Skip to content
2000
Volume 25, Issue 1
  • ISSN: 1871-5249
  • E-ISSN: 1875-6166

Abstract

Alzheimer's Disease (AD) is a devastating neurological condition characterized by a progressive decline in cognitive function, including memory loss, reasoning difficulties, and disorientation. Its hallmark features include the formation of neurofibrillary tangles and neuritic plaques in the brain, disrupting normal neuronal function. Neurofibrillary tangles, composed of phosphorylated tau protein and neuritic plaques, containing amyloid-β protein (Aβ) aggregates, contribute to the degenerative process. The discovery of the beta-site amyloid precursor protein cleaving enzyme 1 (BACE1) in 1999 revolutionized our understanding of AD pathogenesis. BACE1 plays a crucial role in the production of Aβ, the toxic protein implicated in AD progression. Elevated levels of BACE1 have been observed in AD brains and bodily fluids, underscoring its significance in disease onset and progression. Despite setbacks in clinical trials of BACE1 inhibitors due to efficacy and safety concerns, targeting BACE1 remains a promising therapeutic strategy for early-stage AD. Natural flavonoids have emerged as potential BACE1 inhibitors, demonstrating the ability to reduce Aβ production in neuronal cells and inhibit BACE1 activity. In our review, we delve into the pathophysiology of AD, highlighting the central role of BACE1 in Aβ production and disease progression. We explore the therapeutic potential of BACE1 inhibitors, including natural flavonoids, in controlling AD symptoms. Additionally, we provide insights into ongoing clinical trials and available patents in this field, shedding light on future directions for AD treatment research.

Loading

Article metrics loading...

/content/journals/cnsamc/10.2174/0118715249315049240710063455
2024-07-12
2025-01-18
Loading full text...

Full text loading...

