Skip to content
2000
Volume 25, Issue 1
  • ISSN: 1871-5249
  • E-ISSN: 1875-6166

Abstract

Background

Alzheimer’s disease is a neurodegenerative disorder that affects learning, memory and behavioral turbulence in elderly patients. Acetylcholinesterase (AChE) inhibitors act as anti-Alzheimer’s agents. Phenothiazine derivatives are considered momentous anti-Alzheimer’s agents because of their AChE inhibitory activity. The elevated levels and increased expression of this protein have been associated with Alzheimer's disease. Coumarin-fused phenothiazines have emerged as significant anti-Alzheimer's agents due to their notable receptor inhibitory activity.

Objective

Some unique phenothiazine analogs were designed, and computational studies were conducted to explore their inhibitory activity against the AChE enzyme (PDB id: 4EY7) by using the Schrodinger suite-2019-4.

Methods

Docking studies were conducted by using the Glide module; binding free energies were calculated by means of the Prime MM-GBSA module, and Molecular dynamics (MD) simulation was performed by using the Desmond module of the Schrodinger suite. Glide scores were used to find out the binding affinity of the ligands with the target 4EY7.

Results

The compounds exhibited enhanced hydrophobic interactions and formed hydrogen bonds, effectively impeding Acetylcholinesterase. The Glide scores for the compounds ranged from -13.4237 to -8.43439, surpassing the standard (Donepezil) with a score of -16.9898. Interestingly, a positive value was obtained for the MM-GBSA binding of the potent inhibitor. To gain insights into the dynamic behavior of the protein A8, molecular dynamics (MD) simulations were employed.

Conclusion

Based on the results, the study concludes that phenothiazine derivatives show promise as acetylcholinesterase inhibitors. Compounds with notable Glide scores are poised to exhibit significant anti-Alzheimer's activity, suggesting their potential therapeutic efficacy. Further and investigations are warranted to validate and explore the therapeutic potentials of these compounds.

Loading

Article metrics loading...

/content/journals/cnsamc/10.2174/0118715249300784240430110628
2024-05-16
2025-01-29
Loading full text...

Full text loading...

