Skip to content
2000
Volume 25, Issue 2
  • ISSN: 1871-5249
  • E-ISSN: 1875-6166

Abstract

Introduction and Aims

Seizures due to epilepsy in any form cause a wide range of problems in a patient's physical, psychological, and social health. This study aimed to investigate piperine's anti-seizure and antiepileptic effects and mechanisms.

Methods

In this systematic review study, which was conducted according to the principles of PRISMA 2020, the initial search was conducted on November 2, 2023, using EndNote software. Various databases such as PubMed, Cochrane Library, Web of Science, Embase, and Scopus were searched using specific keywords. After screening the articles, a form was designed according to the objectives of the study, and the information related to the included articles was entered in the form, and the studies were reviewed.

Results

Piperine showed its antiepileptic activity by affecting the brain's antioxidant, anti-inflammatory, and anti-apoptotic activity. It also, by modulating brain-derived neurotrophic factor (BDNF) and gamma-aminobutyric acid (GABA)ergic activity, can control seizures. In addition, piperine can help treat seizures and epilepsy by elevating 5-HT levels in the brain, modulating astrocyte and microglia function, modulatory effects on Ca2+ and NA+ channels, increasing antiepileptic drugs bioavailability and influencing protein and gene expression.

Conclusion

and studies showed beneficial effects on treating epilepsy. Although clinical studies also showed similar results, these needed to be increased, and more clinical studies needed to be designed in this field.

Loading

Article metrics loading...

/content/journals/cnsamc/10.2174/0118715249297934240630111059
2024-07-30
2025-07-13
Loading full text...

Full text loading...

