Skip to content
2000
Volume 25, Issue 1
  • ISSN: 1871-5249
  • E-ISSN: 1875-6166

Abstract

Recently, traumatic brain injury (TBI) has been a growing disorder due to frequent brain dysfunction. The Glasgow Coma Scale expresses TBI as classified as having mild, moderate, or severe brain effects, according to the effects on the brain. Brain receptors undergo various modifications in their pathology through chemical synaptic pathways, leading to depression, Alzheimer's, and Parkinson's disease. These brain disorders can be controlled using central receptors such as dopamine, glutamate, and γ-aminobutyric acid, which are clearly explained in this review. Furthermore, there are many complications in TBI's clinical trials and diagnostics, leading to insignificant treatment, causing permanent neuro-damage, physical disability, and even death. Bio-screening and conventional molecular-based therapies are inappropriate due to poor preclinical testing and delayed recovery. Hence, modern nanotechnology utilizing nano-pulsed laser therapy and advanced nanoparticle insertion will be suitable for TBI's diagnostics and treatment. In recent days, nanotechnology has an important role in TBI control and provides a higher success rate than conventional therapies. This review highlights the pathophysiology of TBI by comprising the drawbacks of conventional techniques and supports suitable modern alternates for treating TBI.

Loading

Article metrics loading...

/content/journals/cnsamc/10.2174/0118715249291999240418112531
2024-04-25
2025-01-18
Loading full text...

Full text loading...

References

  1. HayesR.L. JenkinsL.W. LyethB.G. Neurotransmitter mediated mechanisms of traumatic brain injury: Acetylcholine and excitatory amino acids.J. Neurotrauma19929Suppl. 1S173S1871350312
    [Google Scholar]
  2. FadenA.I. Pharmacologic treatment of acute traumatic brain injury.JAMA1996276756957010.1001/jama.1996.035400700650348709409
    [Google Scholar]
  3. McIntoshT.K. SaatmanK.E. RaghupathiR. GrahamD.I. SmithD.H. LeeV.M. TrojanowskiJ.Q. gThe Dorothy Russell Memorial Lecture* The molecular and cellular sequelae of experimental traumatic brain injury: Pathogenetic mechanisms.Neuropathol. Appl. Neurobiol.199824425126710.1046/j.1365‑2990.1998.00121.x9775390
    [Google Scholar]
  4. McINTOSHT.K. JuhlerM. WielochT. Novel pharmacologic strategies in the treatment of experimental traumatic brain injury: 1998.J. Neurotrauma1998151073176910.1089/neu.1998.15.7319814632
    [Google Scholar]
  5. KermerP. KlöckerN. BährM. Neuronal death after brain injury.Cell Tissue Res.1999298338339510.1007/s00441005006110639729
    [Google Scholar]
  6. GrahamD.I. McIntoshT.K. MaxwellW.L. NicollJ.A.R. Recent advances in neurotrauma.J. Neuropathol. Exp. Neurol.200059864165110.1093/jnen/59.8.64110952055
    [Google Scholar]
  7. WeaverS.M. ChauA. PortelliJ.N. GrafmanJ. Genetic polymorphisms influence recovery from traumatic brain injury.Neuroscientist201218663164410.1177/107385841143570622402485
    [Google Scholar]
  8. DardiotisE. GrigoriadisS. HadjigeorgiouG.M. Genetic factors influencing outcome from neurotrauma.Curr. Opin. Psychiatry201225323123810.1097/YCO.0b013e3283523c0e22449762
    [Google Scholar]
  9. DardiotisE. FountasK.N. DardiotiM. XiromerisiouG. KapsalakiE. TasiouA. HadjigeorgiouG.M. Genetic association studies in patients with traumatic brain injury.Neurosurg. Focus2010281E910.3171/2009.10.FOCUS0921520043724
    [Google Scholar]
  10. MichaelD.B. ByersD.M. IrwinL.N. Gene expression following traumatic brain injury in humans: Analysis by microarray.J. Clin. Neurosci.200512328429010.1016/j.jocn.2004.11.00315851083
    [Google Scholar]
  11. GallekM.J. RitterL. Central nervous system genomics.Annu. Rev. Nurs. Res.201129120522610.1891/0739‑6686.29.20522891506
    [Google Scholar]
  12. ConleyY.P. AlexanderS. Genomic, transcriptomic, and epigenomic approaches to recovery after acquired brain injury.PM R201136S1S52S5810.1016/j.pmrj.2011.04.00421703581
    [Google Scholar]
  13. Di PietroV. AminD. PernagalloS. LazzarinoG. TavazziB. VagnozziR. PringleA. BelliA. Transcriptomics of traumatic brain injury: Gene expression and molecular pathways of different grades of insult in a rat organotypic hippocampal culture model.J. Neurotrauma201027234935910.1089/neu.2009.109519903084
    [Google Scholar]
  14. FahlenkampA.V. CoburnM. CzaplikM. RyangY.M. KippM. RossaintR. BeyerC. Expression analysis of the early chemokine response 4 h after in vitro traumatic brain injury.Inflamm. Res.201160437938710.1007/s00011‑010‑0281‑621104293
    [Google Scholar]
  15. ReisC. WangY. AkyolO. HoW. IiR. StierG. MartinR. ZhangJ. What’s new in traumatic brain injury: Update on tracking, monitoring and treatment.Int. J. Mol. Sci.20151612119031196510.3390/ijms16061190326016501
    [Google Scholar]
  16. ZhouY. DanboltN.C. Glutamate as a neurotransmitter in the healthy brain.J. Neural Transm.2014121879981710.1007/s00702‑014‑1180‑824578174
    [Google Scholar]
  17. HayashiT. Effects of sodium glutamate on the nervous system.Keio J. Med.19543418319210.2302/kjm.3.183
    [Google Scholar]
  18. GuerrieroR.M. GizaC.C. RotenbergA. Glutamate and GABA imbalance following traumatic brain injury.Curr. Neurol. Neurosci. Rep.20151552710.1007/s11910‑015‑0545‑125796572
