Skip to content
2000
Volume 5, Issue 1
  • ISSN: 2665-9786
  • E-ISSN: 2665-9794

Abstract

Background

Alzheimer’s disease (AD) is a progressive neurological disorder that develops with aging.

Objective

In this research, we have examined the anti - Alzheimer’s effect of ethanolic extract from roots of L. on colchicine-induced Alzheimer’s in Wistar rats.

Methods

Ethanolic extract was obtained and spectroscopic, chromatography analysis was performed. Acute toxicity studies using Organization of Economic Co-operation and Development (OECD) Guidelines 423 were performed to examine and make sure that there were no signs of toxic effects. The induction of AD was done using colchicine which leads to symptoms like neurotoxicity, neuroinflammation, and neurodegeneration. In this experiment, a thorough analysis of body weight, behavioral parameters, locomotor activity, and biochemical evaluation was performed to estimate the medicinal properties of L in treating Alzheimer’s disease.

Results

Pharmacognostic analysis showed the presence of vascular bundles, starch grains, fibers, calcium oxalate crystals, elongated parenchyma, and collenchyma mucilage as shown in the supplementary files. Locomotor activity, Escape latency time, Conditioned avoidance response, and Transfer latency were improved with treatment. Interleukin- 6 (IL - 6) levels were reduced significantly in the Colchicine + 200 Cassia mg/kg group (739.2 ± 0.37 pg/ml) than in the Colchicine Group (850.6 ± 0.40 pg/ml). Tumor necrosis factor (TNF-α) was decreased in the Colchicine + 200 Cassia mg/kg Group (1030.93 ± 0.51 pg/ml) than in the Colchicine Group (1455.06 ± 1.25 pg/ml). A significant decrease in total protein level was observed in the Colchicine Group (2.52 ± 0.10 mg/ml), (3.33 ± 0.90 mg/ml) as compared to Colchicine + 200 Cassia mg/kg Group (5.27 ± 0.09 mg/ml, (5.01 ± 0.10 mg/ml) respectively, in the Hippocampus and Entorhinal cortex. The levels of antioxidant enzymes such as Catalase (CAT), Serum superoxide dismutase (SOD), Reduced glutathione (GSH) and Malondialdehyde (MDA) were measured. When compared to the Colchicine Group (7.33 ± 0.16 nM/ mg, the MDA level was lower in the Colchicine + 100 Cassia mg/kg Group (3.20 ± 0.01 nM/ mg). The level of CAT in Colchicine + 200 Cassia mg/kg Group (7.01 ± 0.03 μmoles of HO/mg of protein) was seen to be increased when compared to Colchicine Group (3.32 ± 0.17 μmoles of HO/mg of protein). The level of SOD in Colchicine + 200 Cassia mg/kg Group (7.43 ± 0.02 U mg -1 of protein) was seen to be increased when compared with Colchicine Group (4.55 ± 0.03 U mg -1 of protein). The level of GSH in Colchicine + 200 Cassia mg/kg Group (10.07 ± 0.19 nM/mg -1 of protein) was increased when compared with the Colchicine Group (5.82 ± 0.11nM/mg -1 of protein).

Histopathology of the Hippocampus and Entorhinal cortex showed diminished amyloid plaques, and neurodegeneration in the treatment groups.

Conclusion

The present study showed that ethanolic extract from the roots of L. At 100 and 200 mg/kg doses in Wistar rats improved memory damage, by reducing oxidative stress. Levels of the antioxidant enzymes as CAT, and SOD, GSH were increased and MDA was decreased. The cytokine levels in the serum of Wistar rats of IL-6 level and TNF-α level were reduced significantly. Estimation of total protein level was found to be increased. It restored neuronal degeneration in the Hippocampus, and Entorhinal cortex and reduced oxidative stress. This suggests that the ethanolic extract of L. could be an effective therapeutic treatment for neurodegenerative diseases like AD.

Loading

Article metrics loading...

/content/journals/cnt/10.2174/0126659786275281231207115631
2023-12-26
2025-01-31
Loading full text...

Full text loading...

