and potential for widespread implementation.

Loading

Article metrics loading...

/content/journals/cnt/10.2174/0126659786283493240415155919
2024-05-10
2024-12-23
Loading full text...

Full text loading...

References

  1. RizviS.I. MishraN. Traditional Indian medicines used for the management of diabetes mellitus.J. Diabetes Res.2013201311110.1155/2013/712092 23841105
    [Google Scholar]
  2. ShahA.A. QayoomS. GuptaA. RehmanA.U. Role of polyherbal formulations of medicinal plants from himalayan regions in the management of diabetes.Innovative Approaches for Nanobiotechnology in Healthcare Systems.Hershey, PennsylvaniaIGI Global202121222910.4018/978‑1‑7998‑8251‑0.ch007
    [Google Scholar]
  3. American Diabetes Association. Diagnosis and classification of diabetes mellitus.Diabetes Care201437Suppl. 1S81S9010.2337/dc14‑S081 24357215
    [Google Scholar]
  4. DelaneyM.F. ZismanA. KettyleW.M. Diabetic ketoacidosis and hyperglycemic hyperosmolar nonketotic syndrome.Endocrinol. Metab. Clin. North Am.2000294683705[V].10.1016/S0889‑8529(05)70159‑611149157
    [Google Scholar]
  5. SriramanS. SreejithD. AndrewE. OkelloI. WillcoxM. Use of herbal medicines for the management of type 2 diabetes: A systematic review of qualitative studies.Complement. Ther. Clin. Pract.20235310180810.1016/j.ctcp.2023.101808 37977099
    [Google Scholar]
  6. ModakM. DixitP. LondheJ. GhaskadbiS. DevasagayamT.P.A. Indian herbs and herbal drugs used for the treatment of diabetes.J. Clin. Biochem. Nutr.200740316317310.3164/jcbn.40.163 18398493
    [Google Scholar]
  7. AlbertiK.G.M.M. ZimmetP.Z. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: Diagnosis and classification of diabetes mellitus. Provisional report of a WHO Consultation.Diabet. Med.199815753955310.1002/(SICI)1096‑9136(199807)15:7<539::AID‑DIA668>3.0.CO;2‑S 9686693
    [Google Scholar]
  8. NambamB. WinterW. SchatzD. Type 1 diabetes.Encycl. Endocr. Dis2018201811011510.1016/B978‑0‑12‑801238‑3.03820‑4
    [Google Scholar]
  9. von ScholtenB.J. KreinerF.F. GoughS.C.L. von HerrathM. Current and future therapies for type 1 diabetes.Diabetologia20216451037104810.1007/s00125‑021‑05398‑3 33595677
    [Google Scholar]
  10. WarshauerJ.T. BluestoneJ.A. AndersonM.S. New frontiers in the treatment of Type 1 Diabetes.Cell Metab.2020311466110.1016/j.cmet.2019.11.017 31839487
    [Google Scholar]
  11. PaschouS.A. Papadopoulou-MarketouN. ChrousosG.P. Kanaka-GantenbeinC. On type 1 diabetes mellitus pathogenesis.Endocr. Connect.201871R38R4610.1530/EC‑17‑0347 29191919
    [Google Scholar]
  12. PearsonE.R. Type 2 diabetes: A multifaceted disease.Diabetologia20196271107111210.1007/s00125‑019‑4909‑y 31161345
    [Google Scholar]
  13. Galicia-GarciaU. Benito-VicenteA. JebariS. Larrea-SebalA. SiddiqiH. UribeK.B. OstolazaH. MartínC. Pathophysiology of type 2 diabetes mellitus.Int. J. Mol. Sci.20202117627510.3390/ijms21176275 32872570
    [Google Scholar]
  14. WuY. DingY. TanakaY. ZhangW. Risk factors contributing to type 2 diabetes and recent advances in the treatment and prevention.Int. J. Med. Sci.201411111185120010.7150/ijms.10001 25249787
    [Google Scholar]