    [Google Scholar]
  19. DarikA. Preclinical models of traumatic brain injury: Emerging role of glutamate in the pathophysiology of depression.Front. Pharmacol.2018957910.3389/fphar.2018.00579
    [Google Scholar]
  20. SchousboeA. Transport and metabolism of glutamate and GABA in neurons are glial cells.Int. Rev. Neurobiol.19812214510.1016/S0074‑7742(08)60289‑56115823
    [Google Scholar]
  21. DanboltN.C. Glutamate uptake.Prog. Neurobiol.2001651110510.1016/S0301‑0082(00)00067‑811369436
    [Google Scholar]
  22. DorsettC. R. McguireJ. L. DepasqualeE. A. GardnerA. E. FloydC. L. McCullumsmithR. E. Glutamate neurotransmission in rodent models of traumatic brain injury.J. Neurotrauma.201734226327210.1089/neu.2015.4373
    [Google Scholar]
  23. HinzmanJ.M. ThomasT.C. QuinteroJ.E. GerhardtG.A. LifshitzJ. Disruptions in the regulation of extracellular glutamate by neurons and glia in the rat striatum two days after diffuse brain injury.J. Neurotrauma20122961197120810.1089/neu.2011.2261
    [Google Scholar]
  24. VandenbergR.J. RyanR.M. Mechanisms of glutamate transport.Physiol. Rev.20139341621165710.1152/physrev.00007.201324137018
    [Google Scholar]
  25. oshimuraM. JessellrT. Amino acid-mediated EPSPs at primary afferent synapses with substantiagelatinosaneurones in the rat spinal cord.J Physiol1990430315335
    [Google Scholar]
  26. GarryE.M. Fleetwood-WalkerS.M. A new view on how AMPA receptors and their interacting proteins mediate neuropathic pain.Pain2004109321021310.1016/j.pain.2004.04.00215157680
    [Google Scholar]
  27. PolgárE. Al GhamdiK.S. ToddA.J. Two populations of neurokinin 1 receptor-expressing projection neurons in lamina I of the rat spinal cord that differ in AMPA receptor subunit composition and density of excitatory synaptic input.Neuroscience201016741192120410.1016/j.neuroscience.2010.03.02820303396
    [Google Scholar]
  28. YiJ.H. HazellA.S. Excitotoxic mechanisms and the role of astrocytic glutamate transporters in traumatic brain injury.Neurochem. Int.200648539440310.1016/j.neuint.2005.12.00116473439
    [Google Scholar]
  29. HarveyB.K. AiravaaraM. HinzmanJ. WiresE.M. ChioccoM.J. HowardD.B. ShenH. GerhardtG. HofferB.J. WangY. Targeted over-expression of glutamate transporter 1 (GLT-1) reduces ischemic brain injury in a rat model of stroke.PLoS One201168e2213510.1371/journal.pone.002213521853027
    [Google Scholar]
  30. KandelE. Principles of Neural ScienceMcGraw Hill Professional2013210306
    [Google Scholar]
  31. Castro-AlamancosM.A. ConnorsB.W. Thalamocortical synapses.Prog. Neurobiol.199751658160610.1016/S0301‑0082(97)00002‑69175158
    [Google Scholar]
  32. WallsA.B. WaagepetersenH.S. BakL.K. SchousboeA. SonnewaldU. The glutamine-glutamate/gaba cycle: Function, regional differences in glutamate and gaba production and effects of interference with gaba metabolism.Neurochem. Res.201540240240925380696
    [Google Scholar]
  33. YasenA.L. SmithJ. ChristieA.D. Glutamate and GABA concentrations following mild traumatic brain injury: A pilot study.J. Neurophysiol.201812031318132210.1152/jn.00896.201729924705
    [Google Scholar]
  34. KimG.H. KangI. JeongH. ParkS. HongH. KimJ. KimJ.Y. EddenR.A.E. LyooI.K. YoonS. Low Prefrontal GABA levels are associated with poor cognitive functions in professional boxers.Front. Hum. Neurosci.20191319310.3389/fnhum.2019.0019331244630
    [Google Scholar]
  35. van den PolA.N. ObrietanK. ChenG. Excitatory actions of GABA after neuronal trauma.J. Neurosci.199616134283429210.1523/JNEUROSCI.16‑13‑04283.19968753889
    [Google Scholar]
  36. LiY. SunH. ChenZ. XuH. BuG. ZhengH. Implications of GABAergic neurotransmission in alzheimer’s disease.Front. Aging Neurosci.201683110.3389/fnagi.2016.0003126941642
    [Google Scholar]
  37. ChebibM. The‘ABC’of GABA receptors: A brief review.Clin. Exp.Pharmacol.Physiol.199926937994
    [Google Scholar]
  38. BormannJ. The ‘ABC’ of GABA receptors.Trends Pharmacol. Sci.2000211161910.1016/S0165‑6147(99)01413‑310637650
    [Google Scholar]
  39. JohnstonG.A. Randlecture,ASCEPT.GABA receptors: As complexas ABC? Australaisian society for clinical and experimental pharmacologists and toxicologists.Clin. Exp. Pharmacol. Physiol.199421752152610.1111/j.1440‑1681.1994.tb02550.x7982283
    [Google Scholar]
  40. LüscherB. KellerC.A. Regulation of GABAA receptor trafficking, channel activity, and functional plasticity of inhibitory synapses.Pharmacol. Ther.2004102319522110.1016/j.pharmthera.2004.04.00315246246
    [Google Scholar]
  41. OlsenR.W. SieghartW. GABAA receptors: Subtypes provide diversity of function and pharmacology.Neuropharmacology200956114114810.1016/j.neuropharm.2008.07.04518760291
    [Google Scholar]
  42. FarrantM. NusserZ. Variations on an inhibitory theme: Phasic and tonic activation of GABAA receptors.Nat. Rev. Neurosci.20056321522910.1038/nrn162515738957
    [Google Scholar]
  43. KharlamovE.A. LepsveridzeE. MeparishviliM. SolomoniaR.O. LuB. MillerE.R. KellyK.M. MtchedlishviliZ. Alterations of GABAA and glutamate receptor subunits and heat shock protein in rat hippocampus following traumatic brain injury and in posttraumatic epilepsy.Epilepsy Res.2011951-2203410.1016/j.eplepsyres.2011.02.00821439793