References

  1. RazaviF. TarokhM.J. AlborziM. An intelligent Alzheimer’s disease diagnosis method using unsupervised feature learning.J. Big Data2019613210.1186/s40537‑019‑0190‑7
    [Google Scholar]
  2. PasseriE. ElkhouryK. MorsinkM. BroersenK. LinderM. TamayolA. MalaplateC. YenF.T. Arab-TehranyE. Alzheimer’s Disease: Treatment strategies and their limitations.Int. J. Mol. Sci.202223221395410.3390/ijms232213954 36430432
    [Google Scholar]
  3. Crous-BouM. MinguillónC. GramuntN. MolinuevoJ.L. Alzheimer’s disease prevention: from risk factors to early intervention.Alzheimers Res. Ther.2017917110.1186/s13195‑017‑0297‑z 28899416
    [Google Scholar]
  4. JackC.R.Jr KnopmanD.S. JagustW.J. PetersenR.C. WeinerM.W. AisenP.S. ShawL.M. VemuriP. WisteH.J. WeigandS.D. LesnickT.G. PankratzV.S. DonohueM.C. TrojanowskiJ.Q. Tracking pathophysiological processes in Alzheimer’s disease: An updated hypothetical model of dynamic biomarkers.Lancet Neurol.201312220721610.1016/S1474‑4422(12)70291‑0 23332364
    [Google Scholar]
  5. NgA. TamW.W. ZhangM.W. HoC.S. HusainS.F. McIntyreR.S. HoR.C. IL-1β, IL-6, TNF- α and CRP in elderly patients with depression or Alzheimer’s disease: Systematic review and meta-analysis.Sci. Rep.2018811205010.1038/s41598‑018‑30487‑6 30104698
    [Google Scholar]
  6. ZambranoP. SuwalskyM. Jemiola-RzeminskaM. StrzalkaK. SepúlvedaB. GallardoM.J. AguilarL.F. The acetylcholinesterase (AChE) inhibitor and anti-Alzheimer drug donepezil interacts with human erythrocytes.Biochim. Biophys. Acta Biomembr.2019186161078108510.1016/j.bbamem.2019.03.014 30904408
    [Google Scholar]
  7. RitchieC.W. MolinuevoJ.L. TruyenL. SatlinA. Van der GeytenS. LovestoneS. Development of interventions for the secondary prevention of Alzheimer’s dementia: The European Prevention of Alzheimer’s Dementia (EPAD) project.Lancet Psychiatry20163217918610.1016/S2215‑0366(15)00454‑X 26683239
    [Google Scholar]
  8. LeeS. ProntoJ. SarankhuuB.E. KoK. RheeB. KimN. MishchenkoN. FedoreyevS. StonikV. HanJ. Acetylcholinesterase inhibitory activity of pigment echinochrome A from sea urchin Scaphechinus mirabilis.Mar. Drugs20141263560357310.3390/md12063560 24918454
    [Google Scholar]
  9. CavaleriF. JiaW. The True Nature of Curcumin’s Polypharmacology.J. Prev. Med.20172210.21767/2572‑5483.100015
    [Google Scholar]
  10. DeyA. BhattacharyaR. MukherjeeA. PandeyD.K. Natural products against Alzheimer’s disease: Pharmaco-therapeutics and biotechnological interventions.Biotechnol. Adv.201735217821610.1016/j.biotechadv.2016.12.005 28043897
    [Google Scholar]
  11. KoulB. FarooqU. YadavD. SongM. Phytochemicals: A promising alternative for the prevention of alzheimer’s disease.Life202313499910.3390/life13040999 37109528
    [Google Scholar]
  12. YadavJ.P. AryaV. YadavS. PanghalM. KumarS. DhankharS. Cassia occidentalis L.: A review on its ethnobotany, phytochemical and pharmacological profile.Fitoterapia201081422323010.1016/j.fitote.2009.09.008 19796670
    [Google Scholar]
  13. MaoR. XiaP. HeZ. LiuY. LiuF. ZhaoH. HanR. LiangZ. Identification of seeds based on molecular markers and secondary metabolites in Senna obtusifolia and Senna occidentalis.Bot. Stud.20175814310.1186/s40529‑017‑0196‑4 29098509