  15. GurungM. LiZ. YouH. RodriguesR. JumpD.B. MorgunA. ShulzhenkoN. Role of gut microbiota in type 2 diabetes pathophysiology.EBioMedicine20205110259010.1016/j.ebiom.2019.11.051 31901868
    [Google Scholar]
  16. BuchananT.A. XiangA.H. PageK.A. Gestational diabetes mellitus: Risks and management during and after pregnancy.Nat. Rev. Endocrinol.201281163964910.1038/nrendo.2012.96 22751341
    [Google Scholar]
  17. JohnsE.C. DenisonF.C. NormanJ.E. ReynoldsR.M. Gestational diabetes mellitus: Mechanisms, treatment, and complications.Trends Endocrinol. Metab.2018291174375410.1016/j.tem.2018.09.004 30297319
    [Google Scholar]
  18. MensahG.P. ten Ham-BaloyiW. van RooyenD.R.M. Jardien-BabooS. Guidelines for the nursing management of gestational diabetes mellitus: An integrative literature review.Nurs. Open202071789010.1002/nop2.324 31871693
    [Google Scholar]
  19. Laredo-AguileraJ.A. Gallardo-BravoM. Rabanales-SotosJ.A. Cobo-CuencaA.I. Carmona-TorresJ.M. Physical activity programs during pregnancy are effective for the control of gestational diabetes mellitus.Int. J. Environ. Res. Public Health20201717615110.3390/ijerph17176151 32847106
    [Google Scholar]
  20. VolkovaN.I. DavidenkoI.Y. DegtyarevaY.S. Gestational diabetes mellitusRussian Federation: Russia202110.54393/df.v2i2.18
    [Google Scholar]
  21. AlmahfoodhD. AlabboodM. AlaliA. MansourA. Epidemiology of type 1 diabetes mellitus in Basrah, Southern Iraq: A retrospective study.Diabetes Res. Clin. Pract.201713310410810.1016/j.diabres.2017.09.001 28926733
    [Google Scholar]
  22. AlMutairA. AlSabtyN. AlNuaimH. Al HamdanR. MoukaddemA. Prevalence and special clinical and biochemical characteristics of familial type 1 (insulin dependent) diabetes mellitus in pediatric patients in a tertiary care setting.Int. J. Pediatr. Adolesc. Med.20218210711110.1016/j.ijpam.2020.11.006 34084882
    [Google Scholar]
  23. BalchaS.A. PhillipsD.I.W. TrimbleE.R. Type 1 diabetes in a resource-poor setting: Malnutrition related, malnutrition modified, or just diabetes?Curr. Diab. Rep.20181874710.1007/s11892‑018‑1003‑7 29904886
    [Google Scholar]
  24. ZhengY. LeyS.H. HuF.B. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications.Nat. Rev. Endocrinol.2018142889810.1038/nrendo.2017.151 29219149
    [Google Scholar]
  25. SaeediP. PetersohnI. SalpeaP. MalandaB. KarurangaS. UnwinN. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition.Diabetes Res Clin Pract201915710784310.1016/j.diabres.2019.107843
    [Google Scholar]
  26. KakuK. KisanukiK. ShibataM. OohiraT. Benefit-risk assessment of alogliptin for the treatment of type 2 diabetes mellitus.Drug Saf.201942111311132710.1007/s40264‑019‑00857‑8 31654243
    [Google Scholar]
  27. EliaschewitzF. Almeida-PitittoB. DiasM.L. Franco de MoraesA.C. FerreiraS.R.G. FrancoD.R. Type 2 diabetes in Brazil: Epidemiology and management.Diabetes Metab. Syndr. Obes.20158172810.2147/DMSO.S72542 25609989
    [Google Scholar]
  28. AtkinsonM.A. EisenbarthG.S. Type 1 diabetes: New perspectives on disease pathogenesis and treatment.Lancet2001358927722122910.1016/S0140‑6736(01)05415‑0 11476858
    [Google Scholar]
  29. RossbothS. LechleitnerM. OberaignerW. Risk factors for diabetic foot complications in type 2 diabetes—A systematic review.Endocrinol. Diabetes Metab.202141e0017510.1002/edm2.175 33532615