    [Google Scholar]
  44. CynthiaJ. GibsonR.C. Traumatic brain injury and the effects of diazepam, diltiazem, and MK-801 on GABA-A receptor subunit expression in rat hippocampus.J. Biomed. Sci.173850
    [Google Scholar]
  45. ObrietanK. Van den PolA.N. Calcium hyperexcitability in neurons cultured with glutamate receptor blockade.J. Neurophysiol.19957341524153610.1152/jn.1995.73.4.15247643164
    [Google Scholar]
  46. ObrietanK. van den PolA.N. Growth cone calcium rise evoked by GABA.J. Comp. Neurol.19963722167675
    [Google Scholar]
  47. MattsonM.P. KaterS.B. Excitatory and inhibitory neurotransmitters in the generation and degeneration of hippocampal neuroarchitecture.Brain Res.1989478233734810.1016/0006‑8993(89)91514‑X2564301
    [Google Scholar]
  48. McDowellS. WhyteJ. D’EspositoM. Differential effect of a dopaminergic agonist on prefrontal function in traumatic brain injury patients.Brain199812161155116410.1093/brain/121.6.11559648550
    [Google Scholar]
  49. ChenY.H. HuangE.Y.K. KuoT.T. MillerJ. ChiangY.H. HofferB.J. Impact of traumatic brain injury on dopaminergic transmission.Cell Transplant.20172671156116810.1177/096368971771410528933212
    [Google Scholar]
  50. HicksR.R. SmithD.H. LowensteinD.H. MarieR.S. McINTOSHT.K. Mild experimental brain injury in the rat induces cognitive deficits associated with regional neuronal loss in the hippocampus.J. Neurotrauma199310440541410.1089/neu.1993.10.4058145264
    [Google Scholar]
  51. SandersM.J. DietrichW.D. GreenE.J. Behavioral, electrophysiological, and histopathological consequences of mild fluid-percussion injury in the rat.Brain Res.2001904114114410.1016/S0006‑8993(01)02424‑611516420
    [Google Scholar]
  52. WhyteJ. HartT. SchusterK. FlemingM. PolanskyM. CoslettH.B. Effects of methylphenidate on attentional function after traumatic brain injury. A randomized, placebo-controlled trial.Am. J. Phys. Med. Rehabil.199776644045010.1097/00002060‑199711000‑000029431261
    [Google Scholar]
  53. DietrichW.D. AlonsoO. HalleyM. Early microvascular and neuronal consequences of traumatic brain injury: A light and electron microscopic study in rats.J. Neurotrauma199411328930110.1089/neu.1994.11.2897996583
    [Google Scholar]
  54. BalesJ.W. WagnerA.K. KlineA.E. DixonC.E. Persistent cognitive dysfunction after traumatic brain injury: A dopamine hypothesis.Neurosci. Biobehav. Rev.2009337981100310.1016/j.neubiorev.2009.03.01119580914
    [Google Scholar]
  55. BaddeleyA. LogieR. BressiS. SalaS.D. SpinnlerH. Dementia and working memory.Q. J. Exp. Psychol. A198638460361810.1080/146407486084016163809575
    [Google Scholar]
  56. BuckleyMJ The role of the perirhinal cortex and hippocampus in learning, memory, and perception.Q. J. Exp. Psychol. B.2005583-4246268
    [Google Scholar]
  57. LemonN. Manahan-VaughanD. Dopamine D1/D5 receptors gate the acquisition of novel information through hippocampal long-term potentiation and long-term depression.J. Neurosci.200626297723772910.1523/JNEUROSCI.1454‑06.200616855100
    [Google Scholar]
  58. BramlettH. DietrichD. Quantitative structural changes in white and gray matter 1 year following traumatic brain injury in rats.Acta Neuropathol.2002103660761410.1007/s00401‑001‑0510‑812012093
    [Google Scholar]
  59. MeythalerJ.M. PeduzziJ.D. EleftheriouE. NovackT.A. Current concepts: Diffuse axonal injury–associated traumatic brain injury.Arch. Phys. Med. Rehabil.200182101461147110.1053/apmr.2001.2513711588754
    [Google Scholar]
  60. ReevesT.M. PhillipsL.L. LeeN.N. PovlishockJ.T. Preferential neuroprotective effect of tacrolimus (FK506) on unmyelinated axons following traumatic brain injury.Brain Res.2007115422523610.1016/j.brainres.2007.04.00217481596
    [Google Scholar]
  61. SmithD.H. MeaneyD.F. ShullW.H. Diffuse axonal injury in head trauma.J. Head Trauma Rehabil.200318430731610.1097/00001199‑200307000‑0000316222127
    [Google Scholar]
  62. WagnerA.K. DrewenckiL.L. ChenX. SantosF.R. KhanA.S. HarunR. TorresG.E. MichaelA.C. DixonC.E. Chronic methylphenidate treatment enhances striatal dopamine neurotransmission after experimental traumatic brain injury.J. Neurochem.2009108498699710.1111/j.1471‑4159.2008.05840.x19077052
    [Google Scholar]
  63. FengY. Convergence and divergence in the etiology of myelin impairment in psychiatric disorders and drug addiction.Neurochem. Res.200833101940194910.1007/s11064‑008‑9693‑x18404371
    [Google Scholar]
  64. ShenW. TianX. DayM. UlrichS. TkatchT. NathansonN.M. SurmeierD.J. Cholinergic modulation of Kir2 channels selectively elevates dendritic excitability in striatopallidal neurons.Nat. Neurosci.200710111458146610.1038/nn197217906621
    [Google Scholar]
  65. BrockiK. ClerkinS.M. GuiseK.G. FanJ. FossellaJ.A. Assessing the molecular genetics of the development of executive attention in children: focus on genetic pathways related to the anterior cingulate cortex and dopamine.Neuroscience2009164124124610.1016/j.neuroscience.2009.01.02919344637
    [Google Scholar]
  66. SeemanP. BzowejN.H. GuanH.C. BergeronC. BeckerL.E. ReynoldsG.P. BirdE.D. RiedererP. JellingerK. WatanabeS. TourtellotteW.W. Human brain dopamine receptors in children and aging adults.Synapse19871539940410.1002/syn.8900105033505371