    [Google Scholar]
  14. De SousaR.A.L. RodriguesC.M. MendesB.F. Improta-CariaA.C. PeixotoM.F.D. CassilhasR.C. Physical exercise protocols in animal models of Alzheimer’s disease: A systematic review.Metab. Brain Dis.2021361859510.1007/s11011‑020‑00633‑z 33095371
    [Google Scholar]
  15. MahantheshM.C. ManjappaA.S. SherikarA.S. DisouzaJ.I. ShindeM.V. Biological Activities of Cassia occidentalis Linn: A Systematic Review.World J. Pharm. Res.201989100117
    [Google Scholar]
  16. AlamgirA.N.M. AlamgirA.N.M. Pharmacognostical botany: Classification of medicinal and aromatic plants (MAPs), Botanical Taxonomy, morphology, and anatomy of drug plants.In Therapeutic Use of Medicinal Plants and Their Extracts.Pharmacognosy2017177293
    [Google Scholar]
  17. MohammadiM. AlaeiM. BajalanI. Phytochemical screening, total phenolic and flavonoid contents and antioxidant activity of Anabasis setifera and Salsola tomentosa extracted with different extraction methods and solvents.Orient. Pharm. Exp. Med.2016161313510.1007/s13596‑016‑0220‑3
    [Google Scholar]
  18. ZieneldienT. KimJ. CaoC. The multifaceted role of neuroprotective plants in alzheimer’s disease treatment.Geriatrics2022722410.3390/geriatrics7020024 35314596
    [Google Scholar]
  19. TsaiY.T. KaoS.T. ChengC.Y. Medicinal herbs and their derived ingredients protect against cognitive decline in in vivo models of alzheimer’s disease.Int. J. Mol. Sci.202223191131110.3390/ijms231911311 36232612
    [Google Scholar]
  20. SeethapathyG.S. GaneshD. Santhosh KumarJ.U. SenthilkumarU. NewmasterS.G. RagupathyS. Uma ShaankerR. RavikanthG. Assessing product adulteration in natural health products for laxative yielding plants, Cassia, Senna, and Chamaecrista, in Southern India using DNA barcoding.Int. J. Legal Med.2015129469370010.1007/s00414‑014‑1120‑z 25425095
    [Google Scholar]
  21. AliM. AnsariS.H. AhmadS. SanobarS. HussainA. “Phytochemical and Pharmacological Approaches of Traditional Alternate Cassia occidentalis L.” Plant and Human Health.Pharmacology and Therapeutic Uses20193321341
    [Google Scholar]
  22. ZhuZ. WangW. WangX. ZhaoX. XiaN. KongF. WangS. Easy way to prepare dispersible CNC dry powder by precipitation and conventional evaporation.Cellulose202128159661967610.1007/s10570‑021‑04123‑y
    [Google Scholar]
  23. VeblenD.R. GuthrieG.D. LiviK.J. ReynoldsR.C. High-resolution transmission electron microscopy and electron diffraction of mixed-layer illite/smectite: Experimental results.Clays Clay Miner.199038111310.1346/CCMN.1990.0380101
    [Google Scholar]
  24. OdejaO. ObiG. OgwucheC.E. ElemikeE.E. OderinloY. RETRACTED ARTICLE: Phytochemical screening, antioxidant and antimicrobial activities of senna occidentalis (l.) leaves extract.Clinical Phytoscience201511610.1186/s40816‑015‑0007‑y
    [Google Scholar]
  25. GwatidzoL. DzombaP. MangenaM. TLC separation and antioxidant activity of flavonoids from Carissa bispinosa, Ficus sycomorus, and Grewia bicolar fruits.Nutrire2018431310.1186/s41110‑018‑0062‑5
    [Google Scholar]
  26. ShustovB. Gómez de CastroA.I. SachkovM. VallejoJ.C. Marcos-ArenalP. KanevE. SavanovI. ShugarovA. SichevskiiS. The world space observatory ultraviolet (WSO–UV), as a bridge to future UV astronomy.Astrophys. Space Sci.201836346210.1007/s10509‑018‑3280‑7
