Skip to content
2000
Volume 25, Issue 1
  • ISSN: 1871-5249
  • E-ISSN: 1875-6166

Abstract

Alzheimer's disease (AD) is a prevalent neurodegenerative disorder affecting elderly individuals, characterized by progressive cognitive decline leading to dementia. This review examines the challenges posed by anatomical and biochemical barriers such as the blood-brain barrier (BBB), blood-cerebrospinal fluid barrier (BCSFB), and p-glycoproteins in delivering effective therapeutic agents to the central nervous system (CNS) for AD treatment.

This article outlines the fundamental role of acetylcholinesterase inhibitors (AChEIs) and NMDA(N-Methyl-D-Aspartate) receptor antagonists in conventional AD therapy and highlights their limitations in terms of brain-specific delivery. It delves into the intricacies of BBB and p-glycoprotein-mediated efflux mechanisms that impede drug transport to the CNS. The review further discusses cutting-edge nanomedicine-based strategies, detailing their composition and mechanisms that enable effective bypassing of BBB and enhancing drug accumulation in brain tissues.

Conventional therapies, namely AChEIs and NMDA receptor antagonists, have shown limited efficacy and are hindered by suboptimal brain penetration. The advent of nanotechnology-driven therapeutic delivery systems offers promising strategies to enhance CNS targeting and bioavailability, thereby addressing the shortcomings of conventional treatments.

Various nanomedicines, encompassing polymeric and metallic nanoparticles (MNPs), solid lipid nanoparticles (SLNs), liposomes, micelles, dendrimers, nanoemulsions, and carbon nanotubes, have been investigated for their potential in delivering anti-AD agents like AChEIs, polyphenols, curcumin, and resveratrol. These nanocarriers exhibit the ability to traverse the BBB and deliver therapeutic payloads to the brain, thereby holding immense potential for effective AD treatment and early diagnostic approaches. Notably, nanocarriers loaded with AChEIs have shown promising results in preclinical studies, exhibiting improved therapeutic efficacy and sustained release profiles.

This review underscores the urgency of innovative drug delivery approaches to overcome barriers in AD therapy. Nanomedicine-based solutions offer a promising avenue for achieving effective CNS targeting, enabling enhanced bioavailability and sustained therapeutic effects. As ongoing research continues to elucidate the complexities of CNS drug delivery, these advancements hold great potential for revolutionizing AD treatment and diagnosis.

Loading

Article metrics loading...

/content/journals/cnsamc/10.2174/0118715249281331240325042642
2024-03-28
2025-01-29
Loading full text...

Full text loading...

References

  1. CaselliR.J. ReimanE.M. Characterizing the preclinical stages of Alzheimer’s disease and the prospect of presymptomatic intervention.J. Alzheimers Dis.201233s1Suppl. 1S405S41610.3233/JAD‑2012‑12902622695623
    [Google Scholar]
  2. AhmadM.Z. AkhterS. RahmanZ. AhmadJ. AhmadI. Jalees AhmadF. Nanomedicine Based Drug Targeting in Alzheimer’s Disease: High Impact of Small Carter.Choudhary,Drug Design and Discovery in Alzheimer’s Disease. Atta-Ur-RahmanM.I. AmsterdamElsevier201471673910.1016/B978‑0‑12‑803959‑5.50016‑7
    [Google Scholar]
  3. CitronM. OltersdorfT. HaassC. McConlogueL. HungA.Y. SeubertP. Vigo-PelfreyC. LieberburgI. SelkoeD.J. Mutation of the β-amyloid precursor protein in familial Alzheimer’s disease increases β-protein production.Nature1992360640567267410.1038/360672a01465129
    [Google Scholar]
  4. AbbasM. Potential role of nanoparticles in treating the accumulation of amyloid-beta peptide in Alzheimer’s Patients.Polymers (Basel)2021137105110.3390/polym1307105133801619
    [Google Scholar]
  5. FerriC.P. PrinceM. BrayneC. BrodatyH. FratiglioniL. GanguliM. HallK. HasegawaK. HendrieH. HuangY. JormA. MathersC. MenezesP.R. RimmerE. ScazufcaM. Global prevalence of dementia: A Delphi consensus study.Lancet200536695032112211710.1016/S0140‑6736(05)67889‑016360788
    [Google Scholar]
  6. SahniJ.K. DogguiS. AliJ. BabootaS. DaoL. RamassamyC. Neurotherapeutic applications of nanoparticles in Alzheimer’s Disease.J. Cont. Release2011152220823110.1016/j.jconrel.2010.11.033
    [Google Scholar]
  7. BarnesD.E. YaffeK. The projected effect of risk factor reduction on Alzheimer’s disease prevalence.Lancet Neurol.201110981982810.1016/S1474‑4422(11)70072‑221775213
    [Google Scholar]
  8. GrassiD. FerriL. CheliP. Di GiosiaP. FerriC. Cognitive decline as a consequence of essential hypertension.Curr. Pharm. Des.201117283032303810.2174/13816121179815768521861834
    [Google Scholar]
