Skip to content
2000
Cover image Placeholder

Abstract

The greatest and most noticeable organ in the body is the skin. The stratum corneum, or top layer of skin, acts as a vital barrier to prevent skin penetration for many drugs. To overcome this barrier, numerous nanocarrier frameworks have been developed, which are important for the functioning of active agents. Vascular systems known as invasomes contain low levels of ethanol as well as terpenes or terpene combinations, which have a higher skin penetration rate and function as potential carriers. Improved drug delivery the skin using a carrier that can penetrate these barriers presents a wide range of difficulties and possibilities for further study and the creation of new and better treatment options. The main objective of an invasome-based delivery system is to significantly improve patient compliance and therapeutic value, in addition to bolstering the safety and efficacy of the drug. This article gives a summary of the synthesis process, invasome characterizations, penetration mechanisms, and applications. This review paper also includes phospholipids and their classification. Phospholipids are present in the cell membrane and provide ceramide, a bioactive molecule that moisturizes skin and protects against environmental damage in transdermal drug delivery systems. Pharmaceutical studies demonstrate that many drug molecules have less solubility, stability, bioavailability, and penetrating power. Invasomes represent a novel dosage form with promising properties for enhancing transdermal drug delivery.

Loading

Article metrics loading...

/content/journals/cnanom/10.2174/0124681873327435241004053618
2024-10-16
2024-11-23
Loading full text...

Full text loading...

References

  1. Ramadon D. McCrudden M.T.C. Courtenay A.J. Donnelly R.F. Enhancement strategies for transdermal drug delivery systems: Current trends and applications. Drug Deliv. Transl. Res. 2022 12 4 758 791 10.1007/s13346‑021‑00909‑6 33474709
    [Google Scholar]
  2. Touitou E. Godin B. Ethosomes for skin delivery. J. Drug Deliv. Sci. Technol. 2007 17 5 303 308 10.1016/S1773‑2247(07)50046‑8
    [Google Scholar]
  3. Bozzuto G. Molinari A. Liposomes as nanomedical devices. Int. J. Nanomedicine 2015 10 10 975 999 10.2147/IJN.S68861 25678787
    [Google Scholar]
  4. Gaikwad S.S. Akalade N.V. Salunkhe K.S. Nanogel development and its application in transdermal drug delivery system. Curr. Nanomed. 2022 12 2 126 136 10.2174/2468187312666220630152606
    [Google Scholar]
  5. Li C. Obireddy S.R. Lai W.F. Preparation and use of nanogels as carriers of drugs. Drug Deliv. 2021 28 1 1594 1602 10.1080/10717544.2021.1955042 34308729
    [Google Scholar]
  6. Denet A.R. Vanbever R. Préat V. Skin electroporation for transdermal and topical delivery. Adv. Drug Deliv. Rev. 2004 56 5 659 674 10.1016/j.addr.2003.10.027 15019751
    [Google Scholar]
  7. Bok M. Zhao Z.J. Jeon S. Jeong J.H. Lim E. Ultrasonically and iontophoretically enhanced drug-delivery system based on dissolving microneedle patches. Sci. Rep. 2020 10 1 2027 10.1038/s41598‑020‑58822‑w 32029808
    [Google Scholar]
  8. Marwah H. Garg T. Goyal A.K. Rath G. Permeation enhancer strategies in transdermal drug delivery. Drug Deliv. 2016 23 2 564 578 10.3109/10717544.2014.935532 25006687
    [Google Scholar]
  9. Daraee H. Etemadi A. Kouhi M. Alimirzalu S. Akbarzadeh A. Application of liposomes in medicine and drug delivery. Artif. Cells Nanomed. Biotechnol. 2016 44 1 381 391 10.3109/21691401.2014.953633 25222036