References

  1. ChetiaP. MazumderM.K. MahantaS. DeB. Dutta ChoudhuryM. A novel phytochemical from Dipteris wallichii inhibits human β-secretase 1: Implications for the treatment of Alzheimer’s disease.Med. Hypotheses202014310983910.1016/j.mehy.2020.10983932473508
    [Google Scholar]
  2. UgbajaS.C. SanusiZ.K. Appiah-KubiP. LawalM.M. KumaloH.M. Computational modelling of potent β-secretase (BACE1) inhibitors towards Alzheimer’s disease treatment.Biophys. Chem.202127010653610.1016/j.bpc.2020.10653633387910
    [Google Scholar]
  3. GhoshA.K. OsswaldH.L. BACE1 (β-secretase) inhibitors for the treatment of Alzheimer’s disease.Chem. Soc. Rev.201443196765681310.1039/C3CS60460H24691405
    [Google Scholar]
  4. MaiaM.A. SousaE. BACE-1 and γ-Secretase as Therapeutic Targets for Alzheimer’s Disease.Pharmaceuticals (Basel)20191214110.3390/ph1201004130893882
    [Google Scholar]
  5. LimaE. RauterA. MedeirosJ. Flavonoids as Promising Multitarget Agents in Alzheimer’s Disease Therapy.Appl. Sci. (Basel)2023138465110.3390/app13084651
    [Google Scholar]
  6. PunmiyaA. PrabhuA. Structural fingerprinting of pleiotropic flavonoids for multifaceted Alzheimer’s disease.Neurochem. Int.202316310548610.1016/j.neuint.2023.10548636641110
    [Google Scholar]
  7. CalisZ. MogulkocR. BaltaciA.K. The Roles of Flavonols/Flavonoids in Neurodegeneration and Neuroinflammation.Mini Rev. Med. Chem.202020151475148810.2174/138955751966619061715005131288717
    [Google Scholar]
  8. UllahA. MunirS. BadshahS.L. KhanN. GhaniL. PoulsonB.G. EmwasA.H. JaremkoM. Important Flavonoids and Their Role as a Therapeutic Agent.Molecules20202522524310.3390/molecules2522524333187049
    [Google Scholar]
  9. CalderaroA. PatanèG.T. TelloneE. BarrecaD. FicarraS. MisitiF. LaganàG. The Neuroprotective Potentiality of Flavonoids on Alzheimer’s Disease.Int. J. Mol. Sci.202223231483510.3390/ijms23231483536499159
    [Google Scholar]
  10. ArmbrustF. BickenbachK. MarengoL. PietrzikC. Becker-PaulyC. The Swedish dilemma - the almost exclusive use of APPswe-based mouse models impedes adequate evaluation of alternative β-secretases.Biochim. Biophys. Acta Mol. Cell Res.202218693119164https://www.sciencedirect.com/science/article/pii/S016748892100218410.1016/j.bbamcr.2021.11916434699873
    [Google Scholar]
  11. ShishtarE. RogersG.T. BlumbergJ.B. AuR. JacquesP.F. Long-term dietary flavonoid intake and risk of Alzheimer disease and related dementias in the Framingham Offspring Cohort.Am. J. Clin. Nutr.2020112234335310.1093/ajcn/nqaa07932320019
    [Google Scholar]
  12. BonyadiN. DolatkhahN. SalekzamaniY. HashemianM. Effect of berry-based supplements and foods on cognitive function: a systematic review.Sci. Rep.2022121323910.1038/s41598‑022‑07302‑435217779
    [Google Scholar]
  13. AbushwerebH.S. Does food have anything to do with Memory and Intelligence? A Review on Alzheimer’s disease Fighting.EAS Journal of Pharmacy and Pharmacology202242354210.36349/easjpp.2022.v04i02.003
    [Google Scholar]
  14. ColizziC. The protective effects of polyphenols on Alzheimer’s disease: A systematic review.Alzheimers Dement. (N. Y.)20195118419610.1016/j.trci.2018.09.00231194101
    [Google Scholar]
  15. CommengesD. ScotetV. RenaudS. Jacqmin-GaddaH. Barberger-GateauP. DartiguesJ.F. Intake of flavonoids and risk of dementia.Eur. J. Epidemiol.200016435736310.1023/A:100761461377110959944
    [Google Scholar]
  16. DeviS. KumarV. SinghS.K. DubeyA.K. KimJ.J. Flavonoids: Potential Candidates for the Treatment of Neurodegenerative Disorders.Biomedicines2021929910.3390/biomedicines902009933498503
    [Google Scholar]
  17. VassarR. KovacsD.M. YanR. WongP.C. The beta-secretase enzyme BACE in health and Alzheimer’s disease: regulation, cell biology, function, and therapeutic potential.J. Neurosci.20092941127871279410.1523/JNEUROSCI.3657‑09.200919828790
    [Google Scholar]
  18. HampelH. VassarR. De StrooperB. HardyJ. WillemM. SinghN. ZhouJ. YanR. VanmechelenE. De VosA. NisticòR. CorboM. ImbimboB.P. StrefferJ. VoytyukI. TimmersM. Tahami MonfaredA.A. IrizarryM. AlbalaB. KoyamaA. WatanabeN. KimuraT. YarenisL. ListaS. KramerL. VergalloA. The β-Secretase BACE1 in Alzheimer’s Disease.Biol. Psychiatry202189874575610.1016/j.biopsych.2020.02.00132223911
    [Google Scholar]
  19. KeskinA.D. KekušM. AdelsbergerH. NeumannU. ShimshekD.R. SongB. ZottB. PengT. FörstlH. StaufenbielM. NelkenI. SakmannB. KonnerthA. BuscheM.A. BACE inhibition-dependent repair of Alzheimer’s pathophysiology.Proc. Natl. Acad. Sci. USA2017114328631863610.1073/pnas.170810611428739891
    [Google Scholar]
  20. EganM.F. KostJ. TariotP.N. AisenP.S. CummingsJ.L. VellasB. SurC. MukaiY. VossT. FurtekC. MahoneyE. Harper MozleyL. VandenbergheR. MoY. MichelsonD. Randomized Trial of Verubecestat for Mild-to-Moderate Alzheimer’s Disease.N. Engl. J. Med.2018378181691170310.1056/NEJMoa170644129719179
    [Google Scholar]
  21. HenleyD. RaghavanN. SperlingR. AisenP. RamanR. RomanoG. Preliminary Results of a Trial of Atabecestat in Preclinical Alzheimer’s Disease.England j. med.201938014831485
    [Google Scholar]
  22. MaW. DingB. YuH. YuanL. XiY. XiaoR. Genistein alleviates β-amyloid-induced inflammatory damage through regulating Toll-like receptor 4/nuclear factor κB.J. Med. Food201518327327910.1089/jmf.2014.315025384233