    [Google Scholar]
  67. Treble-BarnaA. WadeS.L. MartinL.J. PilipenkoV. YeatesK.O. TaylorH.G. KurowskiB.G. Influence of dopamine-related genes on neurobehavioral recovery after traumatic brain injury during early childhood.J. Neurotrauma201734111919193110.1089/neu.2016.484028323555
    [Google Scholar]
  68. GiraultJ.A. GreengardP. The neurobiology of dopamine signaling.Arch. Neurol.200461564164410.1001/archneur.61.5.64115148138
    [Google Scholar]
  69. NissbrandtH. SundströmE. JonssonG. HjorthS. CarlssonA. Synthesis and release of dopamine in rat brain: comparison between substantia nigra pars compacts, pars reticulata, and striatum.J. Neurochem.19895241170118210.1111/j.1471‑4159.1989.tb01863.x2564423
    [Google Scholar]
  70. MegaM.S. CummingsJ.L. Frontal-subcortical circuits and neuropsychiatric disorders.J. Neuropsychiatry Clin. Neurosci.19946435837010.1176/jnp.6.4.3587841807
    [Google Scholar]
  71. MitchellR.A. HerrmannN. LanctôtK.L. The role of dopamine in symptoms and treatment of apathy in Alzheimer’s disease.CNS Neurosci. Ther.201117541142710.1111/j.1755‑5949.2010.00161.x20560994
    [Google Scholar]
  72. JenningsJS GerberAM VallanoML Pharmacological strategies for neuroprotection in traumatic brain injury.Mini. Rev. Med. Chem.20088768970110.2174/138955708784567377
    [Google Scholar]
  73. WagnerA.K. ChenX. KlineA.E. LiY. ZafonteR.D. DixonC.E. Gender and environmental enrichment impact dopamine transporter expression after experimental traumatic brain injury.Exp. Neurol.2005195247548310.1016/j.expneurol.2005.06.00916023635
    [Google Scholar]
  74. KoJ. HemphillM. YangZ. SewellE. NaY.J. SandsmarkD.K. HaberM. FisherS.A. TorreE.A. SvaneK.C. OmelchenkoA. FiresteinB.L. Diaz-ArrastiaR. KimJ. MeaneyD.F. IssadoreD. Diagnosis of traumatic brain injury using miRNA signatures in nanomagnetically isolated brain-derived extracellular vesicles.Lab Chip201818233617363010.1039/C8LC00672E30357245
    [Google Scholar]
  75. PitkänenA. EngelJ.Jr Past and present definitions of epileptogenesis and its biomarkers.Neurotherapeutics201411223124110.1007/s13311‑014‑0257‑224492975
    [Google Scholar]
  76. PitkänenA. Ekolle Ndode-EkaneX. LapinlampiN. PuhakkaN. Epilepsy biomarkers : Toward etiology and pathology specificity.Neurobiol. Dis.2019123425810.1016/j.nbd.2018.05.00729782966
    [Google Scholar]
  77. ValadiH. EkströmK. BossiosA. SjöstrandM. LeeJ.J. LötvallJ.O. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells.Nat. Cell Biol.20079665465910.1038/ncb159617486113
    [Google Scholar]
  78. SubraC. GrandD. LaulagnierK. StellaA. LambeauG. PaillasseM. De MedinaP. MonsarratB. PerretB. Silvente-PoirotS. PoirotM. RecordM. Exosomes account for vesicle-mediated transcellular transport of activatable phospholipases and prostaglandins.J. Lipid Res.20105182105212010.1194/jlr.M00365720424270
    [Google Scholar]
  79. GuesciniM. GenedaniS. StocchiV. AgnatiL.F. Astrocytes and Glioblastoma cells release exosomes carrying mtDNA.J. Neural Transm.201011711410.1007/s00702‑009‑0288‑819680595
    [Google Scholar]
  80. ThakurB.K. ZhangH. BeckerA. MateiI. HuangY. Costa-SilvaB. ZhengY. HoshinoA. BrazierH. XiangJ. WilliamsC. Rodriguez-BarruecoR. SilvaJ.M. ZhangW. HearnS. ElementoO. PaknejadN. Manova-TodorovaK. WelteK. BrombergJ. PeinadoH. LydenD. Double-stranded DNA in exosomes: A novel biomarker in cancer detection.Cell Res.201424676676910.1038/cr.2014.4424710597
    [Google Scholar]
  81. ZaborowskiM.P. BalajL. BreakefieldX.O. LaiC.P. Extracellular Vesicles: Composition, biological relevance, and methods of study.Bioscience201565878379710.1093/biosci/biv08426955082
    [Google Scholar]
  82. LaulagnierK. MottaC. HamdiS. RoyS. FauvelleF. PageauxJ.F. KobayashiT. SallesJ.P. PerretB. BonnerotC. RecordM. Mast cell- and dendritic cell-derived exosomes display a specific lipid composition and an unusual membrane organization.Biochem. J.2004380116117110.1042/bj2003159414965343
    [Google Scholar]
  83. WhitesideT.L. The potential of tumor-derived exosomes for noninvasive cancer monitoring.Expert Rev. Mol. Diagn.201515101293131010.1586/14737159.2015.107166626289602
    [Google Scholar]
  84. JanA.T. MalikM.A. RahmanS. YeoH.R. LeeE.J. AbdullahT.S. ChoiI. Perspective insights of exosomes in neurodegenerative diseases: A critical appraisal.Front. Aging Neurosci.2017931710.3389/fnagi.2017.0031729033828
    [Google Scholar]
  85. KanninenK.M. BisterN. KoistinahoJ. MalmT. Exosomes as new diagnostic tools in CNS diseases.Biochim. Biophys. Acta Mol. Basis Dis.20161862340341010.1016/j.bbadis.2015.09.02026432482
    [Google Scholar]
  86. ArmstrongD. WildmanD.E. Extracellular vesicles and the promise of continuous liquid biopsies.J. Pathol. Transl. Med.20185211810.4132/jptm.2017.05.2129370511
    [Google Scholar]
  87. GiebelB. KordelasL. BörgerV. Clinical potential of mesenchymal stem/stromal cell-derived extracellular vesicles.Stem Cell Investig.20174108410.21037/sci.2017.09.0629167805
    [Google Scholar]
  88. FadenA.I. Neuroprotection and traumatic brain injury: Theoretical option or realistic proposition.Curr. Opin. Neurol.200215670771210.1097/01.wco.0000044767.39452.bf12447109
    [Google Scholar]