  9. Marie AbbatecolaA. OlivieriF. CorsonelloA. AntonicelliR. CoricaF. LattanzioF. Genome-wide association studies: Is there a genotype for cognitive decline in older persons with type 2 diabetes?Curr. Pharm. Des.201117434735610.2174/13816121179516423921352095
    [Google Scholar]
  10. TeixeiraM.I. LopesC.M. AmaralM.H. CostaP.C. Current insights on lipid nanocarrier-assisted drug delivery in the treatment of neurodegenerative diseases.Eur. J. Pharm. Biopharm.202014919221710.1016/j.ejpb.2020.01.00531982574
    [Google Scholar]
  11. SalomoneS. CaraciF. LeggioG.M. FedotovaJ. DragoF. New pharmacological strategies for treatment of Alzheimer’s disease: Focus on disease modifying drugs.Br. J. Clin. Pharmacol.201273450451710.1111/j.1365‑2125.2011.04134.x22035455
    [Google Scholar]
  12. PatockaJ. JunD. KucaK. Possible role of hydroxylated metabolites of tacrine in drug toxicity and therapy of Alzheimer’s disease.Curr. Drug Metab.20089433233510.2174/13892000878422061918473751
    [Google Scholar]
  13. BleichS. RömerK. WiltfangJ. KornhuberJ. Glutamate and the glutamate receptor system: A target for drug action.Int. J. Geriatr. Psychiatry200318Suppl. 1S33S4010.1002/gps.93312973748
    [Google Scholar]
  14. DanyszW. ParsonsC.G. The NMDA receptor antagonist memantine as a symptomatological and neuroprotective treatment for Alzheimer’s disease: Preclinical evidence.Int. J. Geriatr. Psychiatry200318S1Suppl. 1S23S3210.1002/gps.93812973747
    [Google Scholar]
  15. CarneiroP. LoureiroJ. Delerue-MatosC. MoraisS. do Carmo PereiraM. Alzheimer’s disease: Development of a sensitive label free electrochemical immunosensor for detection of amyloid beta peptide.Sens. Actuators B Chem.201723915716510.1016/j.snb.2016.07.181
    [Google Scholar]
  16. SilvaS. MartoJ. GonçalvesL. AlmeidaA.J. ValeN. Formulation, Characterization and Evaluation against SH-SY5Y Cells of New Tacrine and Tacrine-MAP Loaded with Lipid Nanoparticles.Nanomaterials (Basel)20201010208910.3390/nano1010208933096919
    [Google Scholar]
  17. RaviG. GuptaN.V. Development of solid lipid nanoparticles of rivastigmine tartrate by using full factorial design for the treatment of Alzheimer’s Disease.J. Pharm. Sci. Res.2017924472452
    [Google Scholar]
  18. WhitehouseP.J. PriceD.L. StrubleR.G. ClarkA.W. CoyleJ.T. DeLongM.R. Alzheimer’s disease and senile dementia: Loss of neurons in the basal forebrain.Science198221545371237123910.1126/science.70583417058341
    [Google Scholar]
  19. SoreqH. SeidmanS. Acetylcholinesterase — new roles for an old actor.Nat. Rev. Neurosci.20012429430210.1038/3506758911283752
    [Google Scholar]
  20. PeraM. Martínez-OteroA. ColomboL. SalmonaM. Ruiz-MolinaD. BadiaA. ClosM.V. Acetylcholinesterase as an amyloid enhancing factor in PrP82-146 aggregation process.Mol. Cell. Neurosci.200940221722410.1016/j.mcn.2008.10.00819038345
    [Google Scholar]
  21. De FerrariG.V. CanalesM.A. ShinI. WeinerL.M. SilmanI. InestrosaN.C. A structural motif of acetylcholinesterase that promotes amyloid beta-peptide fibril formation.Biochemistry20014035104471045710.1021/bi010139211523986
    [Google Scholar]
  22. InestrosaN.C. AlvarezA. PérezC.A. MorenoR.D. VicenteM. LinkerC. CasanuevaO.I. SotoC. GarridoJ. Acetylcholinesterase accelerates assembly of amyloid-beta-peptides into Alzheimer’s fibrils: Possible role of the peripheral site of the enzyme.Neuron199616488189110.1016/S0896‑6273(00)80108‑78608006
    [Google Scholar]
  23. CastroA. MartinezA. Peripheral and dual binding site acetylcholinesterase inhibitors: Implications in treatment of Alzheimer’s disease.Mini Rev. Med. Chem.20011326727210.2174/138955701340686412369973
    [Google Scholar]
  24. GiacobiniE. Cholinesterases: New roles in brain function and in Alzheimer’s disease.Neurochem. Res.2003283/451552210.1023/A:102286922265212675140
    [Google Scholar]
  25. KellyC.A. HarveyR.J. CaytonH. Drug treatments for Alzheimer’s disease.BMJ1997314708269369410.1136/bmj.314.7082.6939116540
    [Google Scholar]
  26. Information on Aricept PfizerHighlights of prescribing information.2021Available From: www.aricept.com
  27. HerrmannN. ChauS.A. KircanskiI. LanctôtK.L. Current and emerging drug treatment options for Alzheimer’s disease: A systematic review.Drugs201171152031206510.2165/11595870‑000000000‑0000021985169
    [Google Scholar]
  28. AtriA MolinuevoJL LemmingO WirthY PulteI WilkinsonD Memantine in patients with Alzheimer's disease receiving donepezil: New analyses of efficacy and safety for combination therapy.Alzheimers Res Ther.201351610.1186/alzrt160
    [Google Scholar]
  29. GauthierS. Cholinergic adverse effects of cholinesterase inhibitors in Alzheimer’s disease: Epidemiology and management.Drugs Aging2001181185386210.2165/00002512‑200118110‑0000611772125
    [Google Scholar]
  30. Information on ExelonAvailable from: http://www.pharma.us.novartis. com/product/pi/pdf/exelon.pdf Last accessed 10 October 2012].