References

  1. QiuC. KivipeltoM. von StraussE. Epidemiology of Alzheimer’s disease: Occurrence, determinants, and strategies toward intervention.Dialogues Clin. Neurosci.200911211112810.31887/DCNS.2009.11.2/cqiu19585947
    [Google Scholar]
  2. SimoniE. DanieleS. BottegoniG. PizziraniD. TrincavelliM.L. GoldoniL. TarozzoG. ReggianiA. MartiniC. PiomelliD. MelchiorreC. RosiniM. CavalliA. Combining galantamine and memantine in multitargeted, new chemical entities potentially useful in Alzheimer’s disease.J. Med. Chem.201255229708972110.1021/jm300945823033965
    [Google Scholar]
  3. WilsonR.S. SegawaE. BoyleP.A. AnagnosS.E. HizelL.P. BennettD.A. The natural history of cognitive decline in Alzheimer’s disease.Psychol. Aging20122741008101710.1037/a002985722946521
    [Google Scholar]
  4. ZhaoT. Acetylcholinesterase and butyrylcholinesterase inhibitory activities of β-carboline and quinoline alkaloids derivatives from the plants of genus peganum.J. Chem.201371723210.1155/2013/717232
    [Google Scholar]
  5. ZhangX. WangJ. HongC. LuoW. WangC. Design, synthesis and evaluation of genistein-polyamine conjugates as multi-functional anti-Alzheimer agents.Acta Pharm. Sin. B201551677310.1016/j.apsb.2014.12.00826579427
    [Google Scholar]
  6. AliA. AsifM. KhanamH. MashraiA. SherwaniM.A. OwaisM. ShamsuzzamanS. Synthesis and characterization of steroidal heterocyclic compounds, DNA condensation and molecular docking studies and their in vitro anticancer and acetylcholinesterase inhibition activities.RSC Advances2015593759647598410.1039/C5RA11049A
    [Google Scholar]
  7. CostanzoP. CariatiL. DesiderioD. SgammatoR. LambertiA. ArconeR. SalernoR. NardiM. MasulloM. OliverioM. Design, synthesis, and evaluation of donepezil-like compounds as AChE and BACE-1 inhibitors.ACS Med. Chem. Lett.20167547047510.1021/acsmedchemlett.5b0048327190595
    [Google Scholar]
  8. ShiD.H. TangZ. LiuY-W. HarjaniJ.R. ZhuH-L. MaX-D. SongX-K. LiuW-W. LuC. YangW-T. SongM-Q. Design, synthesis and biological evaluation of novel 2‐phenylthiazole derivatives for the treatment of alzheimer’s disease.ChemistrySelect2017232105721057910.1002/slct.201702087
    [Google Scholar]
  9. Gomez-GanauS. Recent advances in computational approaches for designing potential anti-alzheimer’s agents.Computational Modeling of Drugs Against Alzheimer’s Disease, Neuromethods.New York, NYHumana Press2018132254910.1007/978‑1‑4939‑7404‑7_2
    [Google Scholar]
  10. KumarA. PintusF. Di PetrilloA. MeddaR. CariaP. MatosM.J. ViñaD. PieroniE. DeloguF. EraB. DeloguG.L. FaisA. Novel 2-pheynlbenzofuran derivatives as selective butyrylcholinesterase inhibitors for Alzheimer’s disease.Sci. Rep.201881442410.1038/s41598‑018‑22747‑229535344
    [Google Scholar]
  11. AkocakS. Design, synthesis and biological evaluation of 1, 3-diaryltriazene substituted sulfonamides as antioxidant, acetylcholinesterase and butyrylcholinesterase inhibitors.J. Turk. Chem. Soc. A: Chem201961637010.18596/jotcsa.516444
    [Google Scholar]
  12. DušanS. Synthesis and characterization of 3- (1- ((3,4-Dihydroxyphenethyl) amino) ethylidene) -chroman-2,4-dione as a potential antitumor agent.Oxid. Med. Cell. Longev.2019206925010.1155/2019/2069250
    [Google Scholar]
  13. RagabH.M. TelebM. HaidarH.R. GoudaN. Chlorinated tacrine analogs: Design, synthesis and biological evaluation of their anti-cholinesterase activity as potential treatment for Alzheimer’s disease.Bioorg. Chem.20198655756810.1016/j.bioorg.2019.02.03330782574
    [Google Scholar]