References

  1. Falco-WalterJ. Epilepsy-definition, classification, pathophysiology, and epidemiology.Semin. Neurol.202040661762310.1055/s‑0040‑171871933155183
    [Google Scholar]
  2. HuffJ.S. MurrN. Seizure.StatPearls.InternetTreasure Island, FLStatPearls Publishing2023
    [Google Scholar]
  3. SarmastS.T. AbdullahiA.M. JahanN. Current classification of seizures and epilepsies: Scope, limitations and recommendations for future action.Cureus2020129e1054910.7759/cureus.1054933101797
    [Google Scholar]
  4. BeghiE. The epidemiology of epilepsy.Neuroepidemiology202054218519110.1159/00050383131852003
    [Google Scholar]
  5. OduahM.T. IwanowskiP. Cardiovascular complications of epileptic seizures.Epilepsy Behav.202011110718510.1016/j.yebeh.2020.10718532554232
    [Google Scholar]
  6. Tellez-ZentenoJ. NguyenR. Injuries in epilepsy: A review of its prevalence, risk factors, type of injuries and prevention.Neurol. Int.2009112010.4081/ni.2009.e2021577358
    [Google Scholar]
  7. KerrM.P. The impact of epilepsy on patients’ lives.Acta Neurol. Scand.20121261941910.1111/ane.1201423106520
    [Google Scholar]
  8. Bujan KovačA. Petelin GadžeŽ. TudorK.I. NankovićS. ŠulentićV. PoljakovićZ. MrakG. MudrovčićM. BrezakI. MijatovićD. ĐerkeF. DesnicaA. NemirJ. ČajićI. Nimac KozinaP. Đapić IvančićB. RadićB. HajnšekS. Quality of life in patients with epilepsy – single centre experience.Acta Clin. Croat.202160Suppl. 3162410.20471/acc.2021.60.s3.0236405002
    [Google Scholar]
  9. SubbaraoB.S. SilvermanA. EapenB.C. Seizure Medications.StatPearls.InternetTreasure Island, FLStatPearls Publishing2023
    [Google Scholar]
  10. RaeisiE. AazamiM.H. AghamiriS.M.R. SatariA. HosseinzadehS. LemoigneY. HeidarianE. Bromelain-based chemo-herbal combination effect on human cancer cells: in-vitro study on AGS and MCF7 proliferation and apoptosis.Curr. Issues Pharm. Med. Sci.202033315516110.2478/cipms‑2020‑0028
    [Google Scholar]
  11. KhaledifarA. Khosravi FarsaniM.R. RaeisiE. Berberine efficacy against Doxorubicin-induced cardiotoxicity: A systematic review.Journal of Herbmed Pharmacology202312218719310.34172/jhp.2023.19
    [Google Scholar]
  12. YuanH. MaQ. YeL. PiaoG. The traditional medicine and modern medicine from natural products.Molecules201621555910.3390/molecules2105055927136524
    [Google Scholar]
  13. TripathiA.K. RayA.K. MishraS.K. Molecular and pharmacological aspects of piperine as a potential molecule for disease prevention and management: evidence from clinical trials.Beni. Suef Univ. J. Basic Appl. Sci.20221111610.1186/s43088‑022‑00196‑135127957
    [Google Scholar]
  14. AzamS. ParkJ.Y. KimI.S. ChoiD.K. Piperine and its metabolite’s pharmacology in neurodegenerative and neurological diseases.Biomedicines202210115410.3390/biomedicines1001015435052833
    [Google Scholar]
  15. D’HoogeR. PeiY.Q. RaesA. LebrunP. van BogaertP.P. de DeynP.P. Anticonvulsant activity of piperine on seizures induced by excitatory amino acid receptor agonists.Arzneimittelforschung19964665575608767343
    [Google Scholar]
  16. El-NahasA.E. ElbedaiwyH.M. HelmyM.W. El-KamelA.H. Simultaneous estimation of berberine and piperine in a novel nanoformulation for epilepsy control via HPLC.J. Chromatogr. Sci.202362212012637635418
    [Google Scholar]
  17. PattanaikS. HotaD. PrabhakarS. KharbandaP. PandhiP. Effect of piperine on the steady-state pharmacokinetics of phenytoin in patients with epilepsy.Phytother. Res.200620868368610.1002/ptr.193716767797