  31. SeltzerB. Galantamine-ER for the treatment of mild-to-moderate Alzheimer’s disease.Clin. Interv. Aging201051620169037
    [Google Scholar]
  32. AgoY. KodaK. TakumaK. MatsudaT. Pharmacological aspects of the acetylcholinesterase inhibitor galantamine.J. Pharmacol. Sci.2011116161710.1254/jphs.11R01CR21498956
    [Google Scholar]
  33. OlinJ. SchneiderL. Galantamine for Alzheimer’s disease.Cochrane Database Syst. Rev.200233CD00174712137632
    [Google Scholar]
  34. GalaskoD. KershawP.R. SchneiderL. ZhuY. TariotP.N. Galantamine maintains ability to perform activities of daily living in patients with Alzheimer’s disease.J. Am. Geriatr. Soc.20045271070107610.1111/j.1532‑5415.2004.52303.x15209643
    [Google Scholar]
  35. GhasemiF. Hormozi-NezhadM.R. MahmoudiM. Label-free detection of β-amyloid peptides (Aβ40 and Aβ42): A colorimetric sensor array for plasma monitoring of Alzheimer’s disease.Nanoscale201810146361636810.1039/C8NR00195B29561053
    [Google Scholar]
  36. ReisbergB. DoodyR. StöfflerA. SchmittF. FerrisS. MöbiusH.J. Memantine in moderate-to-severe Alzheimer’s disease.N. Engl. J. Med.2003348141333134110.1056/NEJMoa01312812672860
    [Google Scholar]
  37. BassilN. GrossbergG.T. Novel regimens and delivery systems in the pharmacological treatment of Alzheimer’s disease.CNS Drugs200923429330710.2165/00023210‑200923040‑0000319374459
    [Google Scholar]
  38. JonesR.W. BayerA. InglisF. BarkerA. PhulR. Safety and tolerability of once daily versus twice daily memantine: A randomised, double blind study in moderate to severe Alzheimer’s disease.Int. J. Geriatr. Psychiatry200722325826210.1002/gps.175217243195
    [Google Scholar]
  39. BelkacemiA. DogguiS. DaoL. RamassamyC. Challenges associated with curcumin therapy in Alzheimer disease.Expert Rev. Mol. Med.201113e3410.1017/S146239941100205522051121
    [Google Scholar]
  40. YangF. LimG.P. BegumA.N. UbedaO.J. SimmonsM.R. AmbegaokarS.S. ChenP.P. KayedR. GlabeC.G. FrautschyS.A. ColeG.M. Curcumin inhibits formation of amyloid beta oligomers and fibrils, binds plaques, and reduces amyloid in vivo.J. Biol. Chem.200528075892590110.1074/jbc.M40475120015590663
    [Google Scholar]
  41. KimH. ParkB.S. LeeK.G. ChoiC.Y. JangS.S. KimY.H. LeeS.E. Effects of naturally occurring compounds on fibril formation and oxidative stress of beta-amyloid.J. Agric. Food Chem.200553228537854110.1021/jf051985c16248550
    [Google Scholar]
  42. NeculaM. KayedR. MiltonS. GlabeC.G. Small molecule inhibitors of aggregation indicate that amyloid beta oligomerization and fibrillization pathways are independent and distinct.J. Biol. Chem.200728214103111032410.1074/jbc.M60820720017284452
    [Google Scholar]
  43. AhmedT. GilaniA.H. Inhibitory effect of curcuminoids on acetylcholinesterase activity and attenuation of scopolamine-induced amnesia may explain medicinal use of turmeric in Alzheimer’s disease.Pharmacol. Biochem. Behav.200991455455910.1016/j.pbb.2008.09.01018930076
    [Google Scholar]
  44. ShimmyoY. KiharaT. AkaikeA. NiidomeT. SugimotoH. Epigallocatechin-3-gallate and curcumin suppress amyloid beta-induced beta site APP cleaving enzyme-1 upregulation.Neuroreport200819131329133310.1097/WNR.0b013e32830b8ae118695518
    [Google Scholar]
  45. LinR. ChenX. LiW. HanY. LiuP. PiR. Exposure to metal ions regulates mRNA levels of APP and BACE1 in PC12 cells: Blockage by curcumin.Neurosci. Lett.2008440334434710.1016/j.neulet.2008.05.07018583042
    [Google Scholar]
  46. HsiaoK. ChapmanP. NilsenS. EckmanC. HarigayaY. YounkinS. YangF. ColeG. Correlative memory deficits, Abeta elevation, and amyloid plaques in transgenic mice.Science199627452849910310.1126/science.274.5284.998810256
    [Google Scholar]
  47. LimG.P. ChuT. YangF. BeechW. FrautschyS.A. ColeG.M. The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse.J. Neurosci.200121218370837710.1523/JNEUROSCI.21‑21‑08370.200111606625
    [Google Scholar]
  48. FrautschyS. HuW. KimP. MillerS.A. ChuT. Harris-WhiteM.E. ColeG.M. Phenolic anti-inflammatory antioxidant reversal of Aβ-induced cognitive deficits and neuropathology.Neurobiol. Aging2001226993100510.1016/S0197‑4580(01)00300‑111755008
    [Google Scholar]
  49. MigaudM. CharlesworthP. DempsterM. WebsterL.C. WatabeA.M. MakhinsonM. HeY. RamsayM.F. MorrisR.G.M. MorrisonJ.H. O’DellT.J. GrantS.G.N. Enhanced long-term potentiation and impaired learning in mice with mutant postsynaptic density-95 protein.Nature1998396671043343910.1038/247909853749
    [Google Scholar]