    [Google Scholar]
  30. Al-MaskariF. El-SadigM. Prevalence of risk factors for diabetic foot complications.BMC Fam. Pract.2007815910.1186/1471‑2296‑8‑59 17927826
    [Google Scholar]
  31. Al-RubeaanK. Al DerwishM. OuiziS. YoussefA.M. SubhaniS.N. IbrahimH.M. AlamriB.N. Diabetic foot complications and their risk factors from a large retrospective cohort study.PLoS One2015105e012444610.1371/journal.pone.0124446 25946144
    [Google Scholar]
  32. GirgisM.M.F. FeketeK. HomoródiN. MártonS. FeketeI. HorváthL. Use of complementary and alternative medicine among patients with epilepsy and diabetes mellitus, focusing on the outcome of treatment.Front. Neurosci.20221578751210.3389/fnins.2021.787512 35087374
    [Google Scholar]
  33. LeQ. LayH. Herbs for the management of diabetes mellitus in Traditional Vietnamese Medicine.J. appl. biopharm. pharmacokinet.2019717
    [Google Scholar]
  34. KasoleR. MartinH.D. KimiyweJ. Traditional medicine and its role in the management of diabetes mellitus: “Patients” and ‘herbalists’ perspectives.Evid. Based Complement. Alternat. Med.2019201911210.1155/2019/2835691 31354852
    [Google Scholar]
  35. YedjouC.G. GrigsbyJ. MbemiA. NelsonD. MildortB. LatinwoL. TchounwouP.B. The management of diabetes mellitus using medicinal plants and vitamins.Int. J. Mol. Sci.20232410908510.3390/ijms24109085 37240430
    [Google Scholar]
  36. AndradeC. GomesN.G.M. DuangsrisaiS. AndradeP.B. PereiraD.M. ValentãoP. Medicinal plants utilized in Thai Traditional Medicine for diabetes treatment: Ethnobotanical surveys, scientific evidence and phytochemicals.J. Ethnopharmacol.202026311317710.1016/j.jep.2020.113177 32768637
    [Google Scholar]
  37. JaphetM. MlungisiN. ExneviaG. Mechanisms of action of traditional herbal medicines used in the management of diabetes mellitus: A review of the literature.Afr. J. Tradit. Complement. Altern. Med.201714515616510.21010/ajtcam.v14i5.19
    [Google Scholar]
  38. SanejaA. SharmaC. Gymnema sylvestre (Gurmar): A review.Pharmbit20102275284
    [Google Scholar]
  39. AditiS.L. SharmaL. MoreP. GhangaleG. TareH. Effect of Gymnema sylvestre in the control of diabetes: A review.Int.J. Pharmaceut Quality Assurance202314121421910.25258/ijpqa.14.1.37
    [Google Scholar]
  40. AkbarS. Gymnema sylvestre R. Br.(Apocynaceae). In: Handbook of 200 Medicinal Plants;SpringerLink: United States202098199010.1007/978‑3‑030‑16807‑0_104
    [Google Scholar]
  41. ZimareS.B. MalpathakN.P. In vitro multiple shoot and gymnemic acid production inGymnema sylvestre (Retz.).R. Br. Ex. Sm. Indian J. Biotechnol.201716635640
    [Google Scholar]
  42. PandeyA. YadavS. Variation in gymnemic acid content and non-destructive harvesting of Gymnema sylvestre (Gudmar).Pharmacognosy Res.20102530931210.4103/0976‑4836.72330 21589758
    [Google Scholar]
  43. AkhigbeR.E. AjayiA.F. AdewumiO.M. OkelejiL.O. MujaiduK.B. OlaleyeS.B. Effect of ethanolic extract of Cryptolepis sanguinolenta stem on in vivo and in vitro glucose absorption and transport: Mechanism of its antidiabetic activity.Indian J. Endocrinol. Metab.2012167Suppl. 19110.4103/2230‑8210.94265 22701855