    [Google Scholar]
  10. Dragicevic N. Verma D.D. Fahr A. Invasomes: Vesicles for enhanced skin delivery of drugs. Percutaneous Penetration Enhancers Chemical Methods in Penetration Enhancement Berlin, Heidelberg Springer 2016 77 92 10.1007/978‑3‑662‑47862‑2_5
    [Google Scholar]
  11. Babaie S. Bakhshayesh A.R.D. Ha J.W. Hamishehkar H. Kim K.H. Invasome: A Novel nanocarrier for transdermal drug delivery. Nanomaterials (Basel) 2020 10 2 341 10.3390/nano10020341 32079276
    [Google Scholar]
  12. Dragicevic N. Atkinson J.P. Maibach H.I. Chemical penetration enhancers: Classification and mode of action. Percutaneous Penetration Enhancers Chemical Methods in Penetration Enhancement. Berlin, Heidelberg Springer 2015 11 27 10.1007/978‑3‑662‑47039‑8_2
    [Google Scholar]
  13. Nayak A.K. Hasnain M.D.S. Aminabhavi M.T. Torchilin P.V. Systems of Nanovesicular Drug Delivery. 1st ed Elsevier: Academic Press 2022 402 410
    [Google Scholar]
  14. Vidya K. Lakshmi PK. Cytotoxic effect of transdermal invasomal anastrozole gel on MCF-7 breast cancer cell line. J. Appl. Pharm. Sci. 2019 9 3 50 58
    [Google Scholar]
  15. Ntimenou V. Fahr A. Antimisiaris S.G. Elastic vesicles for transdermal drug delivery of hydrophilic drugs: A comparison of important physicochemical characteristics of different vesicle types. J. Biomed. Nanotechnol. 2012 8 4 613 623 10.1166/jbn.2012.1426 22852471
    [Google Scholar]
  16. Yamaguchi T. Kim T. Park J.K. Oh J.M. Time-dependent controlled release of ferulic acid from surface-modified hollow nanoporous silica particles. Int. J. Mol. Sci. 2023 24 13 10560 10.3390/ijms241310560 37445736
    [Google Scholar]
  17. Dragicevic-Curic N. Scheglmann D. Albrecht V. Fahr A. Development of different temoporfin-loaded invasomes—novel nanocarriers of temoporfin: Characterization, stability and in vitro skin penetration studies. Colloids Surf. B Biointerfaces 2009 70 2 198 206 10.1016/j.colsurfb.2008.12.030 19188048
    [Google Scholar]
  18. Dragicevic-Curic N. Gräfe S. Albrecht V. Fahr A. Topical application of temoporfin-loaded invasomes for photodynamic therapy of subcutaneously implanted tumours in mice: A pilot study. J. Photochem. Photobiol. B 2008 91 1 41 50 10.1016/j.jphotobiol.2008.01.009 18316200
    [Google Scholar]
  19. Ahmed O.A.A. Rizg W.Y. Finasteride nano-transferosomal gel formula for management of androgenetic alopecia: Ex vivo investigational approach. Drug Des. Devel. Ther. 2018 12 2259 2265 10.2147/DDDT.S171888 30104862
    [Google Scholar]
  20. Haag S.F. Fleige E. Chen M. Fahr A. Teutloff C. Bittl R. Lademann J. Schäfer-Korting M. Haag R. Meinke M.C. Skin penetration enhancement of core–multishell nanotransporters and invasomes measured by electron paramagnetic resonance spectroscopy. Int. J. Pharm. 2011 416 1 223 228 10.1016/j.ijpharm.2011.06.044 21745556
    [Google Scholar]
  21. Badran M.M. Kuntsche J. Fahr A. Skin penetration enhancement by a microneedle device (Dermaroller®) in vitro: Dependency on needle size and applied formulation. Eur. J. Pharm. Sci. 2009 36 4-5 511 523 10.1016/j.ejps.2008.12.008 19146954
    [Google Scholar]
  22. Ammar H.O. Tadros M. Salam N. Ghoneim A. Ethosome-derived invasomes as a potential transdermal delivery system for vardenafil hydrochloride: development, optimization and application of physiologically based pharmacokinetic modeling in adults and geriatrics. Int. J. Nanomedicine 2020 15 5671 5685 10.2147/IJN.S261764 32821096
