- Home
- A-Z Publications
- Central Nervous System Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry - Central Nervous System Agents)
- Previous Issues
- Volume 25, Issue 1, 2025
Central Nervous System Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry - Central Nervous System Agents) - Volume 25, Issue 1, 2025
Volume 25, Issue 1, 2025
-
-
Nanomedicine: A New Frontier in Alzheimer’s Disease Drug Targeting
Alzheimer's disease (AD) is a prevalent neurodegenerative disorder affecting elderly individuals, characterized by progressive cognitive decline leading to dementia. This review examines the challenges posed by anatomical and biochemical barriers such as the blood-brain barrier (BBB), blood-cerebrospinal fluid barrier (BCSFB), and p-glycoproteins in delivering effective therapeutic agents to the central nervous system (CNS) for AD treatment.
This article outlines the fundamental role of acetylcholinesterase inhibitors (AChEIs) and NMDA(N-Methyl-D-Aspartate) receptor antagonists in conventional AD therapy and highlights their limitations in terms of brain-specific delivery. It delves into the intricacies of BBB and p-glycoprotein-mediated efflux mechanisms that impede drug transport to the CNS. The review further discusses cutting-edge nanomedicine-based strategies, detailing their composition and mechanisms that enable effective bypassing of BBB and enhancing drug accumulation in brain tissues.
Conventional therapies, namely AChEIs and NMDA receptor antagonists, have shown limited efficacy and are hindered by suboptimal brain penetration. The advent of nanotechnology-driven therapeutic delivery systems offers promising strategies to enhance CNS targeting and bioavailability, thereby addressing the shortcomings of conventional treatments.
Various nanomedicines, encompassing polymeric and metallic nanoparticles (MNPs), solid lipid nanoparticles (SLNs), liposomes, micelles, dendrimers, nanoemulsions, and carbon nanotubes, have been investigated for their potential in delivering anti-AD agents like AChEIs, polyphenols, curcumin, and resveratrol. These nanocarriers exhibit the ability to traverse the BBB and deliver therapeutic payloads to the brain, thereby holding immense potential for effective AD treatment and early diagnostic approaches. Notably, nanocarriers loaded with AChEIs have shown promising results in preclinical studies, exhibiting improved therapeutic efficacy and sustained release profiles.
This review underscores the urgency of innovative drug delivery approaches to overcome barriers in AD therapy. Nanomedicine-based solutions offer a promising avenue for achieving effective CNS targeting, enabling enhanced bioavailability and sustained therapeutic effects. As ongoing research continues to elucidate the complexities of CNS drug delivery, these advancements hold great potential for revolutionizing AD treatment and diagnosis.
-
-
-
The Role of Nanotechnology in Understanding the Pathophysiology of Traumatic Brain Injury
Authors: Saranya Selvaraj and Laksiri WeerasingheRecently, traumatic brain injury (TBI) has been a growing disorder due to frequent brain dysfunction. The Glasgow Coma Scale expresses TBI as classified as having mild, moderate, or severe brain effects, according to the effects on the brain. Brain receptors undergo various modifications in their pathology through chemical synaptic pathways, leading to depression, Alzheimer's, and Parkinson's disease. These brain disorders can be controlled using central receptors such as dopamine, glutamate, and γ-aminobutyric acid, which are clearly explained in this review. Furthermore, there are many complications in TBI's clinical trials and diagnostics, leading to insignificant treatment, causing permanent neuro-damage, physical disability, and even death. Bio-screening and conventional molecular-based therapies are inappropriate due to poor preclinical testing and delayed recovery. Hence, modern nanotechnology utilizing nano-pulsed laser therapy and advanced nanoparticle insertion will be suitable for TBI's diagnostics and treatment. In recent days, nanotechnology has an important role in TBI control and provides a higher success rate than conventional therapies. This review highlights the pathophysiology of TBI by comprising the drawbacks of conventional techniques and supports suitable modern alternates for treating TBI.