  89. NarayanR.K. MichelM.E. AnsellB. BaethmannA. BiegonA. BrackenM.B. BullockM.R. ChoiS.C. CliftonG.L. ContantC.F. CoplinW.M. DietrichW.D. GhajarJ. GradyS.M. GrossmanR.G. HallE.D. HeetderksW. HovdaD.A. JalloJ. KatzR.L. KnollerN. KochanekP.M. MaasA.I. MajdeJ. MarionD.W. MarmarouA. MarshallL.F. McIntoshT.K. MillerE. MohbergN. MuizelaarJ.P. PittsL.H. QuinnP. RiesenfeldG. RobertsonC.S. StraussK.I. TeasdaleG. TemkinN. TumaR. WadeC. WalkerM.D. WeinrichM. WhyteJ. WilbergerJ. YoungA.B. YurkewiczL. Clinical trials in head injury.J. Neurotrauma200219550355710.1089/08977150275375403712042091
    [Google Scholar]
  90. DoppenbergE.M.R. ChoiS.C. BullockR. Clinical trials in traumatic brain injury: Lessons for the future.J. Neurosurg. Anesthesiol.2004161879410.1097/00008506‑200401000‑0001914676577
    [Google Scholar]
  91. PovlishockJ.T. KatzD.I. Update of neuropathology and neurological recovery after traumatic brain injury.J. Head Trauma Rehabil.2005201769410.1097/00001199‑200501000‑0000815668572
    [Google Scholar]
  92. MarguliesS. HicksR. Combination therapies for traumatic brain injury: prospective considerations.J. Neurotrauma200926692593910.1089/neu.2008.079419331514
    [Google Scholar]
  93. AdamsJ.H. GrahamD.I. GennarelliT.A. Head injury in man and experimental animals: neuropathology.Acta Neurochir. Suppl.198332153010.1007/978‑3‑7091‑4147‑2_26581702
    [Google Scholar]
  94. Brain Trauma FoundationGuidelines for the management of severe head injury.J. Neurotrauma200724Suppl. 1S1S106
    [Google Scholar]
  95. RaghupathiR. Cell death mechanisms following traumatic brain injury.Brain Pathol.200414221522210.1111/j.1750‑3639.2004.tb00056.x15193035
    [Google Scholar]
  96. MarklundN. BakshiA. CastelbuonoD. ConteV. McIntoshT. Evaluation of pharmacological treatment strategies in traumatic brain injury.Curr. Pharm. Des.200612131645168010.2174/13816120677684334016729876
    [Google Scholar]
  97. SchoutenJ.W. Neuroprotection in traumatic brain injury: A complex struggle against the biology of nature.Curr. Opin. Crit. Care200713213414210.1097/MCC.0b013e3280895d5c17327733
    [Google Scholar]
  98. WernerC. EngelhardK. Pathophysiology of traumatic brain injury.Br. J. Anaesth.20079914910.1093/bja/aem13117573392
    [Google Scholar]
  99. MaasA.I.R. MarmarouA. MurrayG.D. TeasdaleS.G.M. SteyerbergE.W. Prognosis and clinical trial design in traumatic brain injury: The IMPACT study.J. Neurotrauma200724223223810.1089/neu.2006.002417375987
    [Google Scholar]
  100. Alam BonyB. KievitF.M. A role for nanoparticles in treating traumatic brain injury.Pharmaceutics201911947310.3390/pharmaceutics1109047331540234
    [Google Scholar]
  101. de JongW.H. BormP.J.A. Drug delivery and nanoparticles: Applications and hazards.Int. J. Nanomedicine20083213314910.2147/IJN.S59618686775
    [Google Scholar]
  102. KreuterJ. Nanoparticles : A historical perspective.Int. J. Pharm.2007331111010.1016/j.ijpharm.2006.10.02117110063
    [Google Scholar]
  103. MudshingeS.R. DeoreA.B. PatilS. BhalgatC.M. Nanoparticles: Emerging carriers for drug delivery.Saudi Pharm. J.201119312914110.1016/j.jsps.2011.04.00123960751
    [Google Scholar]
  104. KanwarJ.R. SunX. PunjV. SriramojuB. MohanR.R. ZhouS.F. ChauhanA. KanwarR.K. Nanoparticles in the treatment and diagnosis of neurological disorders: untamed dragon with fire power to heal.Nanomedicine20128439941410.1016/j.nano.2011.08.00621889479
    [Google Scholar]
  105. SinghR. LillardJ.W.Jr Nanoparticle-based targeted drug delivery.Exp. Mol. Pathol.200986321522310.1016/j.yexmp.2008.12.00419186176
    [Google Scholar]
  106. HansML LowmanAM Current Opinion in Solid State and Materials Science.Elsevier2002617
    [Google Scholar]
  107. GadhviV. BrijeshK. GuptaA. RoopchandaniK. PatelN. Research.J. Pharm. Technol.20136454
    [Google Scholar]
  108. PetrosR.A. DeSimoneJ.M. Strategies in the design of nanoparticles for therapeutic applications.Nat. Rev. Drug Discov.20109861562710.1038/nrd259120616808
    [Google Scholar]
  109. ShiJ. VotrubaA.R. FarokhzadO.C. LangerR. Nanotechnology in drug delivery and tissue engineering: From discovery to applications.Nano Lett.20101093223323010.1021/nl102184c20726522
    [Google Scholar]
  110. AnselmoA.C. MitragotriS. Nanoparticles in the clinic.Bioeng. Transl. Med.201611102910.1002/btm2.1000329313004
    [Google Scholar]
  111. DavisM.E. ChenZ. ShinD.M. Nanoparticle therapeutics: An emerging treatment modality for cancer.Nat. Rev. Drug Discov.20087977178210.1038/nrd261418758474
    [Google Scholar]
  112. GilmoreJ.L. YiX. QuanL. KabanovA.V.J. Novel nanomaterials for clinical neuroscience.NeuroimmunePharmacol.200838318210200
    [Google Scholar]
  113. (Vimala N. Bharadwaj,).2018
    [Google Scholar]
  114. ChenY. SwansonR.A. Astrocytes and brain injury.J. Cereb. Blood Flow Metab.200323213714910.1097/01.WCB.0000044631.80210.3C12571445
    [Google Scholar]
  115. SpahnD.R. WaschkeK.F. StandlT. MotschJ. Van HuynegemL. WelteM. GombotzH. CoriatP. VerkhL. FaithfullS. KeipertP. Use of perflubron emulsion to decrease allogeneic blood transfusion in high-blood-loss non-cardiac surgery: results of a European phase 3 study.Anesthesiology20029761338134910.1097/00000542‑200212000‑0000412459658
    [Google Scholar]