  50. BegumA.N. JonesM.R. LimG.P. MoriharaT. KimP. HeathD.D. RockC.L. PruittM.A. YangF. HudspethB. HuS. FaullK.F. TeterB. ColeG.M. FrautschyS.A. Curcumin structure-function, bioavailability, and efficacy in models of neuroinflammation and Alzheimer’s disease.J. Pharmacol. Exp. Ther.2008326119620810.1124/jpet.108.13745518417733
    [Google Scholar]
  51. MaQ.L. YangF. RosarioE.R. UbedaO.J. BeechW. GantD.J. ChenP.P. HudspethB. ChenC. ZhaoY. VintersH.V. FrautschyS.A. ColeG.M. Beta-amyloid oligomers induce phosphorylation of tau and inactivation of insulin receptor substrate via c-Jun N-terminal kinase signaling: Suppression by omega-3 fatty acids and curcumin.J. Neurosci.200929289078908910.1523/JNEUROSCI.1071‑09.200919605645
    [Google Scholar]
  52. OddoS. CaccamoA. ShepherdJ.D. MurphyM.P. GoldeT.E. KayedR. MetherateR. MattsonM.P. AkbariY. LaFerlaF.M. Triple-transgenic model of Alzheimer’s disease with plaques and tangles: Intracellular Abeta and synaptic dysfunction.Neuron200339340942110.1016/S0896‑6273(03)00434‑312895417
    [Google Scholar]
  53. BaumL. NgA. Curcumin interaction with copper and iron suggests one possible mechanism of action in Alzheimer’s disease animal models.J. Alzheimers Dis.20046436737710.3233/JAD‑2004‑640315345806
    [Google Scholar]
  54. SoleasG.J. DiamandisE.P. GoldbergD.M. Resveratrol: A molecule whose time has come? And gone?Clin. Biochem.19973029111310.1016/S0009‑9120(96)00155‑59127691
    [Google Scholar]
  55. LindsayJ. LaurinD. VerreaultR. HébertR. HelliwellB. HillG.B. McDowellI. Risk factors for Alzheimer’s disease: A prospective analysis from the Canadian Study of Health and Aging.Am. J. Epidemiol.2002156544545310.1093/aje/kwf07412196314
    [Google Scholar]
  56. OrgogozoJ.M. DartiguesJ.F. LafontS. LetenneurL. CommengesD. SalamonR. RenaudS. BretelerM.B. Wine consumption and dementia in the elderly: A prospective community study in the Bordeaux area.Rev. Neurol. (Paris)199715331851929296132
    [Google Scholar]
  57. TruelsenT. ThudiumD. GrønbækM. Amount and type of alcohol and risk of dementia.Neurology20025991313131910.1212/01.WNL.0000031421.50369.E712427876
    [Google Scholar]
  58. JangJ. SurhY.J. Protective effect of resveratrol on β-amyloid induced oxidative PC12 cell death.Free Radic. Biol. Med.20033481100111010.1016/S0891‑5849(03)00062‑512684095
    [Google Scholar]
  59. MarambaudP. ZhaoH. DaviesP. Resveratrol promotes clearance of Alzheimer’s disease amyloid-beta peptides.J. Biol. Chem.200528045373773738210.1074/jbc.M50824620016162502
    [Google Scholar]
  60. KaeberleinM. McDonaghT. HeltwegB. HixonJ. WestmanE.A. CaldwellS.D. NapperA. CurtisR. DiStefanoP.S. FieldsS. BedalovA. KennedyB.K. Substrate-specific activation of sirtuins by resveratrol.J. Biol. Chem.200528017170381704510.1074/jbc.M50065520015684413
    [Google Scholar]
  61. BaurJ.A. PearsonK.J. PriceN.L. JamiesonH.A. LerinC. KalraA. PrabhuV.V. AllardJ.S. Lopez-LluchG. LewisK. PistellP.J. PoosalaS. BeckerK.G. BossO. GwinnD. WangM. RamaswamyS. FishbeinK.W. SpencerR.G. LakattaE.G. Le CouteurD. ShawR.J. NavasP. PuigserverP. IngramD.K. de CaboR. SinclairD.A. Resveratrol improves health and survival of mice on a high-calorie diet.Nature2006444711733734210.1038/nature0535417086191
    [Google Scholar]
  62. ChenC.Y. JangJ.H. LiM.H. SurhY.J. Resveratrol upregulates heme oxygenase-1 expression via activation of NF-E2-related factor 2 in PC12 cells.Biochem. Biophys. Res. Commun.20053314993100010.1016/j.bbrc.2005.03.23715882976
    [Google Scholar]
  63. GrahamH.N. Green tea composition, consumption, and polyphenol chemistry.Prev. Med.199221333435010.1016/0091‑7435(92)90041‑F1614995
    [Google Scholar]
  64. MoyersS.B. KumarN.B. Green tea polyphenols and cancer chemoprevention: Multiple mechanisms and endpoints for phase II trials.Nutr. Rev.200462520421110.1111/j.1753‑4887.2004.tb00041.x15212320
    [Google Scholar]
  65. GuoQ. ZhaoB. ShenS. HouJ. HuJ. XinW. ESR study on the structure–antioxidant activity relationship of tea catechins and their epimers.Biochim. Biophys. Acta, Gen. Subj.199914271132310.1016/S0304‑4165(98)00168‑810082983
    [Google Scholar]
  66. SuzukiM. TabuchiM. IkedaM. UmegakiK. TomitaT. Protective effects of green tea catechins on cerebral ischemic damage.Med. Sci. Monit.2004106BR166BR17415173662
    [Google Scholar]
  67. SutherlandB.A. ShawO.M. ClarksonA.N. JacksonD.M. SammutI.A. AppletonI. Neuroprotective effects of (−)‐epigallocatechin gallate after hypoxia‐ischemia‐induced brain damage: Novel mechanisms of action.FASEB J.200519212210.1096/fj.04‑2806fje15569775
    [Google Scholar]