    [Google Scholar]
  18. PattanaikS. HotaD. PrabhakarS. KharbandaP. PandhiP. Pharmacokinetic interaction of single dose of piperine with steady-state carbamazepine in epilepsy patients.Phytother. Res.20092391281128610.1002/ptr.267619283724
    [Google Scholar]
  19. PalA. NayakS. SahuP.K. SwainT. Piperine protects epilepsy associated depression: A study on role of monoamines.Eur. Rev. Med. Pharmacol. Sci.201115111288129522195361
    [Google Scholar]
  20. BukhariI.A. PivacN. AlhumayydM.S. MahesarA.L. GilaniA.H. The analgesic and anticonvulsant effects of piperine in mice.J. Physiol. Pharmacol.201364678979424388894
    [Google Scholar]
  21. ChenC.Y. LiW. QuK.P. ChenC.R. Piperine exerts anti-seizure effects via the TRPV1 receptor in mice.Eur. J. Pharmacol.20137141-328829410.1016/j.ejphar.2013.07.04123911889
    [Google Scholar]
  22. da CruzG.M.P. FelipeC.F.B. ScorzaF.A. da CostaM.A.C. TavaresA.F. MenezesM.L.F. de AndradeG.M. LealL.K.A.M. BritoG.A.C. da Graça Naffah-MazzacorattiM. CavalheiroE.A. de Barros VianaG.S. Piperine decreases pilocarpine-induced convulsions by GABAergic mechanisms.Pharmacol. Biochem. Behav.201310414415310.1016/j.pbb.2013.01.00223313550
    [Google Scholar]
  23. SaraogiP. VohoraD. KhanamR. PillaiK. Combination therapy of piperine and phenytoin in maximal electroshock induced seizures in mice: Isobolographic and biochemical analysis.Drug Res.201363631131810.1055/s‑0033‑133794023529722
    [Google Scholar]
  24. MishraA. PuniaJ.K. BladenC. ZamponiG.W. GoelR.K. Anticonvulsant mechanisms of piperine, a piperidine alkaloid.Channels20159531732310.1080/19336950.2015.109283626542628
    [Google Scholar]
  25. MaoK. LeiD. ZhangH. YouC. Anticonvulsant effect of piperine ameliorates memory impairment, inflammation and oxidative stress in a rat model of pilocarpine-induced epilepsy.Exp. Ther. Med.201713269570010.3892/etm.2016.400128352353
    [Google Scholar]
  26. AnissianD. Ghasemi-KasmanM. Khalili-FomeshiM. Piperine-loaded chitosan-STPP nanoparticles reduce neuronal loss and astrocytes activation in chemical kindling model of epilepsy.Int J Biol Macromol.201810797398310.1016/j.ijbiomac.2017.09.073
    [Google Scholar]
  27. BoddupalliB.M. RamaniR. AnisettiB. Attenuation of cognitive dysfunction in pediatric epilepsy with the co-administration of piperine.IOSR J. Pharm. Biol. Sci.20191425055
    [Google Scholar]
  28. RenT. HuM. ChengY. ShekT.L. XiaoM. HoN.J. ZhangC. LeungS.S.Y. ZuoZ. Piperine-loaded nanoparticles with enhanced dissolution and oral bioavailability for epilepsy control.Eur. J. Pharm. Sci.201913710498810.1016/j.ejps.2019.10498831291598
    [Google Scholar]
  29. RenT. XiaoM. YangM. ZhaoJ. ZhangY. HuM. ChengY. XuH. ZhangC. YanX. ZuoZ. Reduced systemic and brain exposure with inhibited liver metabolism of carbamazepine after its long-term combination treatment with piperine for epilepsy control in rats.AAPS J.20192159010.1208/s12248‑019‑0357‑331321577
    [Google Scholar]
  30. RenT. YangM. XiaoM. ZhuJ. XieW. ZuoZ. Time-dependent inhibition of carbamazepine metabolism by piperine in anti-epileptic treatment.Life Sci.201921831432310.1016/j.lfs.2018.12.06030611786
    [Google Scholar]
  31. SongY. CaoC. XuQ. GuS. WangF. HuangX. XuS. WuE. HuangJ.H. Piperine attenuates TBI-induced seizures via inhibiting cytokine-activated reactive astrogliosis.Front. Neurol.20201143110.3389/fneur.2020.0043132655468