  14. WafaaS. Highlights on the synthesis of novel phenothiazine-based azines scaffold as anti-oxidant agents.J. Heterocycl. Chem.201911110.1002/jhet.3771
    [Google Scholar]
  15. ObulesuM. Introduction: Alzheimer’s disease Pathology and Therapeutics. Alzheimer’s Disease Theranostics.Academic Press20191610.1016/B978‑0‑12‑816412‑9.00001‑X
    [Google Scholar]
  16. PrzybyłowskaM. KowalskiS. DzierzbickaK. Inkielewicz-StepniakI. Therapeutic potential of multifunctional tacrine analogues.Curr. Neuropharmacol.201917547249010.2174/1570159X1666618041209190829651948
    [Google Scholar]
  17. Matheus de FreitasS. Design, synthesis and biological evaluation of novel triazole N-acyl hydrazone hybrids for alzheimer’s disease.Mol.2020251410.3390/molecules25143165
    [Google Scholar]
  18. 2023 Alzheimer’s disease facts and figures.Alzheimers Dement.20231941598169510.1002/alz.1301636918389
    [Google Scholar]
  19. LalutJ. SantoniG. KarilaD. LecouteyC. DavisA. NachonF. SilmanI. SussmanJ. WeikM. MauriceT. DallemagneP. RochaisC. Novel multitarget-directed ligands targeting acetylcholinesterase and σ1 receptors as lead compounds for treatment of Alzheimer’s disease: Synthesis, evaluation, and structural characterization of their complexes with acetylcholinesterase.Eur. J. Med. Chem.201916223424810.1016/j.ejmech.2018.10.06430447434
    [Google Scholar]
  20. MaramaiS. BenchekrounM. GabrM.T. YahiaouiS. Multitarget therapeutic strategies for alzheimer’s disease: Review on emerging target combinations.BioMed Res. Int.2020202012710.1155/2020/512023032714977
    [Google Scholar]
  21. PalT. BhimaneniS. SharmaA. FloraS.J.S. Design, synthesis, biological evaluation and molecular docking study of novel pyridoxine–triazoles as anti-Alzheimer’s agents.RSC Advances20201044260062602110.1039/D0RA04942E35519785
    [Google Scholar]
  22. CummingsJ. ZhouY. LeeG. ZhongK. FonsecaJ. ChengF. Alzheimer’s disease drug development pipeline: 2023.Alzheimers Dement.202392e1238510.1002/trc2.1238537251912
    [Google Scholar]
  23. SamC. BordoniB. Physiology, acetylcholine.Updated 2023 Apr 10Stat Pearls.Treasure Island, FLStat Pearls Publishing2023
    [Google Scholar]
  24. ChenZ-R. Role of cholinergic signalling in Alzheimers disease.Mol2022276181610.3390/molecules27061816
    [Google Scholar]
  25. PurvesD. AugustineG.J. FitzpatrickD. Neuroscience2nd edSunderland (MA)Sinauer Associates2001
    [Google Scholar]
  26. NordbergA. BallardC. BullockR. Darreh-ShoriT. SomogyiM. A review of butyrylcholinesterase as a therapeutic target in the treatment of Alzheimer’s disease.Prim. Care Companion CNS Disord2013152PCC.12r0141210.4088/PCC.12r01412
    [Google Scholar]
  27. SinghM. KaurM. KukrejaH. ChughR. SilakariO. SinghD. Acetylcholinesterase inhibitors as Alzheimer therapy: From nerve toxins to neuroprotection.Eur. J. Med. Chem.20137016518810.1016/j.ejmech.2013.09.05024148993
    [Google Scholar]
  28. BirksJ.S. Cholinesterase inhibitors for Alzheimer’s disease.Cochrane Libr.200620163CD00559310.1002/14651858.CD00559316437532
    [Google Scholar]
  29. HydeC. PetersJ. BondM. RogersG. HoyleM. AndersonR. JeffreysM. DavisS. ThokalaP. MoxhamT. Evolution of the evidence on the effectiveness and cost-effectiveness of acetylcholinesterase inhibitors and memantine for Alzheimer’s disease: Systematic review and economic model.Age Ageing2013421142010.1093/ageing/afs16523179169
    [Google Scholar]