    [Google Scholar]
  23. Virani A. Dholaria N. Mohd H. Albayati N. Michniak-Kohn B. Effect of chemical penetration enhancers on the transdermal delivery of olanzapine in human skin in vitro. AAPS Open 2024 10 1 4 10.1186/s41120‑024‑00092‑1
    [Google Scholar]
  24. Zhao K. Singh J. Mechanisms of percutaneous absorption of tamoxifen by terpenes: Eugenol, d-limonene and menthone. J. Control. Release 1998 55 2-3 253 260 10.1016/S0168‑3659(98)00053‑4 9795076
    [Google Scholar]
  25. Cornwell P.A. Barry B.W. Stoddart C.P. Bouwstra J.A. Wide-angle X-ray diffraction of human stratum corneum: Effects of hydration and terpene enhancer treatment. J. Pharm. Pharmacol. 2011 46 12 938 950 10.1111/j.2042‑7158.1994.tb03248.x 7536240
    [Google Scholar]
  26. Kamran M. Ahad A. Aqil M. Imam S.S. Sultana Y. Ali A. Design, formulation and optimization of novel soft nano-carriers for transdermal olmesartan medoxomil delivery: In vitro characterization and in vivo pharmacokinetic assessment. Int. J. Pharm. 2016 505 1-2 147 158 10.1016/j.ijpharm.2016.03.030 27005906
    [Google Scholar]
  27. Kumar B. Pandey M. Aggarwal R. Sahoo P.K. A comprehensive review on invasomal carriers incorporating natural terpenes for augmented transdermal delivery. Future J. Pharm. Sci. 2022 8 1 50 10.1186/s43094‑022‑00440‑6
    [Google Scholar]
  28. Monti D. Saettone M.F. Giannaccini B. Galli-Angeli D. Enhancement of transdermal penetration of dapiprazole through hairless mouse skin. J. Control. Release 1995 33 1 71 77 10.1016/0168‑3659(94)00079‑A
    [Google Scholar]
  29. Krishnaiah Y.S.R. Satyanarayana V. Bhaskar P. Formulation and in vivo evaluation of membrane-moderated transdermal therapeutic systems of nicardipine hydrochloride using carvone as a penetration enhancer. Drug Deliv. 2003 10 2 101 109 10.1080/713840367 12746056
    [Google Scholar]
  30. Godwin D.A. Michniak B.B. Influence of drug lipophilicity on terpenes as transdermal penetration enhancers. Drug Dev. Ind. Pharm. 1999 25 8 905 915 10.1081/DDC‑100102251 10434134
    [Google Scholar]
  31. Nokhodchi A. Sharabiani K. Rashidi M.R. Ghafourian T. The effect of terpene concentrations on the skin penetration of diclofenac sodium. Int. J. Pharm. 2007 335 1-2 97 105 10.1016/j.ijpharm.2006.10.041 17174049
    [Google Scholar]
  32. Cornwell P.A. Barry B.W. Sesquiterpene components of volatile oils as skin penetration enhancers for the hydrophilic permeant 5-fluorouracil. J. Pharm. Pharmacol. 2011 46 4 261 269 10.1111/j.2042‑7158.1994.tb03791.x 8051608
    [Google Scholar]
  33. Amnuaikit C. Ikeuchi I. Ogawara K. Higaki K. Kimura T. Skin permeation of propranolol from polymeric film containing terpene enhancers for transdermal use. Int. J. Pharm. 2005 289 1-2 167 178 10.1016/j.ijpharm.2004.11.007 15652209
    [Google Scholar]
  34. Vaddi H.K. Ho P.C. Chan S.Y. Terpenes in propylene glycol as skin‐penetration enhancers: Permeation and partition of haloperidol, fourier transform infrared spectroscopy, and differential scanning calorimetry. J. Pharm. Sci. 2002 91 7 1639 1651 10.1002/jps.10160 12115825
    [Google Scholar]
  35. Koyama Y Bando H Yamashita F Takakura Y Sezaki H Hashida M Comparative analysis of percutaneous absorption enhancement by d-limonene and oleic acid based on a skin diffusion model. Pharm Res. 1994 11 3 377 383 10.1023/a:1018904802566.