    [Google Scholar]
  32. SurendranS. BabuM. JosephJ. PadmaU.D. Facilitatory effect of piperine on the anticonvulsant effect of sodium valproate against pentylenetetrazole induced seizures in mice.Res. J. Pharm. Technol.202013265165210.5958/0974‑360X.2020.00124.9
    [Google Scholar]
  33. ZhuD. ZhangW. NieX. DingS. ZhangD. YangL. Rational design of ultra-small photoluminescent copper nano-dots loaded PLGA micro-vessels for targeted co-delivery of natural piperine molecules for the treatment for epilepsy.J. Photochem. Photobiol. B202020511180510.1016/j.jphotobiol.2020.11180532092661
    [Google Scholar]
  34. HsiehT.Y. ChangY. WangS.J. Piperine provides neuroprotection against kainic acid-induced neurotoxicity via maintaining NGF signalling pathway.Molecules2022279263810.3390/molecules2709263835565989
    [Google Scholar]
  35. GuptaI. AdinS.N. RashidM.A. AlhamhoomY. AqilM. MujeebM. Spanlastics as a potential approach for enhancing the nose-to-brain delivery of piperine: In vitro prospect and In vivo therapeutic efficacy for the management of epilepsy.Pharmaceutics202315264110.3390/pharmaceutics1502064136839963
    [Google Scholar]
  36. Piperine.2004Available from:https://pubchem.ncbi.nlm.nih.gov/compound/Piperine(accessed on 11-6-2024)
  37. LiS. LvM. XuH. Overview of piperine: Bioactivities, total synthesis, structural modification, and structure-activity relationships.Mini Rev. Med. Chem.202323891794010.2174/138955752266622072612101235894471
    [Google Scholar]
  38. ZazeriG. PovinelliA.P.R. Le DuffC.S. TangB. CornelioM.L. JonesA.M. Synthesis and spectroscopic analysis of piperine- and piperlongumine-inspired natural product scaffolds and their molecular docking with IL-1β and NF-κB proteins.Molecules20202512284110.3390/molecules2512284132575582
    [Google Scholar]
  39. QuijiaC.R. AraujoV.H. ChorilliM. Piperine: Chemical, biological and nanotechnological applications.Acta Pharm.202171218521310.2478/acph‑2021‑001533151173
    [Google Scholar]
  40. GorganiL. MohammadiM. NajafpourG.D. NikzadM. Piperine-the bioactive compound of black pepper: From isolation to medicinal formulations.Compr. Rev. Food Sci. Food Saf.201716112414010.1111/1541‑4337.1224633371546
    [Google Scholar]
  41. YadavS.S. SinghM.K. HussainS. DwivediP. KhattriS. SinghK. Therapeutic spectrum of piperine for clinical practice: A scoping review.Crit. Rev. Food Sci. Nutr.202363225813584010.1080/10408398.2021.202479234996326
    [Google Scholar]
  42. GilhusN.E. DeuschlG. Neuroinflammation — a common thread in neurological disorders.Nat. Rev. Neurol.201915842943010.1038/s41582‑019‑0227‑831263256
    [Google Scholar]
  43. MittalR. GuptaR.L. In vitro antioxidant activity of piperine.Methods Find. Exp. Clin. Pharmacol.200022527127410.1358/mf.2000.22.5.79664411031726
    [Google Scholar]
  44. Borowicz-ReuttK.K. CzuczwarS.J. Role of oxidative stress in epileptogenesis and potential implications for therapy.Pharmacol. Rep.20207251218122610.1007/s43440‑020‑00143‑w32865811
    [Google Scholar]
  45. MadireddyS. MadireddyS. Therapeutic strategies to ameliorate neuronal damage in epilepsy by regulating oxidative stress, mitochondrial dysfunction, and neuroinflammation.Brain Sci.202313578410.3390/brainsci1305078437239256
    [Google Scholar]
