Skip to content
2000
Cover image Placeholder

Abstract

Background

The drug delivery system is revolutionized by nanoparticles, an essential component of nanotechnology, exhibiting an ultra-small size, large surface area to mass ratio, and high reactivity, different from bulk materials having the same composition. Various types of nanoparticles include liposomes, neosomes, micelles, carbon-based, The most useful among them are carbon nanotubes because of their distinct optical, electrical, thermal, and mechanical properties and their architectures. Furthermore, the carbon nanotubes could either be single-walled or multiple-walled, based on the number of graphene sheets rolled. Like any other technique, these come with many limitations, including their tendency of hydrophobicity, insolubility, bundling together, low dispersibility, and, majorly toxicity.

Objective

In this review, the main objective is to update the applications of functionalized carbon nanotubes as drug delivery systems in various therapies.

Methods

Functionalization came into being to solve the mentioned disabilities. Functionalization could be covalent as well as non-covalent. As a result, functionalized carbon nanotubes have shown improvement in mentioned drawbacks.

Conclusion

Now, the above-said functionalized carbon nanotubes have achieved bigger objectives with a better approach than conventional carbon nanotubes in the field of drug delivery systems.

Loading

Article metrics loading...

/content/journals/cnanom/10.2174/0124681873331266241003104137
2024-10-11
2024-11-23
Loading full text...

Full text loading...