    [Google Scholar]
  27. VishwasraoC. MominB. AnanthanarayanL. Green synthesis of silver nanoparticles using sapota fruit waste and evaluation of their antimicrobial activity.Waste Biomass Valoriz.20191082353236310.1007/s12649‑018‑0230‑0
    [Google Scholar]
  28. PrabuP.C. PanchapakesanS. RajC.D. Acute and sub-acute oral toxicity assessment of the hydroalcoholic extract of Withania somnifera roots in Wistar rats.Phytother. Res.20132781169117810.1002/ptr.4854 22996349
    [Google Scholar]
  29. BenrahouK. MrabtiH.N. AssaggafH.M. MortadaS. SalhiN. RouasL. El BachaR. DamiA. MasrarA. AlshahraniM.M. AwadhA.A.A. BouyahyaA. GohK.W. MingL.C. CherrahY. FaouziM.E.A. Acute and subacute toxicity studies of erodium guttatum extracts by oral administration in rodents.Toxins2022141173510.3390/toxins14110735 36355985
    [Google Scholar]
  30. HawashZ.A.S. YassienE.M. AlotaibiB.S. El-MoslemanyA.M. ShukryM. Assessment of anti-alzheimer pursuit of jambolan fruit extract and/or choline against AlCl3 toxicity in rats.Toxics202311650910.3390/toxics11060509 37368609
    [Google Scholar]
  31. OjhaP. S. BiradarP. R. TubachiS. PatilV. S. Evaluation of neuroprotective effects of canna indica L. against aluminium chloride induced memory impairment in rats. Adv. Trad. Med2022118
    [Google Scholar]
  32. LiY. ZhengM. SahS.K. MishraA. SinghY. Neuroprotective influence of sitagliptin against cisplatin-induced neurotoxicity, biochemical and behavioral alterations in Wistar rats.Mol. Cell. Biochem.20194551-2919710.1007/s11010‑018‑3472‑z 30446906
    [Google Scholar]
  33. PatelR. KaurK. SinghS. Protective effect of andrographolide against STZ induced Alzheimer’s disease in experimental rats: possible neuromodulation and Aβ(1–42) analysis.Inflammopharmacology20212941157116810.1007/s10787‑021‑00843‑6 34235591
    [Google Scholar]
  34. BhattacharjeeA. ShashidharaS.C. SahaS. Nootropic activity of Crataeva nurvala Buch-Ham against scopolamine induced cognitive impairment.EXCLI J.201514335345 27065767
    [Google Scholar]
  35. ThornberryC. CimadevillaJ.M. ComminsS. Virtual Morris water maze: Opportunities and challenges.Rev. Neurosci.202132888790310.1515/revneuro‑2020‑0149 33838098
    [Google Scholar]
  36. GuanY. JiangL. ZhuH. WuW. ZhouX. ZhangH. ZhangX. Climbot: A bio-inspired modular biped climbing robot—system development, climbing gaits, and experiments.J. Mech. Robot.20168202102610.1115/1.4028683
    [Google Scholar]
  37. PritamP. DekaR. BhardwajA. SrivastavaR. KumarD. JhaA.K. JhaN.K. VillaC. JhaS.K. Antioxidants in alzheimer’s disease: current therapeutic significance and future prospects.Biology202211221210.3390/biology11020212 35205079
    [Google Scholar]
  38. D’OnofrioG. SancarloD. RuanQ. YuZ. PanzaF. DanieleA. GrecoA. SeripaD. Phytochemicals in the treatment of alzheimer’s disease: A systematic review.Curr. Drug Targets2017181314871498 27809746
    [Google Scholar]
  39. El SayedN.S. GhoneumM.H. GhoneumM.H. Antia, a natural antioxidant product, attenuates cognitive dysfunction in streptozotocin-induced mouse model of sporadic alzheimer’s disease by targeting the amyloidogenic, inflammatory, autophagy, and oxidative stress pathways.Oxid. Med. Cell. Longev.2020202011410.1155/2020/4386562 32655767