-
-
-
Beta-site APP-cleaving Enzyme-1 Inhibitory Role of Natural Flavonoids in the Treatment of Alzheimer's Disease
Authors: Sandeep Singh, Virendra Kushwaha, Shriram Sisodia, Shivendra Kumar and Kantrol Kumar SahuAlzheimer's Disease (AD) is a devastating neurological condition characterized by a progressive decline in cognitive function, including memory loss, reasoning difficulties, and disorientation. Its hallmark features include the formation of neurofibrillary tangles and neuritic plaques in the brain, disrupting normal neuronal function. Neurofibrillary tangles, composed of phosphorylated tau protein and neuritic plaques, containing amyloid-β protein (Aβ) aggregates, contribute to the degenerative process. The discovery of the beta-site amyloid precursor protein cleaving enzyme 1 (BACE1) in 1999 revolutionized our understanding of AD pathogenesis. BACE1 plays a crucial role in the production of Aβ, the toxic protein implicated in AD progression. Elevated levels of BACE1 have been observed in AD brains and bodily fluids, underscoring its significance in disease onset and progression. Despite setbacks in clinical trials of BACE1 inhibitors due to efficacy and safety concerns, targeting BACE1 remains a promising therapeutic strategy for early-stage AD. Natural flavonoids have emerged as potential BACE1 inhibitors, demonstrating the ability to reduce Aβ production in neuronal cells and inhibit BACE1 activity. In our review, we delve into the pathophysiology of AD, highlighting the central role of BACE1 in Aβ production and disease progression. We explore the therapeutic potential of BACE1 inhibitors, including natural flavonoids, in controlling AD symptoms. Additionally, we provide insights into ongoing clinical trials and available patents in this field, shedding light on future directions for AD treatment research.
-
-
-
A Review of the Association between Infections, Seizures, and Drugs
More LessBackgroundSeizures are a common presenting symptom of the central nervous system (CNS) and could occur from infections (such as toxins) or drugs.
ObjectiveThe aim of this study was to present a systematic review of the association between infections, seizures, and drugs.
MethodsFrom their inception to 18 February 2024 relevant in-depth consequent guide approach and the evidence-based choice were selected associated with a knowledgeable collection of current, high-quality manuscripts.
ResultsImbalance between inhibitory and excitatory neurotransmitters due to infections, drugs such as ticarcillin, amoxicillin, oxacillin, penicillin G, ampicillin, tramadol, venlafaxine, cyclosporine, tacrolimus, acyclovir, cellcept, the old generation of antiepileptic drugs, such as carbamazepine, phenytoin, and many other drugs could cause different stages of CNS disturbances ranging from seizure to encephalopathy. Infections could cause life-threatening status epilepticus by continuous unremitting seizures lasting longer than 5 minutes or recurrent seizures. Meningitis, tuberculosis, herpes simplex, cerebral toxoplasmosis, and many others could lead to status epilepticus. In fact, confusion, encephalopathy, and myoclonus were reported with drugs, such as ticarcillin, amoxicillin, oxacillin, penicillin G, ampicillin, and others. Penicillin G was reported as having the greatest epileptogenic potential. A high dose, in addition to prolonged use of metronidazole, was reported with seizure infection. Meropenem could decrease the concentration of valproic acid. Due to the inhibition of cytochrome P450 3A4, the combination of clarithromycin and erythromycin with carbamazepine needs vigilant monitoring.
ConclusionDue to changes in drug metabolism, co-administration of antiseizure drugs and antibiotics may lead to an enhanced risk of seizures. In patients with neurocysticercosis, cerebral malaria, viral encephalitis, bacterial meningitis, tuberculosis, and human immunodeficiency virus, the evidence-based study recommended different mechanisms mediating epileptogenic properties of toxins and drugs.
-
-
-
Filtration of Natural Derivatives as MAO Inhibitors by Virtual Screening: A Potential Lead for Neurodegenerative Disorders
Authors: Neelam Malik, Supriya Agnihotri and Priyanka DhimanAimThe purpose of the current study was to explore the virtual library for the screening against Monoamine oxidase (MAO) isoforms. An in-house library of natural based ligands was docked within the active sites of MAO isoforms and their in vitro study was also conducted.
ObjectiveThe prime objective of the current study was to screen and validate the natural-based derivatives for MAO inhibitory action with the least adverse effects and get molecular aspects about further structural modifications on the most active leads.