References

  1. Sindhwani S. Chan W.C.W. Nanotechnology for modern medicine: Next step towards clinical translation. J. Intern. Med. 2021 290 3 486 498 10.1111/joim.13254 33480120
    [Google Scholar]
  2. Sahu T. Ratre Y.K. Chauhan S. Bhaskar L.V.K.S. Nair M.P. Verma H.K. Nanotechnology based drug delivery system: Current strategies and emerging therapeutic potential for medical science. J. Drug Deliv. Sci. Technol. 2021 63 102487 10.1016/j.jddst.2021.102487
    [Google Scholar]
  3. Farokhzad O.C. Langer R. Impact of nanotechnology on drug delivery. ACS Nano 2009 3 1 16 20 10.1021/nn900002m 19206243
    [Google Scholar]
  4. Saxena S.K. Khurana S.P. NanoBioMedicine. Singapore Springer 2020 1st ed 10.1007/978‑981‑32‑9898‑9
    [Google Scholar]
  5. de Jong W.H. Borm P.J. Drug delivery and nanoparticles: Applications and hazards. Int. J. Nanomedicine 2008 3 2 133 149 10.2147/IJN.S596 18686775
    [Google Scholar]
  6. Simon J. Flahaut E. Golzio M. Overview of carbon nanotubes for biomedical applications. Materials (Basel) 2019 12 4 624 10.3390/ma12040624 30791507
    [Google Scholar]
  7. Qiu H. Yang J. Chapter 2 - Structure and properties of carbon nanotubes. Industrial Applications of Carbon Nanotubes Elsevier 2017 47 49 10.1016/B978‑0‑323‑41481‑4.00002‑2
    [Google Scholar]
  8. Rahamathulla M. Bhosale R.R. Osmani R.A.M. Mahima K.C. Johnson A.P. Hani U. Ghazwani M. Begum M.Y. Alshehri S. Ghoneim M.M. Shakeel F. Gangadharappa H.V. Carbon nanotubes: Current perspectives on diverse applications in targeted drug delivery and therapies. Materials (Basel) 2021 14 21 6707 10.3390/ma14216707 34772234
    [Google Scholar]
  9. Ferreira FV. Franceschi W. Menezes BR. Biagioni AF. Coutinho AR. Cividanes LS. Chapter One - Synthesis, characterization, and applications of carbon nanotubes. Carbon-Based Nanofillers and Their Rubber Nanocomposites Elsevier 2019 1 45 10.1016/B978‑0‑12‑813248‑7.00001‑8
    [Google Scholar]
  10. Patel D.K. Kim H.B. Dutta S.D. Ganguly K. Lim K.T. Carbon nanotubes-based nanomaterials and their agricultural and biotechnological applications. Materials (Basel) 2020 13 7 1679 10.3390/ma13071679 32260227
    [Google Scholar]
  11. Tîlmaciu C.M. Morris M.C. Carbon nanotube biosensors. Front Chem. 2015 3 59 10.3389/fchem.2015.00059 26579509
    [Google Scholar]
  12. Notarianni M. Liu J. Vernon K. Motta N. Synthesis and applications of carbon nanomaterials for energy generation and storage. Beilstein J. Nanotechnol. 2016 7 1 149 196 10.3762/bjnano.7.17 26925363
    [Google Scholar]
  13. Prasek J. Drbohlavova J. Chomoucka J. Hubalek J. Jasek O. Adam V. Kizek R. Methods for carbon nanotubes synthesis — Review. J. Mater. Chem. 2011 21 40 15872 15884 10.1039/c1jm12254a
    [Google Scholar]
  14. Endo M. Hayashi T. Kim Y.A. Muramatsu H. Development and application of carbon nanotubes. Jpn. J. Appl. Phys. 2006 45 6R 4883 10.1143/JJAP.45.4883
    [Google Scholar]
  15. Teo K.B.K. Lee S-B. Chhowalla M. Semet V. Binh V.T. Groening O. Castignolles M. Loiseau A. Pirio G. Legagneux P. Pribat D. Hasko D.G. Ahmed H. Amaratunga G A J. Milne W.I. Plasma enhanced chemical vapour deposition carbon nanotubes/nanofibres how uniform do they grow? Nanotechnology 2003 14 2 204 211 10.1088/0957‑4484/14/2/321
    [Google Scholar]
  16. Patel J. Parikh S. Patel S. Patel R. Patel P. Carbon Nanotube (CNTs): Structure, synthesis, purification, functionalisation, pharmacology, toxicology, biodegradation and application as nanomedicine and biosensor. J. Pharm. Med. Res. 2021 1 2 17 44 10.53049/tjopam.2021.v001i02.008