    [Google Scholar]
  44. OsafoN. MensahK.B. YeboahO.K. Phytochemical and Pharmacological Review of Cryptolepis sanguinolenta (Lindl.).Schlechter. Adv. Pharmacol. Sci.2017201711310.1155/2017/3026370 29750083
    [Google Scholar]
  45. LuoJ. FortD.M. CarlsonT.J. NoamesiB.K. nii-Amon-Kotei, D.; King, S.R.; Tsai, J.; Quan, J.; Hobensack, C.; Lapresca, P.; Waldeck, N.; Mendez, C.D.; Jolad, S.D.; Bierer, D.E.; Reaven, G.M. Cryptolepis sanguinolenta: An ethnobotanical approach to drug discovery and the isolation of a potentially useful new antihyperglycaemic agent.Diabet. Med.199815536737410.1002/(SICI)1096‑9136(199805)15:5<367::AID‑DIA576>3.0.CO;2‑G 9609357
    [Google Scholar]
  46. ZofouD. KueteV. TitanjiV.P.K. Antimalarial and other antiprotozoal products from African Medicinal Plants.Medicinal Plant Research in Africa Pharmacology and Chemistry.AmsterdamElsevier201366170910.1016/B978‑0‑12‑405927‑6.00017‑5
    [Google Scholar]
  47. IslamZ. IslamS.M.R. HossenF. Mahtab-ul-IslamK. HasanM.R. KarimR. Moringa oleifera is a Prominent Source of Nutrients with Potential Health Benefits.Int. J. Food Sci.2021202111110.1155/2021/6627265 34423026
    [Google Scholar]
  48. WatanabeS. OkoshiH. YamabeS. ShimadaM. Moringa oleifera lam. In diabetes mellitus: A systematic review and meta-analysis.Molecules20212612351310.3390/molecules26123513 34207664
    [Google Scholar]
  49. NovaE. Redondo-UserosN. Martínez-GarcíaR.M. Gómez-MartínezS. Díaz-PrietoL.E. MarcosA. Potential of moringa oleifera to improve glucose control for the prevention of diabetes and related metabolic alterations: A systematic review of animal and human studies.Nutrients2020127205010.3390/nu12072050 32664295
    [Google Scholar]
  50. Vergara-JimenezM. AlmatrafiM. FernandezM. Bioactive components in Moringa oleifera leaves protect against chronic disease.Antioxidants2017649110.3390/antiox6040091 29144438
    [Google Scholar]
  51. MaticI. GuidiA. KenzoM. MatteiM. GalganiA. Investigation of medicinal adietary plants review traditionally supplements: On moringa used oleiferaas.J. Public Health Africa2018919119910.4081/jphia.2018.841 30854178
    [Google Scholar]
  52. LeoneA. BertoliS. Di LelloS. BassoliA. RavasenghiS. BorgonovoG. ForlaniF. BattezzatiA. Effect of moringa oleifera leaf powder on postprandial blood glucose response: In vivo study on saharawi people living in refugee camps.Nutrients20181010149410.3390/nu10101494 30322091
    [Google Scholar]
  53. OwensF.S.III DadaO. CyrusJ.W. AdedoyinO.O. AdunlinG. The effects of Moringa oleifera on blood glucose levels: A scoping review of the literature.Complement. Ther. Med.20205010236210.1016/j.ctim.2020.102362 32444043
    [Google Scholar]
  54. RahayuS.E. SinagaE. Antihyperglycemic and antihyperlipidemic effects of methanolic seeds extract of pandanus odoratissimus in Alloxan-Induced Diabetic Rats.Syst. Rev. Pharm.20201194695310.31838/srp.2020.6.133
    [Google Scholar]
  55. AdkarP.P. BhaskarV.H. Pandanus odoratissimus (Kewda): A review on ethnopharmacology, phytochemistry, and nutritional aspects.Adv. Pharmacol. Sci.2014201411910.1155/2014/120895 25949238
    [Google Scholar]