  116. SakasD.E. CrowellR.M. KimK. KorosueK. ZervasN.T. The perfluorocarbon fluoromethyloadamantane offers cerebral protection in a model of isovolemic hemodilution in rabbits.Stroke199425119720110.1161/01.STR.25.1.1977505493
    [Google Scholar]
  117. DaughertyW.P. LevasseurJ.E. SunD. SpiessB.D. BullockM.R. Perfluorocarbon emulsion improves cerebral oxygenation and mitochondrial function after fluid percussion brain injury in rats.Neurosurgery20045451223123010.1227/01.NEU.0000119238.68938.5D15113478
    [Google Scholar]
  118. BerlinJ.M. LeonardA.D. PhamT.T. SanoD. MarcanoD.C. YanS. FiorentinoS. MilasZ.L. KosynkinD.V. PriceB.K. Lucente-SchultzR.M. WenX. RasoM.G. CraigS.L. TranH.T. MyersJ.N. TourJ.M. Effective drug delivery, in vitro and in vivo, by carbon-based nanovectors noncovalently loaded with unmodified Paclitaxel.ACS Nano2010484621463610.1021/nn100975c20681596
    [Google Scholar]
  119. MarcanoD.C. BitnerB.R. BerlinJ.M. JarjourJ. LeeJ.M. JacobA. FabianR.H. KentT.A. TourJ.M. Design of poly(ethylene glycol)-functionalized hydrophilic carbon clusters for targeted therapy of cerebrovascular dysfunction in mild traumatic brain injury.J. Neurotrauma201330978979610.1089/neu.2011.230122928502
    [Google Scholar]
  120. PetrovY.Y. ProughD.S. DeyoD.J. KlasingM. MotamediM. EsenalievR.O. Optoacoustic, noninvasive, real-time, continuous monitoring of cerebral blood oxygenation: an in vivo study in sheep.Anesthesiology20051021697510.1097/00000542‑200501000‑0001415618789
    [Google Scholar]
  121. PetrovA. WynneK.E. ParsleyM.A. PetrovI.Y. PetrovY. RuppertK.A. ProughD.S. DeWittD.S. EsenalievR.O. Optoacoustic detection of intra- and extracranial hematomas in rats after blast injury.Photoacoustics201422758010.1016/j.pacs.2014.04.00125302157
    [Google Scholar]
  122. RazanskyD. DeliolanisN.C. VinegoniC. NtziachristosV. Deep tissue optical and optoacoustic molecular imaging technologies for pre-clinical research and drug discovery.Curr. Pharm. Biotechnol.201213450452210.2174/13892011279943625822216767
    [Google Scholar]
  123. PetrovI.Y. PetrovY. ProughD.S. CicenaiteI. DeyoD.J. EsenalievR.O. Optoacoustic monitoring of cerebral venous blood oxygenation though intact scalp in large animals.Opt. Express20122044159416710.1364/OE.20.00415922418173
    [Google Scholar]
  124. EmanueleM. AustonG. RinatO. IreneY. Non-invasive transcranial nano-pulsed laser therapy ameliorates cognitive function and prevents aberrant migration of neural progenitor cells in the hippocampus of rats subjected to traumatic brain injury.J. Neurotrauma.20203781108112310.1089/neu.2019.6534
    [Google Scholar]
  125. JenaL. McErleanE. McCarthyH. Delivery across the blood brain barrier: nanomedicine for glioblastoma multiforme.Drug Deliv. Transl. Res.202010230431810.1007/s13346‑019‑00679‑231728942
    [Google Scholar]
  126. KangY.J. CutlerE.G. ChoH. Therapeutic nanoplatforms and delivery strategies for neurological disorders.Nano Converg.2018513510.1186/s40580‑018‑0168‑830499047
    [Google Scholar]
  127. SukritiS. TauseefM. YazbeckP. MehtaD. Mechanisms regulating endothelial permeability.Pulm. Circ.20144453555110.1086/67735625610592
    [Google Scholar]
  128. LiuY. SunD. FanQ. MaQ. DongZ. TaoW. TaoH. LiuZ. WangC. The enhanced permeability and retention effect based nanomedicine at the site of injury.Nano Res.202013256456910.1007/s12274‑020‑2655‑6
    [Google Scholar]
  129. McKeeA.C. DaneshvarD.H. The neuropathology of traumatic brain injury.Handbook of clinical neurology.Elsevier20151274566
    [Google Scholar]
  130. BharadwajV.N. NguyenD.T. KodibagkarV.D. StabenfeldtS.E. Nanoparticle‐based therapeutics for brain injury.Adv. Healthc. Mater.201871170066810.1002/adhm.20170066829034608
    [Google Scholar]
  131. ZeinR. SharroufW. SeltingK. Physical properties of nanoparticles that result in improved cancer targeting.J. Oncol.2020202011610.1155/2020/519478032765604
    [Google Scholar]
  132. XuL. ZhangH. WuY. Dendrimer advances for the central nervous system delivery of therapeutics.ACS Chem. Neurosci.20145121310.1021/cn400182z24274162
    [Google Scholar]
  133. TeleanuD. ChircovC. GrumezescuA. VolceanovA. TeleanuR. Impact of nanoparticles on brain health: An up to date overview.J. Clin. Med.201871249010.3390/jcm712049030486404
    [Google Scholar]
  134. RaliyaR. Singh ChadhaT. HaddadK. BiswasP. Perspective on nanoparticle technology for biomedical use.Curr. Pharm. Des.201622172481249010.2174/138161282266616030715140926951098
    [Google Scholar]
  135. DinF. AmanW. UllahI. QureshiO.S. MustaphaO. ShafiqueS. ZebA. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors.Int. J. Nanomedicine2017127291730910.2147/IJN.S14631529042776
    [Google Scholar]
  136. PatraJ.K. DasG. FracetoL.F. CamposE.V.R. Rodriguez-TorresM.P. Acosta-TorresL.S. Diaz-TorresL.A. GrilloR. SwamyM.K. SharmaS. HabtemariamS. ShinH.S. Nano based drug delivery systems: recent developments and future prospects.J. Nanobiotechnology20181617110.1186/s12951‑018‑0392‑830231877
    [Google Scholar]
  137. MaF. YangL. SunZ. ChenJ. RuiX. GlassZ. XuQ. Neurotransmitter-derived lipidoids (NT-lipidoids) for enhanced brain delivery through intravenous injection.Sci. Adv.2020630eabb442910.1126/sciadv.abb442932832671
    [Google Scholar]