    [Google Scholar]
  40. VerdileG. KeaneK.N. CruzatV.F. MedicS. SabaleM. RowlesJ. WijesekaraN. MartinsR.N. FraserP.E. NewsholmeP. Inflammation and oxidative stress: The molecular connectivity between insulin resistance, obesity, and alzheimer’s disease.Mediators Inflamm.2015201511710.1155/2015/105828 26693205
    [Google Scholar]
  41. FengY. WangX. Antioxidant therapies for Alzheimer’s disease.Oxid. Med. Cell. Longev.2012201211710.1155/2012/472932 22888398
    [Google Scholar]
  42. RevathiA. KaladeviR. RamanaK. JhaveriR.H. Rudra KumarM. Sankara Prasanna KumarM. Early detection of cognitive decline using machine learning algorithm and cognitive ability test.Secur. Commun. Netw.2022202211310.1155/2022/4190023
    [Google Scholar]
  43. MahadevanJ. SundareshA. RajkumarR.P. MuthuramalingamA. MenonV. NegiV.S. SridharM.G. An exploratory study of immune markers in acute and transient psychosis.Asian J. Psychiatr.20172521922310.1016/j.ajp.2016.11.010 28262155
    [Google Scholar]
  44. MarshallJ.S. WarringtonR. WatsonW. KimH.L. An introduction to immunology and immunopathology.Allergy Asthma Clin. Immunol.201814(S2)24910.1186/s13223‑018‑0278‑1 30263032
    [Google Scholar]
  45. OnyangoI.G. JaureguiG.V. ČarnáM. BennettJ.P.Jr StokinG.B. Neuroinflammation in Alzheimer’s Disease.Biomedicines20219552410.3390/biomedicines9050524 34067173
    [Google Scholar]
  46. HughesC.G. BoncykC.S. FedelesB. PandharipandeP.P. ChenW. PatelM.B. BrummelN.E. JacksonJ.C. RamanR. ElyE.W. GirardT.D. Association between cholinesterase activity and critical illness brain dysfunction.Crit. Care202226137710.1186/s13054‑022‑04260‑1 36474266
    [Google Scholar]
  47. XiaF. YiuA. StoneS.S.D. OhS. LozanoA.M. JosselynS.A. FranklandP.W. Entorhinal cortical deep brain stimulation rescues memory deficits in both young and old mice genetically engineered to model alzheimer’s disease.Neuropsychopharmacology201742132493250310.1038/npp.2017.100 28540926
    [Google Scholar]
  48. RegitzC. FitzenbergerE. MahnF.L. DußlingL.M. WenzelU. Resveratrol reduces amyloid-beta (Aβ1–42)-induced paralysis through targeting proteostasis in an Alzheimer model of Caenorhabditis elegans.Eur. J. Nutr.201655274174710.1007/s00394‑015‑0894‑1 25851110
    [Google Scholar]
  49. MudòG. FrinchiM. NuzzoD. ScadutoP. PlesciaF. MassentiM.F. Di CarloM. CannizzaroC. CassataG. CiceroL. RuscicaM. BelluardoN. GrimaldiL.M. Anti-inflammatory and cognitive effects of interferon-β1a (IFNβ1a) in a rat model of Alzheimer’s disease.J. Neuroinflammation20191614410.1186/s12974‑019‑1417‑4 30777084
    [Google Scholar]
  50. NelsonP.T. SmithC.D. AbnerE.L. WilfredB.J. WangW.X. NeltnerJ.H. BakerM. FardoD.W. KryscioR.J. ScheffS.W. JichaG.A. JellingerK.A. Van EldikL.J. SchmittF.A. Hippocampal sclerosis of aging, a prevalent and high-morbidity brain disease.Acta Neuropathol.2013126216117710.1007/s00401‑013‑1154‑1 23864344
    [Google Scholar]
  51. WeisbeckerV. Distortion in formalin-fixed brains: Using geometric morphometrics to quantify the worst-case scenario in mice.Brain Struct. Funct.2012217267768510.1007/s00429‑011‑0366‑1 22139139
    [Google Scholar]