  30. BondM. RogersG. PetersJ. AndersonR. HoyleM. MinersA. MoxhamT. DavisS. ThokalaP. WailooA. JeffreysM. HydeC. The effectiveness and cost-effectiveness of donepezil, galantamine, rivastigmine and memantine for the treatment of Alzheimer’s disease (review of Technology Appraisal No. 111): A systematic review and economic model.Health Technol. Assess.20121621147010.3310/hta1621022541366
    [Google Scholar]
  31. KidronA. NguyenH. Phenothiazine.StatPearls.InternetTreasure Island, FLStatPearls Publishing2023
    [Google Scholar]
  32. SudeshnaGangopadhyay Multiple non-psychiatric effects of phenothiazines: A review.Eur. J. Pharmacol20106481-361410.1016/j.ejphar.2010.08.045
    [Google Scholar]
  33. OhlowM.J. MoosmannB. Phenothiazine: The seven lives of pharmacology’s first lead structure.Drug Discov. Today2011163-411913110.1016/j.drudis.2011.01.00121237283
    [Google Scholar]
  34. PlutaK. Morak-MłodawskaB. JeleńM. Recent progress in biological activities of synthesized phenothiazines.Eur. J. Med. Chem.20114683179318910.1016/j.ejmech.2011.05.01321620536
    [Google Scholar]
  35. JaszczyszynA. GąsiorowskiK. ŚwiątekP. MalinkaW. Cieślik-BoczulaK. PetrusJ. Czarnik-MatusewiczB. Chemical structure of phenothiazines and their biological activity.Pharmacol. Rep.2012641162310.1016/S1734‑1140(12)70726‑022580516
    [Google Scholar]
  36. VargaB. Possible biological and clinical applications of phenothiazines.Anticancer Res.201737115983599310.21873/anticanres.1204529061777
    [Google Scholar]
  37. SellamuthuS. BhatM.F. KumarA. SinghS.K. Phenothiazine: A better scaffold against tuberculosis.Mini Rev. Med. Chem.201818171442145110.2174/138955751766617022015265128486909
    [Google Scholar]
  38. JyothiB. Efficient synthesis and characterization of some novel phenothiazine sulphonamides.Rasayan J. Chem.20191231426143310.31788/RJC.2019.1235222
    [Google Scholar]
  39. GopiC. DhanarajuM.D. Recent progress in synthesis, structure and biological activities of phenothiazine derivatives.Rev. J. Chem.2019929512610.1134/S2079978019020018
    [Google Scholar]
  40. SwarnkarP.K. KriplaniP. GuptaG.N. OjhaK.G. Synthesis and antibacterial activity of some new phenothiazine derivatives.E-J. Chem.200741142010.1155/2007/402673
    [Google Scholar]
  41. GabrielaP. N-haloacetylphenothiazines and derivatives: Preparation, characterization and structure-activity relationship for antifungal activity.Arab. J. Chem.2019121213210.1016/j.arabjc.2017.11.019
    [Google Scholar]
  42. HaralanovaT. MarinovM. Synthesis, characterization, and activity of 6-(10Hphenothiazine-10-yl)-1H,3H-benzo[de]-isochromen-1,3-dione derivative of 4-aminophenylacetic acid.IOP Conf. Ser. Mater. Sci. Eng.20211031101211110.1088/1757‑899X/1031/1/012111
    [Google Scholar]
  43. KalkanidisMartha Novel phenothiazine antimalarials: Synthesis, antimalarial activity and inhibition of the formation of β-haematin.Biochem. Pharmacol200263583384210.1016/S0006‑2952(01)00840‑1
    [Google Scholar]
  44. MotohashiN. GollapudiS.R. EmraniJ. BhattiproluK.R. Antitumor properties of phenothiazines.Cancer Invest.19919330531910.3109/073579091090213281913233
    [Google Scholar]
  45. OkumuraH. NakazawaJ. TsuganezawaK. UsuiT. OsadaH. MatsumotoT. TanakaA. YokoyamaS. Phenothiazine and carbazole-related compounds inhibit mitotic kinesin Eg5 and trigger apoptosis in transformed culture cells.Toxicol. Lett.20061661445210.1016/j.toxlet.2006.05.01116814965
    [Google Scholar]
  46. PrinzH. ChamasmaniB. VogelK. BöhmK.J. AicherB. GerlachM. GüntherE.G. AmonP. IvanovI. MüllerK. N-benzoylated phenoxazines and phenothiazines: Synthesis, antiproliferative activity, and inhibition of tubulin polymerization.J. Med. Chem.201154124247426310.1021/jm200436t21563750