    [Google Scholar]
  17. Jagadeesan AK. Thangavelu K. Dhananjeyan V. Carbon nanotubes: Synthesis, properties and applications. 21st Century Surface Science — A Handbook London, UK IntechOpen Pham P. Goel P. Kumar S. Yadav K. 2020
    [Google Scholar]
  18. Ismail R.A. Mohsin M.H. Ali A.K. Hassoon K.I. Erten-Ela S. Preparation and characterization of carbon nanotubes by pulsed laser ablation in water for optoelectronic application. Physica E 2020 119 113997 10.1016/j.physe.2020.113997
    [Google Scholar]
  19. Szabó A. Perri C. Csató A. Giordano G. Vuono D. Nagy J.B. Synthesis methods of carbon nanotubes and related materials. Materials (Basel) 2010 3 5 3092 3140 10.3390/ma3053092
    [Google Scholar]
  20. Seah C.M. Chai S.P. Mohamed A.R. Synthesis of aligned carbon nanotubes. Carbon 2011 49 14 4613 4635 10.1016/j.carbon.2011.06.090
    [Google Scholar]
  21. Herrero-Latorre C. Álvarez-Méndez J. Barciela-García J. García- Martín S. Peña-Crecente R.M. Characterization of carbon nanotubes and analytical methods for their determination in environmental and biological samples: A review. Anal. Chim. Acta 2015 853 77 94 10.1016/j.aca.2014.10.008 25467451
    [Google Scholar]
  22. Wepasnick K.A. Smith B.A. Bitter J.L. Howard Fairbrother D. Chemical and structural characterization of carbon nanotube surfaces. Anal. Bioanal. Chem. 2010 396 3 1003 1014 10.1007/s00216‑009‑3332‑5 20052581
    [Google Scholar]
  23. Daneshvar F. Chen H. Noh K. Sue H.J. Critical challenges and advances in the carbon nanotube–metal interface for next-generation electronics. Nanoscale Adv. 2021 3 4 942 962 10.1039/D0NA00822B 36133297
    [Google Scholar]
  24. Sousa S.P. Peixoto T. Santos R.M. Lopes A. Paiva M.D. Marques A.T. Health and safety concerns related to CNT and graphene products, and related composites. J. Compos. Sci. 2020 4 3 106
    [Google Scholar]
  25. Porwal M. Rastogi V. Kumar A. An overview on carbon nanotubes. MOJ Bioequiv. Availab. 2017 3 5 114 116
    [Google Scholar]
  26. He Z. Jiang R. Long W. Huang H. Liu M. Chen J. Deng F. Zhou N. Zhang X. Wei Y. The combination of Diels-Alder reaction and redox polymerization for preparation of functionalized CNTs for intracellular controlled drug delivery. Mater. Sci. Eng. C 2020 109 110442 10.1016/j.msec.2019.110442 32228901
    [Google Scholar]
  27. Deshmukh M.A. Jeon J.Y. Ha T.J. Carbon nanotubes: An effective platform for biomedical electronics. Biosens. Bioelectron. 2020 150 111919 10.1016/j.bios.2019.111919 31787449
    [Google Scholar]
  28. Mishra V. Kesharwani P. Jain NK. Biomedical applications and toxicological aspects of functionalized carbon nanotubes. Crit. Rev. Ther. Drug Carrier Syst. 2018 35 4 293 230 10.1615/CritRevTherDrugCarrierSyst.2018014419 29972680
    [Google Scholar]
  29. Abdallah B. Elhissi AM. Ahmed W. Najlah M. Chapter 16 - Carbon nanotubes drug delivery system for cancer treatment Advances in Medical and Surgical Engineering Academic Press 2020 313 332 10.1016/B978‑0‑12‑819712‑7.00016‑4
    [Google Scholar]
  30. Syrgiannis Z. Melchionna M. Prato M. Covalent carbon nanotube functionalization. Encyclopedia of Polymeric Nanomaterials Berlin, Heidelberg Springer Kobayashi S. Müllen K. 2015 480 487 10.1007/978‑3‑642‑36199‑9_363‑1
    [Google Scholar]
  31. Díez-Pascual A.M. Chemical functionalization of carbon nanotubes with polymers: A brief overview. Macromol 2021 1 2 64 83 10.3390/macromol1020006