    [Google Scholar]
  36. Prasanthi D. Lakshmi P.K. Iontophoretic transdermal delivery of finasteride in vesicular invasomal carriers. J. Pharm. Nanotechnol. 2013 1 2 136 150 10.2174/2211738511301020009
    [Google Scholar]
  37. Puglia C. Bonina F. Trapani G. Franco M. Ricci M. Evaluation of in vitro percutaneous absorption of lorazepam and clonazepam from hydro-alcoholic gel formulations. Int. J. Pharm. 2001 228 1-2 79 87 10.1016/S0378‑5173(01)00806‑7 11576770
    [Google Scholar]
  38. Dwivedi M. Sharma V. Pathak K. Pilosebaceous targeting by isotretenoin-loaded invasomal gel for the treatment of eosinophilic pustular folliculitis: optimization, efficacy and cellular analysis. Drug Dev. Ind. Pharm. 2017 43 2 293 304 10.1080/03639045.2016.1239628 27649797
    [Google Scholar]
  39. El-Nabarawi M.A. Shamma R.N. Farouk F. Nasralla S.M. Dapsone-loaded invasomes as a potential treatment of acne: Preparation, characterization, and in vivo skin deposition assay. AAPS PharmSciTech 2018 19 5 2174 2184 10.1208/s12249‑018‑1025‑0 29725903
    [Google Scholar]
  40. Liu H. Li S. Wang Y. Yao H. Zhang Y. Effect of vehicles and enhancers on the topical delivery of cyclosporin A. Int. J. Pharm. 2006 311 1-2 182 186 10.1016/j.ijpharm.2005.12.029 16439077
    [Google Scholar]
  41. Mura S. Manconi M. Sinico C. Valenti D. Fadda A.M. Penetration enhancer-containing vesicles (PEVs) as carriers for cutaneous delivery of minoxidil. Int. J. Pharm. 2009 380 1-2 72 79 10.1016/j.ijpharm.2009.06.040 19589377
    [Google Scholar]
  42. Majeed I. Raza S.A. Akhtar N. Siddiqui F.A. Iqbal B. Formulation and in-vitro characterization of Capsaicin loaded ethosomes. Pak. J. Pharm. Sci. 2019 32 6(Suppl.) 2849 2857 32024624
    [Google Scholar]
  43. Ahmed OAA. Badr-Eldin SM. Development of an optimized avanafil-loaded invasomal transdermal film: Ex vivo skin permeation and in vivo evaluation. Int. J. Pharm. 2019 570 118657 10.1016/j.ijpharm.2019.118657
    [Google Scholar]
  44. Salem H.F. Gamal A. Saeed H. Kamal M. Tulbah A.S. Enhancing the bioavailability and efficacy of vismodegib for the control of skin cancer: In vitro and in vivo studies. Pharmaceuticals (Basel) 2022 15 2 126 10.3390/ph15020126 35215238
    [Google Scholar]
  45. Kalpana B. Lakshmi P.K. Transdermal permeation enhancement of Tolterodine Tartrate through invasomes and iontophoresis. J. Der Pharm. Lett. 2013 5 6 119 126
    [Google Scholar]
  46. Chen M. Liu X. Fahr A. Skin delivery of ferulic acid from different vesicular systems. J. Biomed. Nanotechnol. 2010 6 5 577 585 10.1166/jbn.2010.1154 21329050
    [Google Scholar]
  47. Amnuaikit T. Limsuwan T. Khongkow P. Boonme P. Vesicular carriers containing phenylethyl resorcinol for topical delivery system; liposomes, transfersomes and invasomes. Asian J. Pharm. Sci. 2018 13 5 472 484 10.1016/j.ajps.2018.02.004 32104421
    [Google Scholar]
  48. Kopečná M. Macháček M. Nováčková A. Paraskevopoulos G. Roh J. Vávrová K. Esters of terpene alcohols as highly potent, reversible, and low toxic skin penetration enhancers. Sci. Rep. 2019 9 1 14617 10.1038/s41598‑019‑51226‑5 31601936
    [Google Scholar]
  49. Cox-Georgian D. Ramadoss N. Dona C. Basu C. Therapeutic and medicinal uses of terpenes. Med. Plant 2019 12 333 359 10.1007/978‑3‑030‑31269‑5_15
    [Google Scholar]
  50. Lakshmi P.K. Prasanthi D. Terpenes: Effect of lipophilicity in enhancing transdermal delivery of alfuzosin hydrochloride. J. Adv. Pharm. Technol. Res. 2012 3 4 216 223 10.4103/2231‑4040.104712 23378942
    [Google Scholar]
  51. Li J. Wang X. Zhang T. Wang C. Huang Z. Luo X. Deng Y. A review on phospholipids and their main applications in drug delivery systems. Asian J. Pharm. Sci. 2015 10 2 81 98 10.1016/j.ajps.2014.09.004