  68. MandelS.A. Avramovich-TiroshY. ReznichenkoL. ZhengH. WeinrebO. AmitT. YoudimM.B.H. Multifunctional activities of green tea catechins in neuroprotection. Modulation of cell survival genes, iron-dependent oxidative stress and PKC signaling pathway.Neurosignals2005141-2466010.1159/00008538515956814
    [Google Scholar]
  69. BastianettoS. YaoZ.X. PapadopoulosV. QuirionR. Neuroprotective effects of green and black teas and their catechin gallate esters against β‐amyloid induced toxicity.Eur. J. Neurosci.2006231556410.1111/j.1460‑9568.2005.04532.x16420415
    [Google Scholar]
  70. ChoiY.T. JungC.H. LeeS.R. BaeJ.H. BaekW.K. SuhM.H. ParkJ. ParkC.W. SuhS.I. The green tea polyphenol (−)-epigallocatechin gallate attenuates β-amyloid-induced neurotoxicity in cultured hippocampal neurons.Life Sci.200170560361410.1016/S0024‑3205(01)01438‑211811904
    [Google Scholar]
  71. LevitesY. AmitT. MandelS. YoudimM.B.H. Neuroprotection and neurorescue against Aβ toxicity and PKC‐dependent release of non‐amyloidogenic soluble precursor protein by green tea polyphenol (‐)‐epigallocatechin‐3‐gallate.FASEB J.200317812310.1096/fj.02‑0881fje12670874
    [Google Scholar]
  72. OnoK. YoshiikeY. TakashimaA. HasegawaK. NaikiH. YamadaM. Potent anti‐amyloidogenic and fibril‐destabilizing effects of polyphenols in vitro : Implications for the prevention and therapeutics of Alzheimer’s disease.J. Neurochem.200387117218110.1046/j.1471‑4159.2003.01976.x12969264
    [Google Scholar]
  73. ChenL. FischleW. VerdinE. GreeneW.C. Duration of nuclear NF-kappaB action regulated by reversible acetylation.Science200129355351653165710.1126/science.106237411533489
    [Google Scholar]
  74. KohS.H. KimS.H. KwonH. ParkY. KimK.S. SongC.W. KimJ. KimM.H. YuH.J. HenkelJ.S. JungH.K. Epigallocatechin gallate protects nerve growth factor differentiated PC12 cells from oxidative-radical-stress-induced apoptosis through its effect on phosphoinositide 3-kinase/Akt and glycogen synthase kinase-3.Brain Res. Mol. Brain Res.20031181-2728110.1016/j.molbrainres.2003.07.00314559356
    [Google Scholar]
  75. LevitesY. AmitT. YoudimM.B.H. MandelS. Involvement of protein kinase C activation and cell survival/ cell cycle genes in green tea polyphenol (-)-epigallocatechin 3-gallate neuroprotective action.J. Biol. Chem.200227734305743058010.1074/jbc.M20283220012058035
    [Google Scholar]
  76. MaherP. How protein kinase C activation protects nerve cells from oxidative stress-induced cell death.J. Neurosci.20012192929293810.1523/JNEUROSCI.21‑09‑02929.200111312276
    [Google Scholar]
  77. DubeA. NgK. NicolazzoJ.A. LarsonI. Effective use of reducing agents and nanoparticle encapsulation in stabilizing catechins in alkaline solution.Food Chem.2010122366266710.1016/j.foodchem.2010.03.027
    [Google Scholar]
  78. ChowH.H. CaiY. HakimI.A. CrowellJ.A. ShahiF. BrooksC.A. DorrR.T. HaraY. AlbertsD.S. Pharmacokinetics and safety of green tea polyphenols after multiple-dose administration of epigallocatechin gallate and polyphenon E in healthy individuals.Clin. Cancer Res.2003993312331912960117
    [Google Scholar]
  79. RenoufM. GuyP. MarmetC. LongetK. FraeringA.L. MoulinJ. BarronD. DionisiF. CavinC. SteilingH. WilliamsonG. Plasma appearance and correlation between coffee and green tea metabolites in human subjects.Br. J. Nutr.2010104111635164010.1017/S000711451000270920691128
    [Google Scholar]
  80. RipJ. SchenkG.J. de BoerA.G. Differential receptor-mediated drug targeting to the diseased brain.Expert Opin. Drug Deliv.20096322723710.1517/1742524090280638319327042
    [Google Scholar]
  81. PathanS. IqbalZ. ZaidiS. TalegaonkarS. VohraD. JainG. AzeemA. JainN. LalaniJ. KharR. AhmadF. CNS drug delivery systems: Novel approaches.Recent Pat. Drug Deliv. Formul.200931718910.2174/18722110978715835519149731
    [Google Scholar]
  82. HawkinsB.T. EgletonR.D. Pathophysiology of the blood-brain barrier: Animal models and methods.Curr. Top. Dev. Biol.20078027730910.1016/S0070‑2153(07)80007‑X17950377
    [Google Scholar]
  83. StewartP.A. Endothelial vesicles in the blood-brain barrier: Are they related to permeability?Cell. Mol. Neurobiol.200020214916310.1023/A:100702650484310696507
    [Google Scholar]
  84. AbbottN.J. Dynamics of CNS barriers: Evolution, differentiation, and modulation.Cell. Mol. Neurobiol.200525152310.1007/s10571‑004‑1374‑y15962506
    [Google Scholar]
  85. AgarwalS. ManchandaP. VogelbaumM.A. OhlfestJ.R. ElmquistW.F. Function of the blood-brain barrier and restriction of drug delivery to invasive glioma cells: Findings in an orthotopic rat xenograft model of glioma.Drug Metab. Dispos.2013411333910.1124/dmd.112.04832223014761