  52. Stuhlmann-LaeiszC. SchönlandS.O. HegenbartU. OschliesI. BaumgartJ.V. KrügerS. RöckenC. AL amyloidosis with a localized B cell neoplasia.Virchows Arch.2019474335336310.1007/s00428‑019‑02527‑7 30680453
    [Google Scholar]
  53. ChungS.J. LeeY.H. YooH.S. SohnY.H. YeB.S. ChaJ. LeeP.H. Distinct FP-CIT PET patterns of Alzheimer’s disease with parkinsonism and dementia with Lewy bodies.Eur. J. Nucl. Med. Mol. Imaging20194681652166010.1007/s00259‑019‑04315‑6 30980099
    [Google Scholar]
  54. KangS.Y. KimY.J. JangW. SonK.Y. ParkH.S. KimY.S. Body mass index trajectories and the risk for Alzheimer’s disease among older adults.Sci. Rep.2021111308710.1038/s41598‑021‑82593‑7 33542352
    [Google Scholar]
  55. BuchmanA.S. BennettD.A. Loss of motor function in preclinical Alzheimer’s disease.Expert Rev. Neurother.201111566567610.1586/ern.11.57 21539487
    [Google Scholar]
  56. AttarA. LiuT. ChanW.T.C. HayesJ. NejadM. LeiK. BitanG. A shortened Barnes maze protocol reveals memory deficits at 4-months of age in the triple-transgenic mouse model of Alzheimer’s disease.PLoS One2013811e8035510.1371/journal.pone.0080355 24236177
    [Google Scholar]
  57. CaccamoA. BelfioreR. OddoS. RETRACTED: Genetically reducing mTOR signaling rescues central insulin dysregulation in a mouse model of Alzheimer’s disease.Neurobiol. Aging201868110.1016/j.neurobiolaging.2018.03.032 29729422
    [Google Scholar]
  58. FatimaF. QadeerF. AbidiA. RizviD.A. Evaluating the role of punica granatum and rosuvastatin in an experimental model of alzheimer’s disease.Biomed. Pharmacol. J.20201342101210810.13005/bpj/2091
    [Google Scholar]
  59. NazemA. SankowskiR. BacherM. Al-AbedY. Rodent models of neuroinflammation for Alzheimer’s disease.J. Neuroinflammation20151217410.1186/s12974‑015‑0291‑y 25890375
    [Google Scholar]
  60. SiddiquiN. AliJ. ParvezS. NajmiA.K. AkhtarM. Neuroprotective role of DPP-4 inhibitor linagliptin against neurodegeneration, neuronal insulin resistance and neuroinflammation induced by intracerebroventricular streptozotocin in rat model of alzheimer’s disease.Neurochem. Res.20234892714273010.1007/s11064‑023‑03924‑w 37079222
    [Google Scholar]
  61. NiedzielskaE. SmagaI. GawlikM. MoniczewskiA. StankowiczP. PeraJ. FilipM. Oxidative stress in neurodegenerative diseases.Mol. Neurobiol.20165364094412510.1007/s12035‑015‑9337‑5 26198567
    [Google Scholar]
  62. HiraS. SaleemU. AnwarF. RazaZ. RehmanA.U. AhmadB. In silico study and pharmacological evaluation of eplerinone as an anti-alzheimer’s Drug in STZ-Induced alzheimer’s disease model.ACS Omega2020523139731398310.1021/acsomega.0c01381 32566864
    [Google Scholar]
  63. RaoY. L. GanarajaB. MaratheA. ManjrekarP. A. JoyT. UllalS. PaiM. M. MurlimanjuB. V. Comparison of malondialdehyde levels and superoxide dismutase activity in resveratrol and resveratrol/donepezil combination treatment groups in alzheimer’s disease induced rat model.3 Biotech2021117329
    [Google Scholar]
  64. KaurH. ChahalS. JhaP. LekhakM.M. ShekhawatM.S. NaidooD. ArencibiaA.D. OchattS.J. KumarV. Harnessing plant biotechnology-based strategies for in vitro galanthamine (GAL) Biosynthesis: A potent drug against alzheimer’s disease.Plant Cell Tissue Organ Cult.20221491-281103
    [Google Scholar]