    [Google Scholar]
  23. NaushadM. DurairajanS.S.K. BeraA.K. SenapatiS. LiM. Natural Compounds with Anti-BACE1 Activity as Promising Therapeutic Drugs for Treating Alzheimerʼs Disease.Planta Med.201985171316132510.1055/a‑1019‑981931618777
    [Google Scholar]
  24. BellaviteP. Neuroprotective Potentials of Flavonoids: Experimental Studies and Mechanisms of Action.Antioxidants202312228010.3390/antiox1202028036829840
    [Google Scholar]
  25. WangX. PerumalsamyH. KwonH.W. NaY.E. AhnY.J. Effects and possible mechanisms of action of acacetin on the behavior and eye morphology of Drosophila models of Alzheimer’s disease.Sci. Rep.2015511612710.1038/srep1612726530776
    [Google Scholar]
  26. TranT.S. TranT.D. TranT.H. MaiT.T. NguyenN.L. ThaiK.M. LeM.T. Synthesis, In Silico and In Vitro Evaluation of Some Flavone Derivatives for Acetylcholinesterase and BACE-1 Inhibitory Activity.Molecules20202518406410.3390/molecules2518406432899576
    [Google Scholar]
  27. PancheA.N. DiwanA.D. ChandraS.R. Flavonoids: an overview.J. Nutr. Sci.20165e4710.1017/jns.2016.4128620474
    [Google Scholar]
  28. JungH.J. JungH.A. MinB.S. ChoiJ.S. Anticholinesterase and β-Site Amyloid Precursor Protein Cleaving Enzyme 1 Inhibitory Compounds from the Heartwood of <i>Juniperus chinensis</i>.Chem. Pharm. Bull. (Tokyo)2015631195596010.1248/cpb.c15‑0050426521861
    [Google Scholar]
  29. ZhuZ. LiC. WangX. YangZ. ChenJ. HuL. JiangH. ShenX. 2,2′,4′‐Trihydroxychalcone from Glycyrrhiza glabra as a new specific BACE1 inhibitor efficiently ameliorates memory impairment in mice.J. Neurochem.2010114237438510.1111/j.1471‑4159.2010.06751.x20412384
    [Google Scholar]
  30. HwangE.M. RyuY.B. KimH.Y. KimD.G. HongS.G. LeeJ.H. Curtis-LongM.J. JeongS.H. ParkJ.Y. ParkK.H. BACE1 inhibitory effects of lavandulyl flavanones from Sophora flavescens.Bioorg. Med. Chem.200816146669667410.1016/j.bmc.2008.05.08018565755
    [Google Scholar]
  31. FangW.S. ZhangJ. Natural products.Curr Top Med Chem.United Arab Emirates200991597
    [Google Scholar]
  32. JungH.A. YokozawaT. KimB.W. JungJ.H. ChoiJ.S. Selective inhibition of prenylated flavonoids from Sophora flavescens against BACE1 and cholinesterases.Am. J. Chin. Med.201038241542910.1142/S0192415X1000794420387235
    [Google Scholar]
  33. SasakiH. MikiK. KinoshitaK. KoyamaK. JuliawatyL.D. AchmadS.A. HakimE.H. KanedaM. TakahashiK. β-Secretase (BACE-1) inhibitory effect of biflavonoids.Bioorg. Med. Chem. Lett.201020154558456010.1016/j.bmcl.2010.06.02120598535
    [Google Scholar]
  34. GrimmM.O.W. MettJ. StahlmannC.P. HaupenthalV.J. ZimmerV.C. HartmannT. Neprilysin and Aβ clearance: Impact of the APP intracellular domain in NEP regulation and implications in Alzheimer’s Disease.Front. Aging Neurosci.201359810.3389/fnagi.2013.0009824391587
    [Google Scholar]
  35. YamamotoN. ShibataM. IshikuroR. TanidaM. TaniguchiY. Ikeda-MatsuoY. SobueK. Epigallocatechin gallate induces extracellular degradation of amyloid β-protein by increasing neprilysin secretion from astrocytes through activation of ERK and PI3K pathways.Neuroscience2017362707810.1016/j.neuroscience.2017.08.03028844000
    [Google Scholar]
  36. ChangX. RongC. ChenY. YangC. HuQ. MoY. ZhangC. GuX. ZhangL. HeW. ChengS. HouX. SuR. LiuS. DunW. WangQ. FangS. (−)-Epigallocatechin-3-gallate attenuates cognitive deterioration in Alzheimer׳s disease model mice by upregulating neprilysin expression.Exp. Cell Res.2015334113614510.1016/j.yexcr.2015.04.00425882496
    [Google Scholar]
  37. LimH.J. ShimS.B. JeeS.W. LeeS.H. LimC.J. HongJ.T. SheenY.Y. HwangD.Y. Green tea catechin leads to global improvement among Alzheimer’s disease-related phenotypes in NSE/hAPP-C105 Tg mice.J. Nutr. Biochem.20132471302131310.1016/j.jnutbio.2012.10.00523333093
    [Google Scholar]
  38. SemwalD. SemwalR. CombrinckS. ViljoenA. Myricetin: A dietary molecule with diverse biological activities.Nutrients2016829010.3390/nu802009026891321
    [Google Scholar]
  39. HanakiM. MurakamiK. AkagiK. IrieK. Structural insights into mechanisms for inhibiting amyloid β42 aggregation by non catechol-type flavonoids.Bioorg. Med. Chem.201624230431310.1016/j.bmc.2015.12.02126719209
    [Google Scholar]
  40. HoleK.L. WilliamsR.J. Flavonoids as an intervention for Alzheimer’s Disease: Progress and hurdles towards defining a mechanism of action1.Brain Plast.20216216719210.3233/BPL‑20009833782649
    [Google Scholar]
  41. BredesenV.J.E. App specific bace inhibitors (asbis) and uses thereof.Patent EP3607946A1, 2020.
  42. JensenK.J.M.T. 2-amino 3,5,5-trifluoro-3,4,5,6-tetrahydropyridines as BACE1 inhibitors for treatment of Alzheimer’s diseasePatent US9353084B2, 2015.
  43. Hilpert Hanshum RolandM. TorstenS. ChristianV. RogelW. T. BACE1 inhibitor [Internet].Available from: https://patents.google.com/patent/JP6574756B2/ja?oq=JP6574756B2
    [Google Scholar]
  44. WolteringT. Halogen-alkyl-1,3 oxazines as BACE1 and/or BACE2 inhibitors.Patent US8987255B2, 2014.
/content/journals/cnsamc/10.2174/0118715249315049240710063455
Loading
/content/journals/cnsamc/10.2174/0118715249315049240710063455
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test