    [Google Scholar]
  86. HawkinsB.T. DavisT.P. The blood-brain barrier/neurovascular unit in health and disease.Pharmacol. Rev.200557217318510.1124/pr.57.2.415914466
    [Google Scholar]
  87. PersidskyY. RamirezS.H. HaorahJ. KanmogneG.D. Blood brain barrier: Structural components and function under physiologic and pathologic conditions.J. Neuroimmune Pharmacol.20061322323610.1007/s11481‑006‑9025‑318040800
    [Google Scholar]
  88. AbbottN.J. RönnbäckL. HanssonE. Astrocyte–endothelial interactions at the blood–brain barrier.Nat. Rev. Neurosci.200671415310.1038/nrn182416371949
    [Google Scholar]
  89. RamsauerM. KunzJ. KrauseD. DermietzelR. Regulation of a blood-brain barrier-specific enzyme expressed by cerebral pericytes (pericytic aminopeptidase N/pAPN) under cell culture conditions.J. Cereb. Blood Flow Metab.199818111270128110.1097/00004647‑199811000‑000149809517
    [Google Scholar]
  90. RamsauerM. KrauseD. DermietzelR. Angiogenesis of the blood‐brain barrier in vitro and the function of cerebral pericytes.FASEB J.200216101274127610.1096/fj.01‑0814fje12153997
    [Google Scholar]
  91. KuwaharaH. NishidaY. YokotaT. [Blood-brain barrier and Alzheimer’s disease].Brain Nerve201365214515123399672
    [Google Scholar]
  92. HaqueS. MdS. AlamM.I. SahniJ.K. AliJ. BabootaS. Nanostructure-based drug delivery systems for brain targeting.Drug Dev. Ind. Pharm.201238438741110.3109/03639045.2011.60819121954902
    [Google Scholar]
  93. GabathulerR. Approaches to transport therapeutic drugs across the blood–brain barrier to treat brain diseases.Neurobiol. Dis.2010371485710.1016/j.nbd.2009.07.02819664710
    [Google Scholar]
  94. RapoportS.I. Modulation of blood-brain barrier permeability.J. Drug Target.19963641742510.3109/106118696090159628863135
    [Google Scholar]
  95. SharmaH.S. CastellaniR.J. SmithM.A. SharmaA. The blood brain barrier in Alzheimer’s disease: Novel therapeutic targets and nanodrug delivery.Int. Rev. Neurobiol.2012102479010.1016/B978‑0‑12‑386986‑9.00003‑X22748826
    [Google Scholar]
  96. ReF. GregoriM. MasseriniM. Nanotechnology for neurodegenerative disorders.Maturitas2012731455110.1016/j.maturitas.2011.12.01522261367
    [Google Scholar]
  97. WilsonB. Therapeutic compliance of nanomedicine in Alzheimer’s disease.Nanomedicine (Lond.)2011671137113910.2217/nnm.11.11421929451
    [Google Scholar]
  98. DavisS.S. Biomédical applications of nanotechnology — implications for drug targeting and gene therapy.Trends Biotechnol.199715621722410.1016/S0167‑7799(97)01036‑69183864
    [Google Scholar]
  99. WisseE. De LeeuwA.M. Structural elements determining transport and exchange process in the liver.Microspheres and Drug Therapy, Pharmaceutical, Immunological and Medical Aspects. DavisS.S. IllumL. McVieJ.G. TomlinsonE. AmsterdamElsevier1984123
    [Google Scholar]
  100. AllémannE. LerouxJ.C. GurnyR. DoelkerE. In vitro extended-release properties of drug-loaded poly(DL-lactic acid) nanoparticles produced by a salting-out procedure.Pharm. Res.199310121732173710.1023/A:10189700303277905625
    [Google Scholar]
  101. BanerjeeT. MitraS. Kumar SinghA. Kumar SharmaR. MaitraA. Preparation, characterization and biodistribution of ultrafine chitosan nanoparticles.Int. J. Pharm.20022431-29310510.1016/S0378‑5173(02)00267‑312176298
    [Google Scholar]
  102. SonavaneG. TomodaK. MakinoK. Biodistribution of colloidal gold nanoparticles after intravenous administration: Effect of particle size.Colloids Surf. B Biointerfaces200866227428010.1016/j.colsurfb.2008.07.00418722754
    [Google Scholar]
  103. HansM.L. LowmanA.M. Biodegradable nanoparticles for drug delivery and targeting.Curr. Opin. Solid State Mater. Sci.20026431932710.1016/S1359‑0286(02)00117‑1
    [Google Scholar]
  104. WilsonB. SamantaM.K. SanthiK. KumarK.P.S. ParamakrishnanN. SureshB. Poly(n-butylcyanoacrylate) nanoparticles coated with polysorbate 80 for the targeted delivery of rivastigmine into the brain to treat Alzheimer’s disease.Brain Res.2008120015916810.1016/j.brainres.2008.01.03918291351
    [Google Scholar]
  105. MüllerR.H. JacobsC. KayserO. Nanosuspensions as particulate drug formulations in therapy.Adv. Drug Deliv. Rev.200147131910.1016/S0169‑409X(00)00118‑611251242
    [Google Scholar]
  106. FeltO. BuriP. GurnyR. Chitosan: A unique polysaccharide for drug delivery.Drug Dev. Ind. Pharm.1998241197999310.3109/036390498090899429876553
    [Google Scholar]