  46. SuL.J. ZhangJ.H. GomezH. MuruganR. HongX. XuD. JiangF. PengZ.Y. Reactive oxygen species-induced lipid peroxidation in apoptosis, autophagy, and ferroptosis.Oxid. Med. Cell. Longev.2019201911310.1155/2019/508084331737171
    [Google Scholar]
  47. Carmona-AparicioL. Pérez-CruzC. Zavala-TecuapetlaC. Granados-RojasL. Rivera-EspinosaL. Montesinos-CorreaH. Hernández-DamiánJ. Pedraza-ChaverriJ. SampieriA.III Coballase-UrrutiaE. Cárdenas-RodríguezN. Overview of Nrf2 as therapeutic target in epilepsy.Int. J. Mol. Sci.2015168183481836710.3390/ijms16081834826262608
    [Google Scholar]
  48. RehmanM.U. RashidS. ArafahA. QamarW. AlsaffarR.M. AhmadA. AlmatroudiN.M. AlqahtaniS.M.A. RashidS.M. AhmadS.B. Piperine regulates Nrf-2/Keap-1 signalling and exhibits anticancer effect in experimental colon carcinogenesis in wistar rats.Biology20209930210.3390/biology909030232967203
    [Google Scholar]
  49. WagenerF.A.D.T.G. van BeurdenH.E. von den HoffJ.W. AdemaG.J. FigdorC.G. The heme-heme oxygenase system: A molecular switch in wound healing.Blood2003102252152810.1182/blood‑2002‑07‑224812649161
    [Google Scholar]
  50. ItohK. WakabayashiN. KatohY. IshiiT. O’ConnorT. YamamotoM. Keap1 regulates both cytoplasmic-nuclear shuttling and degradation of Nrf2 in response to electrophiles.Genes Cells20038437939110.1046/j.1365‑2443.2003.00640.x12653965
    [Google Scholar]
  51. KumarS. MalhotraS. PrasadA. EyckenE. BrackeM. Stetler-StevensonW. ParmarV. GhoshB. Anti-inflammatory and antioxidant properties of Piper species: a perspective from screening to molecular mechanisms.Curr. Top. Med. Chem.201515988689310.2174/156802661566615022012065125697561
    [Google Scholar]
  52. BalakrishnanR. AzamS. KimI.S. ChoiD.K. Neuroprotective effects of black pepper and its bioactive compounds in age-related neurological disorders.Aging Dis.202314375077710.14336/AD.2022.102237191428
    [Google Scholar]
  53. RansohoffR.M. PerryV.H. Microglial physiology: Unique stimuli, specialized responses.Annu. Rev. Immunol.200927111914510.1146/annurev.immunol.021908.13252819302036
    [Google Scholar]
  54. KamaliA.N. ZianZ. BautistaJ.M. HamedifarH. Hossein-KhannazerN. HosseinzadehR. YazdaniR. AziziG. The potential role of pro-inflammatory and anti-inflammatory cytokines in epilepsy pathogenesis.Endocr. Metab. Immune Disord. Drug Targets202121101760177410.2174/22123873MTEx2NTUz433200702
    [Google Scholar]
  55. VezzaniA. LangB. AronicaE. Immunity and inflammation in epilepsy.Cold Spring Harb. Perspect. Med.201662a02269910.1101/cshperspect.a02269926684336
    [Google Scholar]
  56. FabisiakT. PatelM. Crosstalk between neuroinflammation and oxidative stress in epilepsy.Front. Cell Dev. Biol.20221097695310.3389/fcell.2022.97695336035987
    [Google Scholar]
  57. CaiM. LinW. The function of NF-Kappa B during epilepsy, a potential therapeutic target.Front. Neurosci.20221685139410.3389/fnins.2022.85139435360161
    [Google Scholar]
  58. GakhariaT. BakhtadzeS. LimM. KhachapuridzeN. KapanadzeN. Alterations of plasma pro-inflammatory cytokine levels in children with refractory epilepsies.Children2022910150610.3390/children910150636291442
    [Google Scholar]
  59. YounY. SungI.K. LeeI.G. The role of cytokines in seizures: Interleukin (IL)-1β, IL-1Ra, IL-8, and IL-10.Korean J. Pediatr.201356727127410.3345/kjp.2013.56.7.27123908665
    [Google Scholar]