    [Google Scholar]
  52. Montealegre C. Verardo V. Luisa Marina M. Caboni M.F. Analysis of glycerophospho‐ and sphingolipids by CE. J. Electrophor. 2014 35 6 779 792 10.1002/elps.201300534 24301713
    [Google Scholar]
  53. Bienias K. Fiedorowicz A. Sadowska A. Prokopiuk S. Car H. Regulation of sphingomyelin metabolism. Pharmacol. Rep. 2016 68 3 570 581 10.1016/j.pharep.2015.12.008 26940196
    [Google Scholar]
  54. Singh R.P. Gangadharappa H.V. Mruthunjaya K. Phospholipids: Unique carriers for drug delivery systems. J. Drug Deliv. Sci. Technol. 2017 39 166 179
    [Google Scholar]
  55. Jain S. Tripathi S. Tripathi P.K. Invasomes: Potential vesicular systems for transdermal delivery of drug molecules. J. Drug Deliv. Sci. Technol. 2021 61 102166 10.1016/j.jddst.2020.102166
    [Google Scholar]
  56. Kumar B. Sahoo P.K. Manchanda S. Formulation, characterization and ex vivo study of curcumin nano-invasomal gel for enhanced transdermal delivery. OpenNano 2022 7 100058 10.1016/j.onano.2022.100058
    [Google Scholar]
  57. Vieira Nunes Cunha I. Machado Campos A. Passarella Gerola A. Caon T. Effect of invasome composition on membrane fluidity, vesicle stability and skin interactions. Int. J. Pharm. 2023 646 123472 10.1016/j.ijpharm.2023.123472 37788728
    [Google Scholar]
  58. Kalia Y.N. Naik A. Garrison J. Guy R.H. Iontophoretic drug delivery. Adv. Drug Deliv. Rev. 2004 56 5 619 658 10.1016/j.addr.2003.10.026 15019750
    [Google Scholar]
  59. Wiehe A. Senge M.O. The photosensitizer temoporfin (mthpc) - chemical, pre-clinical and clinical developments in the last decade. Photochem. Photobiol. 2023 99 2 356 419 10.1111/php.13730 36161310
    [Google Scholar]
  60. Shailaja A.K. Afreen U. Formulation and evaluation of naproxen sodium loaded invasomes for topical delivery. Curr. Nanomed. 2022 12 1 32 43 10.2174/2468187312666220513113117
    [Google Scholar]
  61. Shalaby K. Chen M. Elmowafy M. Fahr A. Human skin penetration and distribution via different vesicular systems. Br. J. Pharm. Res. 2015 5 1 15 28 10.9734/BJPR/2015/14344
    [Google Scholar]
  62. Sun L. Liu Z. Wang L. Cun D. Tong H.H.Y. Yan R. Chen X. Wang R. Zheng Y. Enhanced topical penetration, system exposure and anti-psoriasis activity of two particle-sized, curcumin-loaded PLGA nanoparticles in hydrogel. J. Control. Release 2017 254 44 54 10.1016/j.jconrel.2017.03.385 28344018
    [Google Scholar]
  63. Imam S.S. Ahad A. Aqil M. Akhtar M. Sultana Y. Ali A. Formulation by design based risperidone nano soft lipid vesicle as a new strategy for enhanced transdermal drug delivery: In-vitro characterization, and in-vivo appraisal. Mater. Sci. Eng. C 2017 75 1198 1205 10.1016/j.msec.2017.02.149 28415407
    [Google Scholar]
  64. Ghadiri M. Fatemi S. Vatanara A. Doroud D. Najafabadi A.R. Darabi M. Rahimi A.A. Loading hydrophilic drug in solid lipid media as nanoparticles: Statistical modeling of entrapment efficiency and particle size. Int. J. Pharm. 2012 424 1-2 128 137 10.1016/j.ijpharm.2011.12.037 22227603
    [Google Scholar]
  65. Dsouza L. Chaudhari P. Brahmam B. Lewis S.A. Derma roller mediated transdermal delivery of tizanidine invasomes for the management of skeletal muscle spasms. Eur. J. Pharm. Sci. 2021 165 105920 10.1016/j.ejps.2021.105920 34192586
    [Google Scholar]
  66. Guillot A.J. Martínez-Navarrete M. Garrigues T.M. Melero A. Skin drug delivery using lipid vesicles: A starting guideline for their development. J. Control. Release 2023 355 624 654 10.1016/j.jconrel.2023.02.006 36775245
    [Google Scholar]