  107. WilsonB. SamantaM.K. SanthiK. KumarK.P.S. RamasamyM. SureshB. Chitosan nanoparticles as a new delivery system for the anti-Alzheimer drug tacrine.Nanomedicine20106114415210.1016/j.nano.2009.04.00119446656
    [Google Scholar]
  108. WilsonB. SamantaM. SanthiK. KumarK. ParamakrishnanN. SureshB. Targeted delivery of tacrine into the brain with polysorbate 80-coated poly(n-butylcyanoacrylate) nanoparticles.Eur. J. Pharm. Biopharm.2008701758410.1016/j.ejpb.2008.03.00918472255
    [Google Scholar]
  109. Rice-EvansC.A. MillerN.J. PagangaG. Structure-antioxidant activity relationships of flavonoids and phenolic acids.Free Radic. Biol. Med.199620793395610.1016/0891‑5849(95)02227‑98743980
    [Google Scholar]
  110. ScalbertA WilliamsonG Dietary intake and bioavailability of polyphenols.J Nutr.20001308S Suppl2073S85S
    [Google Scholar]
  111. RechnerA.R. KuhnleG. BremnerP. HubbardG.P. MooreK.P. Rice-EvansC.A. The metabolic fate of dietary polyphenols in humans.Free Radic. Biol. Med.200233222023510.1016/S0891‑5849(02)00877‑812106818
    [Google Scholar]
  112. LeeM.J. MaliakalP. ChenL. MengX. BondocF.Y. PrabhuS. LambertG. MohrS. YangC.S. Pharmacokinetics of tea catechins after ingestion of green tea and (-)-epigallocatechin-3-gallate by humans: Formation of different metabolites and individual variability.Cancer Epidemiol. Biomarkers Prev.20021110 Pt 11025103212376503
    [Google Scholar]
  113. AsensiM. MedinaI. OrtegaA. CarreteroJ. BañoM.C. ObradorE. EstrelaJ.M. Inhibition of cancer growth by resveratrol is related to its low bioavailability.Free Radic. Biol. Med.200233338739810.1016/S0891‑5849(02)00911‑512126761
    [Google Scholar]
  114. MarierJ.F. VachonP. GritsasA. ZhangJ. MoreauJ.P. DucharmeM.P. Metabolism and disposition of resveratrol in rats: Extent of absorption, glucuronidation, and enterohepatic recirculation evidenced by a linked-rat model.J. Pharmacol. Exp. Ther.2002302136937310.1124/jpet.102.03334012065739
    [Google Scholar]
  115. WalleT. HsiehF. DeLeggeM.H. OatisJ.E.Jr WalleU.K. High absorption but very low bioavailability of oral resveratrol in humans.Drug Metab. Dispos.200432121377138210.1124/dmd.104.00088515333514
    [Google Scholar]
  116. MartelC.L. MackicJ.B. MatsubaraE. GovernaleS. MiguelC. MiaoW. McCombJ.G. FrangioneB. GhisoJ. ZlokovicB.V. Isoform-specific effects of apolipoproteins E2, E3, and E4 on cerebral capillary sequestration and blood-brain barrier transport of circulating Alzheimer’s amyloid beta.J. Neurochem.19976951995200410.1046/j.1471‑4159.1997.69051995.x9349544
    [Google Scholar]
  117. MulikR.S. MönkkönenJ. JuvonenR.O. MahadikK.R. ParadkarA.R. ApoE3 mediated poly(butyl) cyanoacrylate nanoparticles containing curcumin: Study of enhanced activity of curcumin against beta amyloid induced cytotoxicity using in vitro cell culture model.Mol. Pharm.20107381582510.1021/mp900306x20230014
    [Google Scholar]
  118. RamassamyC. AverillD. BeffertU. BastianettoS. TherouxL. Lussier-CacanS. CohnJ.S. ChristenY. DavignonJ. QuirionR. PoirierJ. Oxidative damage and protection by antioxidants in the frontal cortex of Alzheimer’s disease is related to the apolipoprotein E genotype.Free Radic. Biol. Med.1999275-654455310.1016/S0891‑5849(99)00102‑110490274
    [Google Scholar]
  119. MiyataM. SmithJ.D. Apolipoprotein E allele–specific antioxidant activity and effects on cytotoxicity by oxidative insults and β–amyloid peptides.Nat. Genet.1996141556110.1038/ng0996‑558782820
    [Google Scholar]
  120. BeffertU. AumontN. DeaD. Lussier-CacanS. DavignonJ. PoirierJ. Beta-amyloid peptides increase the binding and internalization of apolipoprotein E to hippocampal neurons.J. Neurochem.19987041458146610.1046/j.1471‑4159.1998.70041458.x9523562
    [Google Scholar]
  121. BeffertU. CohnJ.S. Petit-TurcotteC. TremblayM. AumontN. RamassamyC. DavignonJ. PoirierJ. Apolipoprotein E and β-amyloid levels in the hippocampus and frontal cortex of Alzheimer’s disease subjects are disease-related and apolipoprotein E genotype dependent.Brain Res.19998431-2879410.1016/S0006‑8993(99)01894‑610528114
    [Google Scholar]
  122. ZensiA. BegleyD. PontikisC. LegrosC. MihoreanuL. WagnerS. BüchelC. von BriesenH. KreuterJ. Albumin nanoparticles targeted with Apo E enter the CNS by transcytosis and are delivered to neurones.J. Control. Release20091371788610.1016/j.jconrel.2009.03.00219285109
    [Google Scholar]
  123. KulkarniP.V. RoneyC.A. AntichP.P. BonteF.J. RaghuA.V. AminabhaviT.M. Quinoline‐ n ‐butylcyanoacrylate‐based nanoparticles for brain targeting for the diagnosis of Alzheimer’s disease.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.201021354710.1002/wnan.5920049829