  65. BaroneE. Editorial (Thematic Issue: Oxidative stress and alzheimer disease: Where do we stand?).Curr. Alzheimer Res.201613210811110.2174/156720501302160101123849 26750609
    [Google Scholar]
  66. SaxenaP. SelvarajK. KhareS.K. ChaudharyN. Superoxide dismutase as multipotent therapeutic antioxidant enzyme: Role in human diseases.Biotechnol. Lett.202244112210.1007/s10529‑021‑03200‑3 34734354
    [Google Scholar]
  67. BrásJ.P. BravoJ. FreitasJ. BarbosaM.A. SantosS.G. SummavielleT. AlmeidaM.I. TNF-alpha-induced microglia activation requires miR-342: Impact on NF-kB signaling and neurotoxicity.Cell Death Dis.202011641510.1038/s41419‑020‑2626‑6 32488063
    [Google Scholar]
  68. McKinleyR. MeierR. WiestR. Ensembles of densely connected CNNs with label-uncertainty for brain tumor segmentation. Brain Lesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. 4th International Workshop. BrainLes;Granada, Spain, September 16, 2018. Revised Selected Papers,2018
    [Google Scholar]
  69. WangZ. ZhouF. DouY. TianX. LiuC. LiH. ShenH. ChenG. Melatonin alleviates intracerebral hemorrhage-induced secondary brain injury in rats via suppressing apoptosis, inflammation, oxidative stress, DNA Damage, and Mitochondria Injury.Transl. Stroke Res.201891749110.1007/s12975‑017‑0559‑x 28766251
    [Google Scholar]
  70. Kaoud HusseinA. Article review: Heavy metals and pesticides in aquaculture: Health problems.Eur. J. Acad. Essays2015291522
    [Google Scholar]
  71. MeursJ. KrapT. DuijstW. Evaluation of postmortem biochemical markers: Completeness of data and assessment of implication in the field.Sci. Justice201959217718010.1016/j.scijus.2018.09.002 30798866
    [Google Scholar]
  72. KaushalJ. MehandiaS. SinghG. RainaA. AryaS.K. Catalase enzyme: Application in bioremediation and food industry.Biocatal. Agric. Biotechnol.20181619219910.1016/j.bcab.2018.07.035
    [Google Scholar]
  73. Chiapinotto SpiazziC. Bucco SoaresM. Pinto IzaguirryA. Musacchio VargasL. ZanchiM.M. Frasson PavinN. Ferreira AffeldtR. Seibert LüdtkeD. PrigolM. SantosF.W. Selenofuranoside ameliorates memory loss in alzheimer-like sporadic dementia: AChE activity, oxidative stress, and inflammation involvement.Oxid. Med. Cell. Longev.201520151910.1155/2015/976908 26090073
    [Google Scholar]
  74. ZuoL. HemmelgarnB.T. ChuangC.C. BestT.M. The role of oxidative stress-induced epigenetic alterations in amyloid- β production in alzheimer’s disease.Oxid. Med. Cell. Longev.2015201511310.1155/2015/604658 26543520
    [Google Scholar]
  75. SaraswatN. SachanN. ChandraP.M. Anti- diabetic neuropathy protective action and mechanism of action involving oxidative pathway of chlorogenic acid isolated from selinum vaginatum roots in rats.Heliyon202061005137
    [Google Scholar]
  76. SachanN. SaraswatN. ChandraP. KhalidM. KabraA. Isolation of thymol from trachyspermum ammi fruits for treatment of diabetes and diabetic neuropathy in STZ-Induced rats.BioMed Res. Int.2022202212010.1155/2022/8263999 35528161
    [Google Scholar]
/content/journals/cnt/10.2174/0126659786275281231207115631
Loading
/content/journals/cnt/10.2174/0126659786275281231207115631
Loading

Data & Media loading...

Supplements

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test