    [Google Scholar]
  47. PrinzH. RidderA.K. VogelK. BöhmK.J. IvanovI. GhasemiJ.B. AghaeeE. MüllerK. N-Heterocyclic (4phenylpiperazin-1-yl) methanones derived from phenoxazine and phenothiazine as highly potent inhibitors of tubulin polymerization.J. Med. Chem.201760274976610.1021/acs.jmedchem.6b0159128045256
    [Google Scholar]
  48. BremB. Novel Thiazolo [5,4-b] phenothiazine derivatives: Synthesis, structural characterization, and in vitro evaluation of antiproliferative activity against human leukemia.J. Mol. Sci.201718136510.3390/ijms1807136528672876
    [Google Scholar]
  49. Morak-MłodawskaB. PlutaK. LatochaM. JeleńM. KuśmierzD. SuwińskaK. ShkurenkoA. CzubaZ. JurzakM. 10 H -1,9-diazaphenothiazine and its 10-derivatives: synthesis, characterisation and biological evaluation as potential anticancer agents.J. Enzyme Inhib. Med. Chem.20193411298130610.1080/14756366.2019.163969531307242
    [Google Scholar]
  50. GaoYuan Design, synthesis and evaluation of novel phenothiazine derivatives as inhibitors of breast cancer stem cells.Eur. J. Med. Chem., 20191831111692
    [Google Scholar]
  51. LuanY. LiuJ. GaoJ. WangJ. The design and synthesis of novel phenothiazine derivatives as potential cytotoxic agents.Lett. Drug Des. Discov.2019171576710.2174/1570180816666181115112236
    [Google Scholar]
  52. VenkatesanKasi Synthesis, spectral characterization and antitumor activity of phenothiazine derivatives.J. Heterocycl. Chem.202057(71–7)2272272810.1002/jhet.3980
    [Google Scholar]
  53. KrishnanK.G. KumarC.U. LimW-M. MaiC-W. ThanikachalamP.V. RamalinganC. Novel cyanoacetamide integrated phenothiazines: Synthesis, characterization, computational studies and in vitro antioxidant and anticancer evaluations.J. Mol. Struct.20201199512703710.1016/j.molstruc.2019.127037
    [Google Scholar]
  54. Morak-MłodawskaB. JeleńM. PlutaK. Phenothiazines modified with the pyridine ring as promising anticancer agents.Life202111320610.3390/life1103020633807874
    [Google Scholar]
  55. AyoguJ.I. NwobaS.T. Phenothiazine derivatives as potential antiproliferative agents: A mini- review.Mini Rev. Org. Chem.202219327229210.2174/1570193X18666210712112129
    [Google Scholar]
  56. FideliaN. Synthesis, characterization, computational and biological study of novel azabenzo[a]phenothiazine and azabenzo[b]phenoxazine heterocycles as potential antibiotic agent.Med. Chem. Res.201827211010.1007/s00044‑017‑2131‑3
    [Google Scholar]
  57. PadmavathyK. Synthesis, antioxidant evaluation, density functional theory study of dihydro pyrimidine festooned phenothiazines.ChemistrySelect20183215965597410.1002/slct.201800748
    [Google Scholar]
  58. Al ZahraniN.A. El-ShishtawyR.M. ElaasserM.M. AsiriA.M. Synthesis of novel chalcone-based phenothiazine derivatives as antioxidant and anticancer agents.Molecules20202519456610.3390/molecules25194566
    [Google Scholar]
  59. SharmaS. SinghA. Phenothiazines as anti-tubercular agents: Mechanistic insights and clinical implications.Expert Opin. Investig. Drugs201120121665167610.1517/13543784.2011.62865722014039
    [Google Scholar]
  60. KristiansenJ.E. DastidarS.G. PalchoudhuriS. RoyD.S. DasS. HendricksO. ChristensenJ.B. Phenothiazines as a solution for multidrug resistant tuberculosis: From the origin to present.Int. Microbiol.201518111210.2436/20.1501.01.22926415662
    [Google Scholar]