  56. AndrianiY. RamliN.M. SyamsumirD.F. KassimM.N.I. JaafarJ. AzizN.A. MarlinaL. MusaN.S. MohamadH. Phytochemical analysis, antioxidant, antibacterial and cytotoxicity properties of keys and cores part of Pandanus tectorius fruits.Arab. J. Chem.20191283555356410.1016/j.arabjc.2015.11.003
    [Google Scholar]
  57. RainaV.K. KumarA. SrivastavaS.K. SyamsundarK.V. KaholA.P. Essential oil composition of ‘kewda’ (Pandanus odoratissimus) from India.Flavour Fragrance J.200419543443610.1002/ffj.1331
    [Google Scholar]
  58. VenkateshS. KusumaR. SateeshV. MadhavaR.B. MullangrR. Antidiabetic activity of pandanus odoratissimus root extract.Indian J Pharm Educ Res.2012464340345
    [Google Scholar]
  59. KusumaR. Phytochemical and phamacological studies of Pandanus odoratissimus Linn.Int J Res Phytochem Pharmacol2012242
    [Google Scholar]
  60. ChaudharyG. KumariI. Boswellia serrata ROXB. EX COLEBR. (Salai): An Ayurvedic Herb with Anti-inflammatory Potential.Int. J. Pharm. Sci. Rev. Res.202169110.47583/ijpsrr.2021.v69i01.024
    [Google Scholar]
  61. MishraS. BishnoiR.S. MauryaR. JainD. BOSWELLIA SERRATA ROXB. – A bioactive herbs with various pharmacological activities.Asian J. Pharm. Clin. Res.20202020333910.22159/ajpcr.2020.v13i11.39354
    [Google Scholar]
  62. GomaaA.A. FarghalyH.A. Abdel-WadoodY.A. GomaaG.A. Potential therapeutic effects of boswellic acids/Boswellia serrata extract in the prevention and therapy of type 2 diabetes and Alzheimer’s disease.Naunyn Schmiedebergs Arch. Pharmacol.2021394112167218510.1007/s00210‑021‑02154‑7 34542667
    [Google Scholar]
  63. RoyN.K. ParamaD. BanikK. BordoloiD. DeviA.K. ThakurK.K. PadmavathiG. ShakibaeiM. FanL. SethiG. KunnumakkaraA.B. An update on pharmacological potential of boswellic acids against chronic diseases.Int. J. Mol. Sci.20192017410110.3390/ijms20174101 31443458
    [Google Scholar]
  64. AhangarpourA. HeidariH. FatemehR.A.A. PakmehrM. ShahbazianH. AhmadiI. MombeiniZ. MehrangizB.H. Effect of Boswellia serrata supplementation on blood lipid, hepatic enzymes and fructosamine levels in type2 diabetic patients.J. Diabetes Metab. Disord.20141312910.1186/2251‑6581‑13‑29 24495344
    [Google Scholar]
  65. FranićZ. FranićZ. VrkićN. GabajN.N. PetekI. Effect of extract from Boswellia serrata gum resin on decrease of GAD65 autoantibodies in a patient with Latent Autoimmune Diabetes in Adults.Altern. Ther. Health Med.20202653840 32663183
    [Google Scholar]
  66. ChandelH. PathakA.K. TailangM. Standardization of some herbal antidiabetic drugs in polyherbal formulation.Pharmacognosy Res.201131495610.4103/0974‑8490.79116 21731396
    [Google Scholar]
  67. TiwariR. SiddiquiM.H. MahmoodT. BaggaP. AhsanF. ShamimA. Herbal remedies: A boon for diabetic neuropathy.J. Diet. Suppl.201916447049010.1080/19390211.2018.1441203 29580105
    [Google Scholar]
  68. MishraR. ShuaibM. A review on herbal antidiabetic drugs.J. Appl. Pharm. Sci.201116235
    [Google Scholar]
  69. BaisN. ChoudharyG.P. Recent updates on natural compounds in treatment of diabetes mellitus : A comprehensive approach.J. Drug Deliv. Ther.201999
    [Google Scholar]
  70. CampbellA.P. Diabetes and dietary supplements.Clin. Diabetes2010281353910.2337/diaclin.28.1.35
    [Google Scholar]