  60. ChmielewskaN. MaciejakP. OsuchB. KursaM.B. SzyndlerJ. Pro-inflammatory cytokines, but not brain- and extracellular matrix-derived proteins, are increased in the plasma following electrically induced kindling of seizures.Pharmacol. Rep.202173250651510.1007/s43440‑020‑00208‑w33377994
    [Google Scholar]
  61. RiaziK. GalicM.A. KuzmiskiJ.B. HoW. SharkeyK.A. PittmanQ.J. Microglial activation and TNFα production mediate altered CNS excitability following peripheral inflammation.Proc. Natl. Acad. Sci.200810544171511715610.1073/pnas.080668210518955701
    [Google Scholar]
  62. QiuL. ZhangD. SangY. ZhengN. ChenJ. QiuX. LiuX. Relationship between tumor necrosis factor-alpha and neuropeptide y expression and neurological function score in epileptic children.Iran. J. Public Health20215051056106410.18502/ijph.v50i5.612334183964
    [Google Scholar]
  63. ElmoreS. Apoptosis: A review of programmed cell death.Toxicol. Pathol.200735449551610.1080/0192623070132033717562483
    [Google Scholar]
  64. SokolovaT.V. ZabrodskayaY.M. LitovchenkoA.V. ParamonovaN.M. KasumovV.R. KravtsovaS.V. SkitevaE.N. SitovskayaD.A. BazhanovaE.D. Relationship between Neuroglial Apoptosis and Neuroinflammation in the Epileptic Focus of the Brain and in the Blood of Patients with Drug-Resistant Epilepsy.Int. J. Mol. Sci.202223201256110.3390/ijms23201256136293411
    [Google Scholar]
  65. EngelT. Caballero-CaballeroA. SchindlerC.K. PlesnilaN. StrasserA. PrehnJ.H.M. HenshallD.C. BH3-only protein Bid is dispensable for seizure-induced neuronal death and the associated nuclear accumulation of apoptosis-inducing factor.J. Neurochem.201011519210110.1111/j.1471‑4159.2010.06909.x20646170
    [Google Scholar]
  66. HuaS. LiuJ. ZhangY. LiJ. ZhangX. DongL. ZhaoY. FuX. Piperine as a neuroprotective functional component in rats with cerebral ischemic injury.Food Sci. Nutr.20197113443345110.1002/fsn3.118531762997
    [Google Scholar]
  67. FalcicchiaC. PaoloneG. EmerichD.F. LovisariF. BellW.J. FradetT. WahlbergL.U. SimonatoM. Seizure-suppressant and neuroprotective effects of encapsulated bdnf-producing cells in a rat model of temporal lobe epilepsy.Mol. Ther. Methods Clin. Dev.2018921122410.1016/j.omtm.2018.03.00129766029
    [Google Scholar]
  68. WangX. HuZ. ZhongK. The role of brain-derived neurotrophic factor in epileptogenesis: An update.Front. Pharmacol.20211275823210.3389/fphar.2021.75823234899313
    [Google Scholar]
  69. ScharfmanH.E. GoodmanJ.H. SollasA.L. CrollS.D. Spontaneous limbic seizures after intrahippocampal infusion of brain-derived neurotrophic factor.Exp. Neurol.2002174220121410.1006/exnr.2002.786911922662
    [Google Scholar]
  70. IughettiL. LucaccioniL. FugettoF. PredieriB. BerardiA. FerrariF. Brain-derived neurotrophic factor and epilepsy: A systematic review.Neuropeptides201872232910.1016/j.npep.2018.09.00530262417
    [Google Scholar]
  71. KhazipovR. GABAergic Synchronization in Epilepsy.Cold Spring Harb. Perspect. Med.201662a02276410.1101/cshperspect.a02276426747834
    [Google Scholar]
  72. ŽiburkusJ. CressmanJ.R. SchiffS.J. Seizures as imbalanced up states: Excitatory and inhibitory conductances during seizure- like events.J. Neurophysiol.201310951296130610.1152/jn.00232.201223221405
    [Google Scholar]
  73. SgadòP. DunleavyM. GenovesiS. ProvenzanoG. BozziY. The role of GABAergic system in neurodevelopmental disorders: A focus on autism and epilepsy.Int. J. Physiol. Pathophysiol. Pharmacol.20113322323521941613