  61. KangS. LeeJ.M. JeonB. ElkamhawyA. PaikS. HongJ. OhS.J. PaekS.H. LeeC.J. HassanA.H.E. KangS.S. RohE.J. Repositioning of the antipsychotic trifluoperazine: Synthesis, biological evaluation and in silico study of trifluoperazine analogs as anti-glioblastoma agents.Eur. J. Med. Chem.201815115118619810.1016/j.ejmech.2018.03.05529614416
    [Google Scholar]
  62. DebordJ. MerleL. BollingerJ.C. DantoineT. Inhibition of butyrylcholinesterase by phenothiazine derivatives.J. Enzyme Inhib. Med. Chem.200217319720210.1080/147563602100000316512443046
    [Google Scholar]
  63. DarveshS. PottieI.R. DarveshK.V. McDonaldR.S. WalshR. ConradS. PenwellA. MataijaD. MartinE. Differential binding of phenothiazine urea derivatives to wild-type human cholinesterases and butyrylcholinesterase mutants.Bioorg. Med. Chem.20101862232224410.1016/j.bmc.2010.01.06620181484
    [Google Scholar]
  64. NiaziS.K. MariamZ. Computer-aided drug design and drug discovery: A prospective analysis.Pharmaceuticals20231712210.3390/ph1701002238256856
    [Google Scholar]
  65. AgamahF.E. MazanduG.K. HassanR. BopeC.D. ThomfordN.E. GhansahA. ChimusaE.R. Computational/in silico methods in drug target and lead prediction.Brief. Bioinform.20202151663167510.1093/bib/bbz10331711157
    [Google Scholar]
  66. ChangY. HawkinsB.A. DuJ.J. GroundwaterP.W. HibbsD.E. LaiF. A guide to in silico drug design.Pharmaceutics20221514910.3390/pharmaceutics1501004936678678
    [Google Scholar]
  67. WuF. ZhouY. LiL. ShenX. ChenG. WangX. LiangX. TanM. HuangZ. Computational approaches in preclinical studies on drug discovery and development.Front Chem.2020872610.3389/fchem.2020.0072633062633
    [Google Scholar]
  68. Salo-AhenO.M.H. AlankoI. BhadaneR. BonvinA.M.J.J. HonoratoR.V. HossainS. JufferA.H. KabedevA. Lahtela-KakkonenM. LarsenA.S. LescrinierE. MarimuthuP. MirzaM.U. MustafaG. Nunes-AlvesA. PantsarT. SaadabadiA. SingaraveluK. VanmeertM. Molecular dynamics simulations in drug discovery and pharmaceutical development.Processes2020917110.3390/pr9010071
    [Google Scholar]
  69. MouscadetJ.F. TchertanovL. Raltegravir: Molecular basis of its mechanism of action.Eur. J. Med. Res.200914Suppl 3Suppl. 351610.1186/2047‑783X‑14‑S3‑519959411
    [Google Scholar]
  70. UsmanS. RizkyA. ArliA. In silico modification of oseltamivir as neuraminidase inhibitor of influenza A virus subtype H1N1.J. Biomed. Res.201529215015910.7555/JBR.29.2013002425859271
    [Google Scholar]
  71. PanQ. PeppelenboschM.P. JanssenH.L. de KnegtR.J. Telaprevir/boceprevir era: From bench to bed and back.World J. Gastroenterol.201218436183618810.3748/wjg.v18.i43.618323180937
    [Google Scholar]
  72. Madhavi SastryG. AdzhigireyM. DayT. AnnabhimojuR. ShermanW. Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments.J. Comput. Aided Mol. Des.201327322123410.1007/s10822‑013‑9644‑823579614
    [Google Scholar]
  73. LengaurT. RareyM. Computational method for bio molecular docking. Curr. Opin. Strut. Biol199663402406
    [Google Scholar]
  74. HalperinI. MaB. WolfsonH. NussinovR. Principles of docking: An overview of search algorithms and a guide to scoring functions.Proteins200247440944310.1002/prot.1011512001221
    [Google Scholar]
  75. ReetuV.K. Computer aided design of selective calcium channel blockers: Using pharmacophore - Based and docking simulations.Indian J. Pharm. Sci. Res.20123380581010.13040/IJPSR.0975‑8232.3(3).805‑10
    [Google Scholar]
  76. TripuraneniN.S. AzamM.A. Pharmacophore modeling, 3D-QSAR and docking study of 2-phenylpyrimidine analogues as selective PDE4B inhibitors.J. Theor. Biol.201639411712610.1016/j.jtbi.2016.01.00726804643