  71. EwersB. TrolleE. JacobsenS.S. VististenD. AlmdalT.P. VilsbøllT. BruunJ.M. Data on the use of dietary supplements in Danish patients with type 1 and type 2 diabetes.Data Brief20192224124410.1016/j.dib.2018.11.144 30591942
    [Google Scholar]
  72. IssaC.M. Vitamin D and type 2 diabetes mellitus.Adv. Exp. Med. Biol.201799619320510.1007/978‑3‑319‑56017‑5_16 29124701
    [Google Scholar]
  73. GuoY. HuangZ. SangD. GaoQ. LiQ. The role of nutrition in the prevention and intervention of Type 2 Diabetes.Front. Bioeng. Biotechnol.2020857544210.3389/fbioe.2020.575442 33042976
    [Google Scholar]
  74. PapaioannouI. PantazidouG. KokkalisZ. GeorgopoulosN. JelastopuluE. VitaminD. Vitamin D deficiency in elderly with Diabetes Mellitus Type 2: A review.Cureus2021131e1250610.7759/cureus.12506 33564514
    [Google Scholar]
  75. PalomerX. González-ClementeJ.M. Blanco-VacaF. MauricioD. Role of vitamin D in the pathogenesis of type 2 diabetes mellitus.Diabetes Obes. Metab.200810318519710.1111/j.1463‑1326.2007.00710.x 18269634
    [Google Scholar]
  76. FengJ. WangH. JingZ. WangY. ChengY. WangW. SunW. Role of magnesium in Type 2 Diabetes Mellitus.Biol. Trace Elem. Res.20201961748510.1007/s12011‑019‑01922‑0 31713111
    [Google Scholar]
  77. KostovK. Effects of magnesium deficiency on mechanisms of insulin resistance in type 2 diabetes: Focusing on the processes of insulin secretion and signaling.Int. J. Mol. Sci.2019206135110.3390/ijms20061351 30889804
    [Google Scholar]
  78. HavelP.J. A scientific review: The role of chromium in insulin resistance.Diabetes Educ.200430Suppl.214 15208835
    [Google Scholar]
  79. GolbidiS. BadranM. LaherI. Diabetes and alpha lipoic Acid.Front. Pharmacol.201126910.3389/fphar.2011.00069 22125537
    [Google Scholar]
  80. VallianouN. EvangelopoulosA. KoutalasP. Alpha-lipoic Acid and diabetic neuropathy.Rev. Diabet. Stud.20096423023610.1900/RDS.2009.6.230 20043035
    [Google Scholar]
  81. LeprettiM. MartuccielloS. Burgos AcevesM. PuttiR. LionettiL. Omega-3 fatty acids and insulin resistance: Focus on the regulation of mitochondria and endoplasmic reticulum stress.Nutrients201810335010.3390/nu10030350 29538286
    [Google Scholar]
  82. SamahS. Fen NeohC. LimS.M. RamasamyK. NasirN.M. BaharudinN. Managing type 2 diabetes mellitus (T2DM) with probiotics.Asian J. Pharm. Clin. Res.20181510e46741
    [Google Scholar]
  83. RittiphairojT. PongpirulK. JanchotK. MuellerN.T. LiT. Probiotics Contribute to Glycemic Control in Patients with Type 2 Diabetes Mellitus: A systematic review and meta-analysis.Adv. Nutr.202112372273410.1093/advances/nmaa133 33126241
    [Google Scholar]
  84. MishraV. NayakP. SharmaM. AlbuttiA. AlwashmiA.S.S. AljasirM.A. AlsowayehN. TambuwalaM.M. Emerging treatment strategies for diabetes mellitus and associated complications: An update.Pharmaceutics20211310156810.3390/pharmaceutics13101568 34683861
    [Google Scholar]
  85. MemonB. AbdelalimE.M. Stem cell therapy for diabetes: Beta cells versus pancreatic progenitors.Cells20209228310.3390/cells9020283 31979403
    [Google Scholar]
  86. VoltarelliJ.C. CouriC.E.B. OliveiraM.C. MoraesD.A. StracieriA.B.P.L. PieroniF. BarrosG.M.N. MalmegrimK.C.R. SimõesB.P. LealA.M.O. FossM.C. Stem cell therapy for diabetes mellitus.Kidney Int. Suppl.201113949810.1038/kisup.2011.22 25018908