    [Google Scholar]
  74. MeursA. ClinckersR. EbingerG. MichotteY. SmoldersI. Seizure activity and changes in hippocampal extracellular glutamate, GABA, dopamine and serotonin.Epilepsy Res.2008781505910.1016/j.eplepsyres.2007.10.00718054462
    [Google Scholar]
  75. ClinckersR. SmoldersI. MeursA. EbingerG. MichotteY. Hippocampal dopamine and serotonin elevations as pharmacodynamic markers for the anticonvulsant efficacy of oxcarbazepine and 10,11-dihydro-10-hydroxycarbamazepine.Neurosci. Lett.20053901485310.1016/j.neulet.2005.07.04916139430
    [Google Scholar]
  76. MaoQ.Q. XianY.F. IpS.P. CheC.T. Involvement of serotonergic system in the antidepressant-like effect of piperine.Prog. Neuropsychopharmacol. Biol. Psychiatry20113541144114710.1016/j.pnpbp.2011.03.01721477634
    [Google Scholar]
  77. LiG. RuanL. ChenR. WangR. XieX. ZhangM. ChenL. YanQ. ReedM. ChenJ. XuY. PanJ. HuangW. Synergistic antidepressant-like effect of ferulic acid in combination with piperine: involvement of monoaminergic system.Metab. Brain Dis.20153061505151410.1007/s11011‑015‑9704‑y26220010
    [Google Scholar]
  78. HayatdavoudiP. HosseiniM. HajaliV. HosseiniA. RajabianA. The role of astrocytes in epileptic disorders.Physiol. Rep.2022106e1523910.14814/phy2.1523935343625
    [Google Scholar]
  79. KoyamaR. KinoshitaS. Pro- and anti-epileptic roles of microglia.Neural Regen. Res.20211671369137110.4103/1673‑5374.30097633318419
    [Google Scholar]
  80. VictorT.R. TsirkaS.E. Microglial contributions to aberrant neurogenesis and pathophysiology of epilepsy.Neuroimmunol. Neuroinflamm.2020202023424710.20517/2347‑8659.2020.0233154976
    [Google Scholar]
  81. SanzP. Garcia-GimenoM.A. Reactive glia inflammatory signaling pathways and epilepsy.Int. J. Mol. Sci.20202111409610.3390/ijms2111409632521797
    [Google Scholar]
  82. RajakulendranS. HannaM.G. The role of calcium channels in epilepsy.Cold Spring Harb. Perspect. Med.201661a02272310.1101/cshperspect.a02272326729757
    [Google Scholar]
  83. KaplanD.I. IsomL.L. PetrouS. Role of sodium channels in epilepsy.Cold Spring Harb. Perspect. Med.201666a02281410.1101/cshperspect.a02281427143702
    [Google Scholar]
  84. HsiehT.Y. ChangY. WangS.J. Piperine-mediated suppression of voltage-dependent Ca 2+ influx and glutamate release in rat hippocampal nerve terminals involves 5HT 1A receptors and G protein βγ activation.Food Funct.20191052720272810.1039/C8FO02189A31033966
    [Google Scholar]
  85. ZiegenhagenR. HeimbergK. LampenA. Hirsch-ErnstK.I. Safety aspects of the use of isolated piperine ingested as a bolus.Foods2021109212110.3390/foods1009212134574230
    [Google Scholar]
  86. VelpandianT. JasujaR. BhardwajR.K. JaiswalJ. GuptaS.K. Piperine in food: Interference in the pharmacokinetics of phenytoin.Eur. J. Drug Metab. Pharmacokinet.200126424124710.1007/BF0322637811808866
    [Google Scholar]
  87. HerreraD. RobertsonH. Activation of in the brain.Prog. Neurobiol.1996502-38310710.1016/S0301‑0082(96)00021‑48971979
    [Google Scholar]
  88. BarabanS.C. TaylorM.R. CastroP.A. BaierH. Pentylenetetrazole induced changes in zebrafish behavior, neural activity and c-fos expression.Neuroscience2005131375976810.1016/j.neuroscience.2004.11.03115730879
    [Google Scholar]
  89. SharafkhanehA. LeeJ.J. LiuD. A pilot double-blind, randomized, placebo-controlled trial of curcumin/bioperine for lung cancer chemoprevention in patients with chronic obstructive pulmonary disease.Adv. Lung Cancer2013236269