    [Google Scholar]
  32. Mallakpour S. Soltanian S. Surface functionalization of carbon nanotubes: Fabrication and applications. RSC Advances 2016 6 111 109916 109935
    [Google Scholar]
  33. Zhou Y. Fang Y. Ramasamy R. Non-covalent functionalization of carbon nanotubes for electrochemical biosensor development. Sensors (Basel) 2019 19 2 392 10.3390/s19020392 30669367
    [Google Scholar]
  34. Dobrzańska-Danikiewicz A. Łukowiec D. Cichocki D. Wolany W. Carbon nanotubes decorating methods. Arch. Mater. Sci. 2013 54 53 61
    [Google Scholar]
  35. Vizuete M. Barrejón M. Gómez-Escalonilla M.J. Langa F. Endohedral and exohedral hybrids involving fullerenes and carbon nanotubes. Nanoscale 2012 4 15 4370 4381 10.1039/c2nr30376k 22706450
    [Google Scholar]
  36. Kharlamova M.V. Kramberger C. Domanov O. Mittelberger A. Yanagi K. Pichler T. Eder D. Endohedral functionalization of metallicity-sorted single-walled carbon nanotubes. Proceedings 2020 56 1 33 10.3390/proceedings2020056033
    [Google Scholar]
  37. Li H. Gordeev G. Toroz D. Di Tommaso D. Reich S. Flavel B.S. Endohedral filling effects in sorted and polymer-wrapped single-wall carbon nanotubes. J. Phys. Chem. C 2021 125 13 7476 7487 10.1021/acs.jpcc.1c01390
    [Google Scholar]
  38. Marega R. Bonifazi D. Filling carbon nanotubes for nanobiotechnological applications. New J. Chem. 2014 38 1 22 27 10.1039/C3NJ01008B
    [Google Scholar]
  39. Lay C.L. Liu J. Liu Y. Functionalized carbon nanotubes for anticancer drug delivery. Expert Rev. Med. Devices 2011 8 5 561 566 10.1586/erd.11.34 22026621
    [Google Scholar]
  40. Bilalis P. Katsigiannopoulos D. Avgeropoulos A. Sakellariou G. Non-covalent functionalization of carbon nanotubes with polymers. RSC Adv. 2014 4 6 2911 2934 10.1039/C3RA44906H
    [Google Scholar]
  41. Jain S. Thakare V.S. Das M. Godugu C. Jain A.K. Mathur R. Chuttani K. Mishra A.K. Toxicity of multiwalled carbon nanotubes with end defects critically depends on their functionalization density. Chem. Res. Toxicol. 2011 24 11 2028 2039 10.1021/tx2003728 21978239
    [Google Scholar]
  42. Dubey R. Dutta D. Sarkar A. Chattopadhyay P. Functionalized carbon nanotubes: Synthesis, properties and applications in water purification, drug delivery, and material and biomedical sciences. Nanoscale Adv. 2021 3 20 5722 5744 10.1039/D1NA00293G 36132675
    [Google Scholar]
  43. Firme C.P. III Bandaru P.R. Toxicity issues in the application of carbon nanotubes to biological systems. Nanomedicine 2010 6 2 245 256 10.1016/j.nano.2009.07.003 19699321
    [Google Scholar]
  44. Jang M.H. Hwang Y.S. Effects of functionalized multi-walled carbon nanotubes on toxicity and bioaccumulation of lead in Daphnia magna. PLoS One 2018 13 3 e0194935 10.1371/journal.pone.0194935 29596457
    [Google Scholar]
  45. Yazdani S. Mozaffarian M. Pazuki G. Hadidi N. Application of Flory-Huggins model in experimental and theoretical study of stability of amphotericin B on nanocarrier based on functionalized carbon nanotube. J. Mol. Liq. 2022 360 119519 10.1016/j.molliq.2022.119519
    [Google Scholar]
  46. Torrik A. Zaerin S. Zarif M. Doxorubicin and Imatinib co-drug delivery using non-covalently functionalized carbon nanotube: Molecular dynamics study. J. Mol. Liq. 2022 362 119789 10.1016/j.molliq.2022.119789
    [Google Scholar]