    [Google Scholar]
  87. SunZ.Y. YuT.Y. JiangF.X. WangW. Functional maturation of immature β cells: A roadblock for stem cell therapy for type 1 diabetes.World J. Stem Cells202113319320710.4252/wjsc.v13.i3.193 33815669
    [Google Scholar]
  88. ChenS. DuK. ZouC. Current progress in stem cell therapy for type 1 diabetes mellitus.Stem Cell Res. Ther.202011127510.1186/s13287‑020‑01793‑6 32641151
    [Google Scholar]
  89. PyrlisF. BrownF. EkinciE.I. Recent advances in management of type 1 diabetes.Aust. J. Gen. Pract.201948525626110.31128/AJGP‑12‑18‑4775 31129934
    [Google Scholar]
  90. SinghA. AfshanN. SinghA. SinghS.K. YadavS. KumarM. SarmaD.K. VermaV. Recent trends and advances in type 1 diabetes therapeutics: A comprehensive review.Eur. J. Cell Biol.2023102215132910.1016/j.ejcb.2023.151329 37295265
    [Google Scholar]
  91. WongM.S. HawthorneW.J. ManoliosN. Gene therapy in diabetes.Self Nonself20101316517510.4161/self.1.3.12643 21487475
    [Google Scholar]
  92. ChellappanD.K. SivamN.S. TeohK.X. LeongW.P. FuiT.Z. ChooiK. KhooN. YiF.J. ChellianJ. ChengL.L. DahiyaR. GuptaG. SinghviG. NammiS. HansbroP.M. DuaK. Gene therapy and type 1 diabetes mellitus.Biomed. Pharmacother.20181081188120010.1016/j.biopha.2018.09.138 30372820
    [Google Scholar]
  93. YueZ. ZhangL. LiC. ChenY. TaiY. ShenY. SunZ. Advances and potential of gene therapy for type 2 diabetes mellitus.Biotechnol. Biotechnol. Equip.20193311150115710.1080/13102818.2019.1643783
    [Google Scholar]
  94. TemplerS. Closed-loop insulin delivery systems: Past, present, and future directions.Front. Endocrinol. (Lausanne)20221391994210.3389/fendo.2022.919942 35733769
    [Google Scholar]
  95. BrunettiP. BenedettiM.M. CalabreseG. ReboldiG.P. Closed-loop delivery systems for insulin therapy.Int. J. Artif. Organs199114421622610.1177/039139889101400404 2060988
    [Google Scholar]
  96. NakhlehA. ShehadehN. Hypoglycemia in diabetes: An update on pathophysiology, treatment, and prevention.World J. Diabetes202112122036204910.4239/wjd.v12.i12.2036 35047118
    [Google Scholar]
  97. KesavadevJ. SrinivasanS. SabooB. Krishna BM. KrishnanG. The do-it-yourself artificial pancreas: A comprehensive review.Diabetes Ther.20201161217123510.1007/s13300‑020‑00823‑z 32356245
    [Google Scholar]
  98. MoonS.J. JungI. ParkC.Y. Current advances of artificial pancreas systems: A comprehensive review of the clinical evidence.Diabetes Metab. J.202145681383910.4093/dmj.2021.0177 34847641
    [Google Scholar]
  99. CinarA. Advances in artificial pancreas control systems.J. Process Contr.20198122122210.1016/j.jprocont.2019.07.004
    [Google Scholar]
  100. Schubert-OlesenO. KrögerJ. SiegmundT. ThurmU. HalleM. Continuous glucose monitoring and physical activity.Int. J. Environ. Res. Public Health202219191229610.3390/ijerph191912296 36231598
    [Google Scholar]
  101. ChenC. ZhaoX.L. LiZ.H. ZhuZ.G. QianS.H. FlewittA. Current and emerging technology for continuous glucose monitoring.Sensors (Basel)2017171218210.3390/s17010182 28106820
    [Google Scholar]