    [Google Scholar]
  124. MancusoC. BatesT.E. ButterfieldD.A. CalafatoS. CorneliusC. LorenzoA.D. Dinkova KostovaA.T. CalabreseV. Natural antioxidants in Alzheimer’s disease.Expert Opin. Investig. Drugs200716121921193110.1517/13543784.16.12.192118042001
    [Google Scholar]
  125. AtharM. BackJ. TangX. KimK. KopelovichL. BickersD. KimA. Resveratrol: A review of preclinical studies for human cancer prevention.Toxicol. Appl. Pharmacol.2007224327428310.1016/j.taap.2006.12.02517306316
    [Google Scholar]
  126. AnekondaT.S. Resveratrol—A boon for treating Alzheimer’s disease?Brain Res. Brain Res. Rev.200652231632610.1016/j.brainresrev.2006.04.00416766037
    [Google Scholar]
  127. LuX. JiC. XuH. LiX. DingH. YeM. ZhuZ. DingD. JiangX. DingX. GuoX. Resveratrol-loaded polymeric micelles protect cells from Aβ-induced oxidative stress.Int. J. Pharm.20093751-2899610.1016/j.ijpharm.2009.03.02119481694
    [Google Scholar]
  128. EnersonB.E. DrewesL.R. The rat blood-brain barrier transcriptome.J. Cereb. Blood Flow Metab.200626795997310.1038/sj.jcbfm.960024916306934
    [Google Scholar]
  129. ZlokovicB.V. The blood-brain barrier in health and chronic neurodegenerative disorders.Neuron200857217820110.1016/j.neuron.2008.01.00318215617
    [Google Scholar]
  130. CohenB.E. BanghamA.D. Diffusion of small non-electrolytes across liposome membranes.Nature1972236534317317410.1038/236173a04553696
    [Google Scholar]
  131. CamenischG. AlsenzJ. van de WaterbeemdH. FolkersG. Estimation of permeability by passive diffusion through Caco-2 cell monolayers using the drugs’ lipophilicity and molecular weight.Eur. J. Pharm. Sci.19986431331910.1016/S0928‑0987(97)10019‑79795088
    [Google Scholar]
  132. van de WaterbeemdH. CamenischG. FolkersG. ChretienJ.R. RaevskyO.A. Estimation of blood-brain barrier crossing of drugs using molecular size and shape, and H-bonding descriptors.J. Drug Target.19986215116510.3109/106118698089978899886238
    [Google Scholar]
  133. PardridgeW.M. Biopharmaceutical drug targeting to the brain.J. Drug Target.201018315716710.3109/1061186090354835420064077
    [Google Scholar]
  134. KisO. RobillardK. ChanG.N.Y. BendayanR. The complexities of antiretroviral drug–drug interactions: Role of ABC and SLC transporters.Trends Pharmacol. Sci.2010311223510.1016/j.tips.2009.10.00120004485
    [Google Scholar]
  135. RonaldsonP.T. BendayanR. HIV‐1 viral envelope glycoprotein gp120 produces oxidative stress and regulates the functional expression of multidrug resistance protein‐1 (Mrp1) in glial cells.J. Neurochem.200810631298131310.1111/j.1471‑4159.2008.05479.x18485102
    [Google Scholar]
  136. RonaldsonP.T. AshrafT. BendayanR. Regulation of multidrug resistance protein 1 by tumor necrosis factor alpha in cultured glial cells: Involvement of nuclear factor-kappaB and c-Jun N-terminal kinase signaling pathways.Mol. Pharmacol.201077464465910.1124/mol.109.05941020051532
    [Google Scholar]
  137. RonaldsonP.T. BendayanR. HIV-1 viral envelope glycoprotein gp120 triggers an inflammatory response in cultured rat astrocytes and regulates the functional expression of P-glycoprotein.Mol. Pharmacol.20067031087109810.1124/mol.106.02597316790532
    [Google Scholar]
  138. CroneC. Facilitated transfer of glucose from blood into brain tissue.J. Physiol.1965181110311310.1113/jphysiol.1965.sp0077485866278
    [Google Scholar]
  139. SimionescuM. GafencuA. AntoheF. Transcytosis of plasma macromolecules in endothelial cells: A cell biological survey.Microsc. Res. Tech.200257526928810.1002/jemt.1008612112439
    [Google Scholar]
  140. VoineaM. DragomirE. ManduteanuI. SimionescuM. Binding and uptake of transferrin-bound liposomes targeted to transferrin receptors of endothelial cells.Vascul. Pharmacol.2002391-2132010.1016/S1537‑1891(02)00165‑912616986
    [Google Scholar]
  141. AbrahamJ.T. MaharifaH.N.S. HemalathaS. In Silico Molecular Docking Approach Against Enzymes Causing Alzheimer’s Disease Using Borassus flabellifer Linn.Appl. Biochem. Biotechnol.202219441804181310.1007/s12010‑021‑03779‑335013923
    [Google Scholar]
  142. HassanM. ShahzadiS. SeoS.Y. AlashwalH. ZakiN. MoustafaA.A. Molecular docking and dynamic simulation of AZD3293 and solanezumab effects against BACE1 to treat alzheimer’s disease.Front. Comput. Neurosci.2018123410.3389/fncom.2018.0003429910719
    [Google Scholar]
/content/journals/cnsamc/10.2174/0118715249281331240325042642
Loading
/content/journals/cnsamc/10.2174/0118715249281331240325042642
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test