  47. Alshaya D.S. Jalal A.S. Alburae N.A. Aljarba N.H. Murugaiah V. Kishore U. Al-Qahtani A.A. Carbon nanotube-coated recombinant human surfactant protein D reduces cell viability in an ovarian cancer cell line, SKOV3, and modulates mTOR pathway and pro-inflammatory cytokine response. J. King Saud Univ. Sci. 2022 34 3 101851 10.1016/j.jksus.2022.101851
    [Google Scholar]
  48. Zhou Y. Vinothini K. Dou F. Jing Y. Chuturgoon A.A. Arumugam T. Rajan M. Hyper-branched multifunctional carbon nanotubes carrier for targeted liver cancer therapy. Arab. J. Chem. 2022 15 3 103649 10.1016/j.arabjc.2021.103649
    [Google Scholar]
  49. Solhjoo A. Sobhani Z. Sufali A. Rezaei Z. Khabnadideh S. Sakhteman A. Exploring pH dependent delivery of 5-fluorouracil from functionalized multi-walled carbon nanotubes. Colloids Surf. B Biointerfaces 2021 205 111823 10.1016/j.colsurfb.2021.111823 34098368
    [Google Scholar]
  50. Karimzadeh S. Safaei B. Jen T.C. Theorical investigation of adsorption mechanism of doxorubicin anticancer drug on the pristine and functionalized single-walled carbon nanotube surface as a drug delivery vehicle: A DFT study. J. Mol. Liq. 2021 322 114890 10.1016/j.molliq.2020.114890
    [Google Scholar]
  51. Bououden W. Benguerba Y. Darwish A.S. Attoui A. Lemaoui T. Balsamo M. Erto A. Alnashef I.M. Surface adsorption of crizotinib on carbon and boron nitride nanotubes as anti- cancer drug carriers: COSMO-RS and DFT molecular insights. J. Mol. Liq. 2021 338 116666 10.1016/j.molliq.2021.116666
    [Google Scholar]
  52. Mollania F. Hadipour N.L. Mollania N. CNT-based nanocarrier loaded with pyrimethamine for adipose mesenchymal stem cells differentiation and cancer treatment: The computational and experimental methods. J. Biotechnol. 2020 308 40 55 10.1016/j.jbiotec.2019.11.005 31706887
    [Google Scholar]
  53. Cao X.T. Patil M.P. Phan Q.T. Le C.M.Q. Ahn B.H. Kim G.D. Lim K.T. Green and direct functionalization of poly (ethylene glycol) grafted polymers onto single walled carbon nanotubes: Effective nanocarrier for doxorubicin delivery. J. Ind. Eng. Chem. 2020 83 173 180 10.1016/j.jiec.2019.11.025
    [Google Scholar]
  54. Maleki R. Afrouzi H.H. Hosseini M. Toghraie D. Piranfar A. Rostami S. pH-sensitive loading/releasing of doxorubicin using single-walled carbon nanotube and multi-walled carbon nanotube: A molecular dynamics study. Comput. Methods Programs Biomed. 2020 186 105210 10.1016/j.cmpb.2019.105210 31759297
    [Google Scholar]
  55. Phan Q.T. Patil M.P. Tu T.T.K. Le C.M.Q. Kim G.D. Lim K.T. Polyampholyte-grafted single walled carbon nanotubes prepared via a green process for anticancer drug delivery application. Polymer (Guildf.) 2020 193 122340 10.1016/j.polymer.2020.122340
    [Google Scholar]
  56. Cao M. Wu D. Yoosefian M. Sabaei S. Jahani M. Comprehensive study of the encapsulation of Lomustine anticancer drug into single walled carbon nanotubes (SWCNTs): Solvent effects, molecular conformations, electronic properties and intramolecular hydrogen bond strength. J. Mol. Liq. 2020 320 114285 10.1016/j.molliq.2020.114285
    [Google Scholar]
  57. Morshedi F. Moniri E. Heydarinasab A. Miralinaghi M. in-vitro release of the anticancer agent chlorogenic acid using β–cyclodextrin/folic acid functionalized magnetic cofe2o4/swcnt as magnetic targeted delivery carrier: Central composite design optimization study. J. Polym. Environ. 2023 31 1 221 237 10.1007/s10924‑022‑02601‑3
    [Google Scholar]