  102. WeinstockR. AleppoG. BaileyT. BergenstalR. FisherW. GreenwoodD. YoungL. The role of blood glucose monitoring in diabetes management.ADA Clin Compendia20202020313210.2337/db2020‑31 33411424
    [Google Scholar]
  103. DunganK. VermaN. Monitoring technologies- continuous glucose monitoring, mobile technology, biomarkers of glycemic controlNational Library of Medicine: 8600 Rockville Pike2000
    [Google Scholar]
  104. Modern perspective on the role of blood glucose self-monitoring in management of diabetes mellitus. FOCUS.Endocrinology20212110.47407/ef2021.2.1.0024
    [Google Scholar]
  105. McCallA.L. FarhyL.S. Treating type 1 diabetes: From strategies for insulin delivery to dual hormonal control.Minerva Endocrinol.2013382145163 23732369
    [Google Scholar]
  106. AschnerP. Insulin therapy in Type 2 Diabetes.Am. J. Ther.2020271e79e9010.1097/MJT.0000000000001088 31567175
    [Google Scholar]
  107. DonnerT. Insulin- pharmacology, therapeutic regimens and principles of intensive insulin therapy;Endotext: South Dartmouth2000
    [Google Scholar]
  108. ChunJ. StrongJ. UrquhartS. Insulin initiation and titration in patients with type 2 diabetes.Diabetes Spectr.201932210411110.2337/ds18‑0005 31168280
    [Google Scholar]
  109. HassaneinM. Al DahiW. RadhiH.T. AIMahfouz, A.; Al Kaabi, J.; Alshammari, A.; Alfutaisi, A.; AlMalki, M.H.; Malik, R. Expert-group practical advice on insulin initiation and titration for patients with type 2 diabetes in the Gulf Region.Dubai Diabetes Endocrinol. J.2022282455510.1159/000521437
    [Google Scholar]
  110. GiriB. DeyS. DasT. SarkarM. BanerjeeJ. DashS.K. Chronic hyperglycemia mediated physiological alteration and metabolic distortion leads to organ dysfunction, infection, cancer progression and other pathophysiological consequences: An update on glucose toxicity.Biomed. Pharmacother.201810730632810.1016/j.biopha.2018.07.157 30098549
    [Google Scholar]
  111. SilverB. RamaiyaK. AndrewS.B. FredrickO. BajajS. KalraS. CharlotteB.M. ClaudineK. MakhobaA. EADSG Guidelines: Insulin therapy in diabetes.Diabetes Ther.20189244949210.1007/s13300‑018‑0384‑6 29508275
    [Google Scholar]
  112. TripathiP. PandeyA. PandeyR. SrivatavaR. GoswamiS. Alternative therapies useful in the management of diabetes: A systematic review.J. Pharm. Bioallied Sci.20113450451210.4103/0975‑7406.90103 22219583
    [Google Scholar]
  113. BehrouzV. DastkhoshA. SohrabG. Overview of dietary supplements on patients with type 2 diabetes.Diabetes Metab. Syndr.202014432533410.1016/j.dsx.2020.03.019 32298985
    [Google Scholar]
  114. LiuD. WenQ. LiuM. GaoY. LuoL. ZhangZ. ChenQ. Dietary supplements for prediabetes.Medicine (Baltimore)20209920e2034710.1097/MD.0000000000020347 32443387
    [Google Scholar]
  115. Garcia-CazarinM.L. WambogoE.A. ReganK.S. DavisC.D. Dietary supplement research portfolio at the NIH, 2009-2011.J. Nutr.2014144441441810.3945/jn.113.189803 24523489
    [Google Scholar]
/content/journals/cnt/10.2174/0126659786283493240415155919
Loading
/content/journals/cnt/10.2174/0126659786283493240415155919
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): alternative therapy; Diabetes; herbs; hyperglycaemia; insulin; marketed product
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test