BackgroundThe importance of MAOs in controlling the activity of the central nervous system has been extensively studied. Our goal in this work is to identify a prospective natural lead molecule that has a stronger affinity for the MAO enzyme in order to produce a more effective natural candidate for a neurological agent.
Methods and ResultsIn order to get insight into how different categories of natural compounds interact with the targeted protein, we virtually screened the numerous natural compound categories in the current study. Rhamnetin, quercetin, piperine, eugenol, and umbelliferone showed the highest dock scores in the case of MAO-B, with scores of -10.57, -9.938, -9.445, and 7.821, respectively. For MAO-A, umbelliferone, curcumin, caffeic acid, and quercetin, the corresponding dock scores were -8.001, -7.941, -7.357, and -6.658. Additionally, an in vitro MAO inhibitory experiment was utilized to assess the top-ranked compounds with the best docking scores. The most potent Human Monoamine oxidase (hMAO-A) inhibitor, with an IC50 of 10.98±0.006 M and a selectivity index (SI) of 0.607, was discovered to be the compound umbelliferone. Rhamnetin, the lead chemical, has demonstrated hMAO-B activity with a value of 10.32±0.044 M (SI value of 3.096).
ConclusionThese natural potential ligands have been found remarkable to the standard compounds against MAO-A and MAO-B, and they could be used as a lead chemical in the development of novel therapeutic candidates. The in silico screening results and in vitro hMAO inhibitory efficacy exhibited strong correlations.
-
-
-
A Computational Study of Phenothiazine Derivatives as Acetylcholinesterase Inhibitors Targeting Alzheimer’s Disease
Authors: Prema V., Meena A. and Ramalakshmi N.BackgroundAlzheimer’s disease is a neurodegenerative disorder that affects learning, memory and behavioral turbulence in elderly patients. Acetylcholinesterase (AChE) inhibitors act as anti-Alzheimer’s agents. Phenothiazine derivatives are considered momentous anti-Alzheimer’s agents because of their AChE inhibitory activity. The elevated levels and increased expression of this protein have been associated with Alzheimer's disease. Coumarin-fused phenothiazines have emerged as significant anti-Alzheimer's agents due to their notable receptor inhibitory activity.
ObjectiveSome unique phenothiazine analogs were designed, and computational studies were conducted to explore their inhibitory activity against the AChE enzyme (PDB id: 4EY7) by using the Schrodinger suite-2019-4.
MethodsDocking studies were conducted by using the Glide module; binding free energies were calculated by means of the Prime MM-GBSA module, and Molecular dynamics (MD) simulation was performed by using the Desmond module of the Schrodinger suite. Glide scores were used to find out the binding affinity of the ligands with the target 4EY7.
ResultsThe compounds exhibited enhanced hydrophobic interactions and formed hydrogen bonds, effectively impeding Acetylcholinesterase. The Glide scores for the compounds ranged from -13.4237 to -8.43439, surpassing the standard (Donepezil) with a score of -16.9898. Interestingly, a positive value was obtained for the MM-GBSA binding of the potent inhibitor. To gain insights into the dynamic behavior of the protein A8, molecular dynamics (MD) simulations were employed.
ConclusionBased on the results, the study concludes that phenothiazine derivatives show promise as acetylcholinesterase inhibitors. Compounds with notable Glide scores are poised to exhibit significant anti-Alzheimer's activity, suggesting their potential therapeutic efficacy. Further in vitro and in vivo investigations are warranted to validate and explore the therapeutic potentials of these compounds.
-
Volumes & issues
-
Volume 25 (2025)
-
Volume 24 (2024)
-
Volume 23 (2023)
-
Volume 22 (2022)
-
Volume 21 (2021)
-
Volume 20 (2020)
-
Volume 19 (2019)
-
Volume 18 (2018)
-
Volume 17 (2017)
-
Volume 16 (2016)
-
Volume 15 (2015)
-
Volume 14 (2014)
-
Volume 13 (2013)
-
Volume 12 (2012)
-
Volume 11 (2011)
-
Volume 10 (2010)
-
Volume 9 (2009)
-
Volume 8 (2008)
-
Volume 7 (2007)
-
Volume 6 (2006)