  67. El-Dahmy R.M. Elsayed I. Hussein J. Althubiti M. Almaimani R.A. El-Readi M.Z. Elbaset M.A. Ibrahim B.M.M. Development of transdermal oleogel containing Olmesartan Medoxomil: Statistical optimization and pharmacological evaluation. Pharmaceutics 2023 15 4 1083 10.3390/pharmaceutics15041083 37111569
    [Google Scholar]
  68. Trauer S. Richter H. Kuntsche J. Büttemeyer R. Liebsch M. Linscheid M. Fahr A. Schäfer-Korting M. Lademann J. Patzelt A. Influence of massage and occlusion on the ex vivo skin penetration of rigid liposomes and invasomes. Eur. J. Pharm. Biopharm. 2014 86 2 301 306 10.1016/j.ejpb.2013.11.004 24252713
    [Google Scholar]
  69. Kumari S. Alsaidan O.A. Mohanty D. Zafar A. Das S. Gupta J.K. Khalid M. Development of soft luliconazole invasomes gel for effective transdermal delivery: Optimization to in-vivo antifungal activity. Gels 2023 9 8 626 10.3390/gels9080626 37623081
    [Google Scholar]
  70. Nimisha. Rizvi D.A. Fatima Z. Neema. Kaur C.D. Antipsoriatic and anti-inflammatory studies of Berberis aristata extract loaded nanovesicular gels. Pharmacogn. Mag. 2017 13 3 Suppl. S587 S594
    [Google Scholar]
  71. Mura S. Manconi M. Valenti D. Sinico C. Vila A.O. Fadda A.M. Transcutol containing vesicles for topical delivery of minoxidil. J. Drug Target. 2011 19 3 189 196 10.3109/1061186X.2010.483516 20446805
    [Google Scholar]
  72. Sercombe L. Veerati T. Moheimani F. Wu S.Y. Sood A.K. Hua S. Advances and challenges of liposome assisted drug delivery. Front. Pharmacol. 2015 6 286 10.3389/fphar.2015.00286 26648870
    [Google Scholar]
  73. Sinico C. Fadda A.M. Vesicular carriers for dermal drug delivery. Expert Opin. Drug Deliv. 2009 6 8 813 825 10.1517/17425240903071029 19569979
    [Google Scholar]
  74. Dragicevic-Curic N. Gräfe S. Gitter B. Fahr A. Efficacy of temoporfin-loaded invasomes in the photodynamic therapy in human epidermoid and colorectal tumour cell lines. J. Photochem. Photobiol. B 2010 101 3 238 250 10.1016/j.jphotobiol.2010.07.009 20797872
    [Google Scholar]
  75. Pierre M.B.R. dos Santos Miranda Costa I. Liposomal systems as drug delivery vehicles for dermal and transdermal applications. Arch. Dermatol. Res. 2011 303 9 607 621 10.1007/s00403‑011‑1166‑4 21805180
    [Google Scholar]
  76. Shree D. Patra C.N. Sahoo B.M. Novel herbal nanocarriers for treatment of dermatological disorders. Pharm. Nanotechnol. 2022 10 4 246 256 10.2174/2211738510666220622123019 35733305
    [Google Scholar]
  77. Wescott Finley J. Weldone Finley J Mezine I. Volatile distillate by-product of mint oil that promotes absorption and/or bioavailability of compounds of bio-medical and nutritional interest. US Patent 9119882B2 2015
  78. Hisaji T. Nomura E. Tsuno T. Method of manufacturing Ferulic acid. US Patent 5288902A 1994
  79. Farhad F. Avci R. Soylemez S. Koc F. Narsisoglu N. Pharmaceutical formulations of olmesartan. EP Patent 2387392B1 2011
  80. Pohlmann A.R. Polymeric finasteride nanoparticle, aqueous composition containing same, composition for the treatment of alopecia, method for preparing said composition, and use thereof. WO Patent 13832319.1 2018
  81. Paul R.G. Prolonged release formulations comprising Anastrozole. RE 366717 2007
  82. Lee C.D. Chitosan modified ethosome structure. EU Patent EP2 810 642A1 2014
/content/journals/cnanom/10.2174/0124681873327435241004053618
Loading
/content/journals/cnanom/10.2174/0124681873327435241004053618
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: Terpenes ; Stratum corneum ; invasomes ; Patient compliance ; Therapeutic value ; nanocarrier
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test