    [Google Scholar]
  90. CiceroA.F.G. SahebkarA. FogacciF. BoveM. GiovanniniM. BorghiC. Effects of phytosomal curcumin on anthropometric parameters, insulin resistance, cortisolemia and non-alcoholic fatty liver disease indices: a double-blind, placebo-controlled clinical trial.Eur. J. Nutr.202059247748310.1007/s00394‑019‑01916‑730796508
    [Google Scholar]
  91. MaliniT. ManimaranR.R. ArunakaranJ. AruldhasM.M. GovindarajuluP. Effects of piperine on testis of albino rats.J. Ethnopharmacol.199964321922510.1016/S0378‑8741(98)00128‑710363836
    [Google Scholar]
  92. SongJ.S. ChaeJ.W. LeeK.R. LeeB.H. ChoiE.J. AhnS.H. KwonK. BaeM.A. Pharmacokinetic characterization of decursinol derived from Angelica gigas Nakai in rats.Xenobiotica2011411089590210.3109/00498254.2011.58755121657833
    [Google Scholar]
  93. SyedS.B. AryaH. FuI.H. YehT.K. PeriyasamyL. HsiehH.P. CoumarM.S. Targeting P-glycoprotein: Investigation of piperine analogs for overcoming drug resistance in cancer.Sci. Rep.201771797210.1038/s41598‑017‑08062‑228801675
    [Google Scholar]
  94. BauerM. TournierN. LangerO. Imaging P-glycoprotein function at the blood–brain barrier as a determinant of the variability in response to central nervous system drugs.Clin. Pharmacol. Ther.201910551061106410.1002/cpt.140230903694
    [Google Scholar]
  95. DongY. YinY. VuS. YangF. Yarov-YarovoyV. TianY. ZhengJ. A distinct structural mechanism underlies TRPV1 activation by piperine.Biochem. Biophys. Res. Commun.2019516236537210.1016/j.bbrc.2019.06.03931213294
    [Google Scholar]
  96. KhomS. StrommerB. SchöffmannA. HintersteinerJ. BaburinI. ErkerT. SchwarzT. SchwarzerC. ZauggJ. HamburgerM. HeringS. GABAA receptor modulation by piperine and a non-TRPV1 activating derivative.Biochem. Pharmacol.201385121827183610.1016/j.bcp.2013.04.01723623790
    [Google Scholar]
  97. WangS. SuR. NieS. SunM. ZhangJ. WuD. Moustaid- MoussaN. Application of nanotechnology in improving bioavailability and bioactivity of diet-derived phytochemicals.J. Nutr. Biochem.201425436337610.1016/j.jnutbio.2013.10.00224406273
    [Google Scholar]
  98. WangY. ZhengY. ZhangL. WangQ. ZhangD. Stability of nanosuspensions in drug delivery.J. Control. Release201317231126114110.1016/j.jconrel.2013.08.00623954372
    [Google Scholar]
  99. ZafarF. JahanN. BhattiH. Khalil-Ur-Rahman Increased oral bioavailability of piperine from an optimized piper nigrum nanosuspension.Planta Med.201985324925710.1055/a‑0759‑220830357764
    [Google Scholar]
  100. ShaikhJ. AnkolaD.D. BeniwalV. SinghD. KumarM.N.V.R. Nanoparticle encapsulation improves oral bioavailability of curcumin by at least 9-fold when compared to curcumin administered with piperine as absorption enhancer.Eur. J. Pharm. Sci.2009373-422323010.1016/j.ejps.2009.02.01919491009
    [Google Scholar]
/content/journals/cnsamc/10.2174/0118715249297934240630111059
Loading
/content/journals/cnsamc/10.2174/0118715249297934240630111059
Loading

Data & Media loading...

Supplements

PRISMA checklist is available as supplementary material on the publisher's website along with the published article. Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Review Article
Keyword(s): anticonvulsant; antiepileptic; epilepsy; Piperine; seizure; systematic review
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test