  138. KotinR. KellsA.P. RavinaB. Washington, DC: U.S. Patent and Trademark Office.U.S.Patent No. 103354662019
  139. AnsariS. AzariH. McConnellD.J. AfzalA. MoccoJ. Intraluminal middle cerebral artery occlusion (MCAO) model for ischemic stroke with laser doppler flowmetry guidance in mice.J. Vis. Exp.20115151e287910.3791/2879‑v21587164
    [Google Scholar]
  140. BordiF. PietraC. ZivianiL. ReggianiA. The glycine antagonist GV150526 protects somatosensory evoked potentials and reduces the infarct area in the MCAo model of focal ischemia in the rat.Exp. Neurol.1997145242543310.1006/exnr.1997.64429217078
    [Google Scholar]
  141. CastanoA.P. DemidovaT.N. HamblinM.R. Mechanisms in photodynamic therapy: Part three—Photosensitizer pharmacokinetics, biodistribution, tumor localization and modes of tumor destruction.Photodiagn. Photodyn. Ther.2005229110610.1016/S1572‑1000(05)00060‑825048669
    [Google Scholar]
  142. QuirkB.J. BrandalG. DonlonS. VeraJ.C. MangT.S. FoyA.B. LewS.M. GirottiA.W. JogalS. LaVioletteP.S. ConnellyJ.M. WhelanH.T. Photodynamic therapy (PDT) for malignant brain tumors : Where do we stand?Photodiagn. Photodyn. Ther.201512353054410.1016/j.pdpdt.2015.04.00925960361
    [Google Scholar]
  143. TréhinR. FigueiredoJ.L. PittetM.J. WeisslederR. JosephsonL. MahmoodU. Fluorescent nanoparticle uptake for brain tumor visualization.Neoplasia20068430231110.1593/neo.0575116756722
    [Google Scholar]
  144. HoffmanR.M. Green fluorescent protein imaging of tumour growth, metastasis, and angiogenesis in mouse models.Lancet Oncol.20023954655610.1016/S1470‑2045(02)00848‑312217792
    [Google Scholar]
  145. DuffauH. Surgery for malignant brain gliomas: Fluorescence guided resection or functional-based resection?Front. Surg.201962110.3389/fsurg.2019.0002131032260
    [Google Scholar]
  146. StevenB.J.Q.G.B. JuanD. Photodynamic therapy (PDT) for malignant brain tumors : Where do we stand?Photodiagnosis. Photodyn. Ther.201512353054410.1016/j.pdpdt.2015.04.009
    [Google Scholar]
  147. BlakeE. AllenJ. CurnowA. An in vitro comparison of the effects of the iron-chelating agents, CP94 and dexrazoxane, on protoporphyrin IX accumulation for photodynamic therapy and/or fluorescence guided resection.Photochem. Photobiol.20118761419142610.1111/j.1751‑1097.2011.00985.x21834866
    [Google Scholar]
  148. SkandalakisG.P. RiveraD.R. RizeaC.D. BourasA. Jesu RajJ.G. BozecD. HadjipanayisC.G. Hyperthermia treatment advances for brain tumors.Int. J. Hyperthermia202037231910.1080/02656736.2020.177251232672123
    [Google Scholar]
  149. GoldbergS.N. GazelleG.S. MuellerP.R. Thermal ablation therapy for focal malignancy: A unified approach to underlying principles, techniques, and diagnostic imaging guidance.AJR Am. J. Roentgenol.2000174232333110.2214/ajr.174.2.174032310658699
    [Google Scholar]
  150. McDannoldN. VykhodtsevaN. JoleszF.A. HynynenK. MRI investigation of the threshold for thermally induced blood–brain barrier disruption and brain tissue damage in the rabbit brain.Magn. Reson. Med.200451591392310.1002/mrm.2006015122673
    [Google Scholar]
  151. WilsonB.C. PattersonM.S. BurnsD.M. Effect of photosensitizer concentration in tissue on the penetration depth of photoactivating light.Lasers Med. Sci.19861423524410.1007/BF02032418
    [Google Scholar]
  152. LaiF. FaddaA.M. SinicoC. Liposomes for brain delivery.Expert Opin. Drug Deliv.20131071003102210.1517/17425247.2013.76671423373728
    [Google Scholar]
  153. OrthmannA. ZeisigR. SüssR. LorenzD. LemmM. FichtnerI. Treatment of experimental brain metastasis with MTO liposomes: Impact of fluidity and LRP-targeting on the therapeutic result.Pharm. Res.20122971949195910.1007/s11095‑012‑0723‑722399388
    [Google Scholar]
  154. PardeshiC. RajputP. BelgamwarV. TekadeA. PatilG. ChaudharyK. SonjeA. Solid lipid based nanocarriers: An overview / Nanonosači na bazi čvrstih lipida: Pregled.Acta Pharm.201262443347210.2478/v10007‑012‑0040‑z23333884
    [Google Scholar]
  155. KreuterJ. AlyautdinR.N. KharkevichD.A. IvanovA.A. Passage of peptides through the blood-brain barrier with colloidal polymer particles (nanoparticles).Brain Res.1995674117117410.1016/0006‑8993(95)00023‑J7773690
    [Google Scholar]
  156. RamgeP. UngerR.E. OltroggeJ.B. ZenkerD. BegleyD. KreuterJ. Von BriesenH. Polysorbate‐80 coating enhances uptake of polybutylcyanoacrylate (PBCA)‐nanoparticles by human and bovine primary brain capillary endothelial cells.Eur. J. Neurosci.20001261931194010.1046/j.1460‑9568.2000.00078.x10886334
    [Google Scholar]
  157. KuoY.C. ChungC.Y. Transcytosis of CRM197-grafted polybutylcyanoacrylate nanoparticles for delivering zidovudine across human brain-microvascular endothelial cells.Colloids Surf. B Biointerfaces20129124224910.1016/j.colsurfb.2011.11.00722137614
    [Google Scholar]
  158. RuoziB. BellettiD. SharmaH.S. SharmaA. MuresanuD.F. MösslerH. ForniF. VandelliM.A. TosiG. PLGA Nanoparticles loaded cerebrolysin: studies on their preparation and investigation of the effect of storage and serum stability with reference to traumatic brain injury.Mol. Neurobiol.201552289991210.1007/s12035‑015‑9235‑x26108180
    [Google Scholar]