    [Google Scholar]
  77. KalirajanR. PandiselviA. SankarS. GowrammaB. Molecular docking studies and in silico ADMET screening of some novel chalcone substituted 9-anilinoacridines as topoisomerase ii inhibitors.SF J. Pharm. Anal. Chem.20181110041009
    [Google Scholar]
  78. JacobsonM.P. PincusD.L. RappC.S. DayT.J.F. HonigB. ShawD.E. FriesnerR.A. A hierarchical approach to all‐atom protein loop prediction.Proteins200455235136710.1002/prot.1061315048827
    [Google Scholar]
  79. FriesnerR.A. MurphyR.B. RepaskyM.P. FryeL.L. GreenwoodJ.R. HalgrenT.A. SanschagrinP.C. MainzD.T. Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes.J. Med. Chem.200649216177619610.1021/jm051256o17034125
    [Google Scholar]
  80. BarrosR.O. JuniorF.L.C.C. PereiraW.S. OliveiraN.M.N. RamosR.M. Interaction of drugs candidates with various SARS-CoV-2 receptors: An in-silico study to combat COVID-19.J. Proteome Res.202019114567457510.1021/acs.jproteome.0c0032732786890
    [Google Scholar]
  81. ShivakumarD. WilliamsJ. WuY. DammW. ShelleyJ. ShermanW. Prediction of absolute solvation free energies using molecular dynamics free energy perturbation and the OPLS force field.J. Chem. Theory Comput2010651509151910.1021/ct900587b
    [Google Scholar]
  82. LiJ. AbelR. ZhuK. CaoY. ZhaoS. FriesnerR.A. The VSGB 2.0 model: A next generation energy model for high resolution protein structure modeling.Proteins201179102794281210.1002/prot.2310621905107
    [Google Scholar]
  83. FrenkelD. SmitB. Understanding Molecular Simulation: From Algorithms to Applications.Academic Press. Computational Science series20021
    [Google Scholar]
  84. AllenM.P. TildesleyD.J. Computer Simulation of Liquids.Oxford University Press1987
    [Google Scholar]
  85. OttingerH.C. Molecular Dynamics: With Deterministic and Stochastic Numerical Methods.Springer1996
    [Google Scholar]
  86. LeachA.R. Molecular Modelling: Principles and Applications.Prentice Hall2001
    [Google Scholar]
  87. BowersK.J. SacerdotiF.D. SalmonJ.K. ShanY. ShawD.E. ChowE. Molecular dynamics Scalable algorithms for molecular dynamics simulations on commodity clusters.Proceedings of the 2006 ACM/IEEE Conference on Supercomputing, Tampa, FL, USA, 11-17 November 2006, pp. 43-43.10.1145/1188455.1188544
    [Google Scholar]
  88. JorgensenW.L. ChandrasekharJ. MaduraJ.D. ImpeyR.W. KleinM.L. Comparison of simple potential functions for simulating liquid water.J. Chem. Phys.198379292693510.1063/1.445869
    [Google Scholar]
  89. MarkP. NilssonL. Structure and Dynamics of the TIP3P, SPC, and SPC/E Water Models at 298 K.J. Phys. Chem. A2001105439954996010.1021/jp003020w
    [Google Scholar]
  90. HarderE. DammW. MapleJ. WuC. ReboulM. XiangJ.Y. WangL. LupyanD. DahlgrenM.K. KnightJ.L. KausJ.W. CeruttiD.S. KrilovG. JorgensenW.L. AbelR. FriesnerR.A. OPLS3: A Force Field Providing Broad Coverage of Drug-like Small Molecules and Proteins.J. Chem. Theory Comput.201612128129610.1021/acs.jctc.5b0086426584231
    [Google Scholar]
  91. MartynaG.J. TobiasD.J. KleinM.L. Constant pressure molecular dynamics algorithms.J. Chem. Phys.199410154177418910.1063/1.467468
    [Google Scholar]
  92. MartynaG.J. KleinM.L. TuckermanM. Nosé–Hoover chains: The canonical ensemble via continuous dynamics.J. Chem. Phys.19929742635264310.1063/1.463940
    [Google Scholar]
/content/journals/cnsamc/10.2174/0118715249300784240430110628
Loading
/content/journals/cnsamc/10.2174/0118715249300784240430110628
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test