  159. AlbertazziL. GherardiniL. BrondiM. Sulis SatoS. BifoneA. PizzorussoT. RattoG.M. BardiG. In vivo distribution and toxicity of PAMAM dendrimers in the central nervous system depend on their surface chemistry.Mol. Pharm.201310124926010.1021/mp300391v23163881
    [Google Scholar]
  160. NanceE. ZhangF. MishraM.K. ZhangZ. KambhampatiS.P. KannanR.M. KannanS. Nanoscale effects in dendrimer-mediated targeting of neuroinflammation.Biomaterials20161019610710.1016/j.biomaterials.2016.05.04427267631
    [Google Scholar]
  161. ChengY. DaiQ. MorshedR.A. FanX. WegscheidM.L. WainwrightD.A. HanY. ZhangL. AuffingerB. TobiasA.L. RincónE. ThaciB. AhmedA.U. WarnkeP.C. HeC. LesniakM.S. Blood-brain barrier permeable gold nanoparticles: An efficient delivery platform for enhanced malignant glioma therapy and imaging.Small201410245137515010.1002/smll.20140065425104165
    [Google Scholar]
  162. SelaH. CohenH. EliaP. ZachR. KarpasZ. ZeiriY. Spontaneous penetration of gold nanoparticles through the blood brain barrier (BBB).J. Nanobiotechnology20151317110.1186/s12951‑015‑0133‑126489846
    [Google Scholar]
  163. ChenX. Sieve Extremum Estimation.The New Palgrave Dictionary ofEconomics.London, UKPalgrave Macmillan UK2008112
    [Google Scholar]
  164. TricklerW.J. LantzS.M. MurdockR.C. SchrandA.M. RobinsonB.L. NewportG.D. SchlagerJ.J. OldenburgS.J. PauleM.G. SlikkerW.Jr HussainS.M. AliS.F. Silver nanoparticle induced blood-brain barrier inflammation and increased permeability in primary rat brain microvessel endothelial cells.Toxicol. Sci.2010118116017010.1093/toxsci/kfq24420713472
    [Google Scholar]
  165. MoJ. HeL. MaB. ChenT. Tailoring particle size of mesoporous silica nanosystem to antagonize glioblastoma and overcome blood–brain barrier.ACS Appl. Mater. Interfaces20168116811682510.1021/acsami.5b1173026911360
    [Google Scholar]
  166. LuS. GuoS. XuP. LiX. ZhaoY. GuW. XueM. Hydrothermal synthesis of nitrogen-doped carbon dots with real-time live-cell imaging and blood–brain barrier penetration capabilities.Int. J. Nanomedicine2016116325633610.2147/IJN.S11925227932880
    [Google Scholar]
  167. NathD KhanamN. Traumatic brain injury: Future application of nanomedicine.Adv. Res. Rev.20216202002710.30574/gscarr.2021.6.2.0019
    [Google Scholar]
  168. TripathyN. AhmadR. KhangG. Inorganic Nanotheranostics: Strategy development and applications.In Drug Delivery Nanosystems for Biomedical ApplicationsElsevier2018377419
    [Google Scholar]
  169. GoldsmithM. AbramovitzL. PeerD. Precision nanomedicine in neurodegenerative diseases.ACS Nano2014831958196510.1021/nn501292z24660817
    [Google Scholar]
  170. BandelowB. MichaelisS. WedekindD. Treatment of anxiety disorders.Dialogues Clin. Neurosci.20171929310710.31887/DCNS.2017.19.2/bbandelow28867934
    [Google Scholar]
  171. BhattacharyaT. SoaresG.A.B. ChopraH. RahmanM.M. HasanZ. SwainS.S. CavaluS. Applications of phyto-nanotechnology for the treatment of neurodegenerative disorders.Materials202215380410.3390/ma1503080435160749
    [Google Scholar]
  172. ChopraH. DeyP.S. DasD. BhattacharyaT. ShahM. MubinS. MaishuS.P. AkterR. RahmanM.H. KarthikaC. MuradW. QustyN. QustiS. AlshammariE.M. BatihaG.E.S. AltalbawyF.M.A. AlbooqM.I.M. AlamriB.M. Curcumin nanoparticles as promising therapeutic agents for drug targets.Molecules20212616499810.3390/molecules2616499834443593
    [Google Scholar]
  173. RoyS. AwasthiH. Herbal medicines as neuroprotective agent: A mechanistic approach.Int. J. Pharm. Pharm. Sci.20179101710.22159/ijpps.2017v9i11.19444
    [Google Scholar]
  174. a YangS. ChangM.C. Chronic pain: structural and functional changes in brain structures and associated negative affective states.Int. J. Mol. Sci.20192013313010.3390/ijms2013313031248061
    [Google Scholar]
  175. b AppendinoG. et al., Antibacterial cannabinoids from Cannabis sativa: a structure- activity study.Journal of natural products200871814271430
    [Google Scholar]
  176. JarrahiA. BraunM. AhluwaliaM. GuptaR.V. WilsonM. MunieS. AhluwaliaP. VenderJ.R. ValeF.L. DhandapaniK.M. VaibhavK. Revisiting traumatic brain injury: From molecular mechanisms to therapeutic interventions.Biomedicines202081038910.3390/biomedicines810038933003373
    [Google Scholar]
  177. Del GattoA. SavianoM. ZaccaroL. An overview of peptide-based molecules as potential drug candidates for multiple sclerosis.Molecules20212617522710.3390/molecules2617522734500662
    [Google Scholar]
  178. JinY. ChifodyaK. HanG. JiangW. ChenY. ShiY. XuQ. XiY. WangJ. ZhouJ. ZhangH. DingY. High-density lipoprotein in Alzheimer’s disease: From potential biomarkers to therapeutics.J. Control. Release2021338567010.1016/j.jconrel.2021.08.01834391838
    [Google Scholar]
  179. MadavY. WairkarS. PrabhakarB. Recent therapeutic strategies targeting beta amyloid and tauopathies in Alzheimer’s disease.Brain Res. Bull.201914617118410.1016/j.brainresbull.2019.01.00430634016
    [Google Scholar]
  180. LoefflerD. A. Antibody-mediated clearance of brain amyloid-β: mechanisms of action, effects of natural and monoclonal anti-Aβ antibodies, and downstream effects.J. Alzheimers. Dis. Rep.20237187389910.3233/ADR‑230025
    [Google Scholar]
/content/journals/cnsamc/10.2174/0118715249291999240418112531
Loading
/content/journals/cnsamc/10.2174/0118715249291999240418112531
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test