  58. Saheeda P. Thasneem Y.M. Sabira K. Dhaneesha M. Sulfikkarali N.K. Jayaleksmi S. Multi-walled carbon nanotubes/polypyrrole nanocomposite, synthesized through an eco-friendly route, as a prospective drug delivery system. Polym. Bull. 2022 80 4 1 21
    [Google Scholar]
  59. Elgamal H.A. Mohamed S.A. Farghali A.A. Hassan A.M.E. PEG@ carbon nanotubes composite as an effective nanocarrier of ixazomib for myeloma cancer therapy. Nanoscale Res. Lett. 2022 17 1 72 10.1186/s11671‑022‑03707‑2 35930196
    [Google Scholar]
  60. Murugesan R. Haldorai Y. Sibi L. Sureshkumar R. Ibrutinib conjugated surface-functionalized multiwalled carbon nanotubes and its biopolymer composites for targeting prostate carcinoma. J. Mater. Sci. 2021 56 33 18684 18696 10.1007/s10853‑021‑06559‑w
    [Google Scholar]
  61. Das M. Nariya P. Joshi A. Vohra A. Devkar R. Seshadri S. Thakore S. Carbon nanotube embedded cyclodextrin polymer derived injectable nanocarrier: A multiple faceted platform for stimulation of multi-drug resistance reversal. Carbohydr. Polym. 2020 247 116751 10.1016/j.carbpol.2020.116751 32829867
    [Google Scholar]
  62. Kurban M. Muz İ. Theoretical investigation of the adsorption behaviors of fluorouracil as an anticancer drug on pristine and B-, Al-, Ga-doped C36 nanotube. J. Mol. Liq. 2020 309 113209 10.1016/j.molliq.2020.113209
    [Google Scholar]
  63. Bagheri Novir S. Aram M.R. Quantum mechanical studies of the adsorption of Remdesivir, as an effective drug for treatment of COVID-19, on the surface of pristine, COOH-functionalized and S-, Si- and Al- doped carbon nanotubes. Physica E 2021 129 114668 10.1016/j.physe.2021.114668 33564274
    [Google Scholar]
  64. Chegeni M. Rozbahani Z.S. Ghasemian M. Mehri M. Synthesis and application of the calcium alginate/SWCNT-Gl as a bio-nanocomposite for the curcumin delivery. Int. J. Biol. Macromol. 2020 156 504 513 10.1016/j.ijbiomac.2020.04.068 32304791
    [Google Scholar]
  65. Masoumeh A.M. Hamideh R.N. Pardis S. Ali K.N.R. Improving antibacterial activity of methicillin by conjugation to functionalized single-wall carbon nanotubes against MRSA. Int. J. Pept. Res. Ther. 2022 28 3 84 10.1007/s10989‑022‑10377‑2
    [Google Scholar]
  66. Moreno-Valle B. Alatorre-Barajas J.A. Gochi-Ponce Y. Alcántar-Zavala E. Rivera-Lugo Y.Y. Montes-Ávila J. Trujillo-Navarrete B. Alonso-Núñez G. Reynoso-Soto E.A. Ochoa-Terán A. MWCNT-oxazolidinone conjugates with antibacterial activity. J. Nanopart. Res. 2020 22 11 315 10.1007/s11051‑020‑05044‑w
    [Google Scholar]
  67. Maryam Hesabi Ghasem Ghasemi A CAM-B3LYP DFT investigation of atenolol adsorption on the surface of boron nitride and carbon nanotubes and effect of surface carboxylic groups. Russ. J. Phys. Chem. A. Focus Chem. 2020 94 8 1678 1693 10.1134/S0036024420080117
    [Google Scholar]
  68. Ali H.E. Radwan R.R. Synthesis, characterization and evaluation of resveratrol-loaded functionalized carbon nanotubes as a novel delivery system in radiation enteropathy. Eur. J. Pharm. Sci. 2021 167 106002 10.1016/j.ejps.2021.106002 34517108
    [Google Scholar]
  69. Yadav A. Agrawal D.C. Srivastava R.R. Srivastava A. Kayastha A.M. Nanoparticles decorated carbon nanotubes as novel matrix: A comparative study of influences of immobilization on the catalytic properties of Lensculinarisβ-galactosidase (Lcβ-gal). Int. J. Biol. Macromol. 2020 144 770 780 31730953
    [Google Scholar]
  70. Yang S. Niu Y. Li L. Liu J. Ma M. Duan X. Zhang L. Wang L. Qu L. PEG-conjugated single-walled carbon nanotubes enhance the cellular uptake of Coenzyme Q10: in vitro evaluation and mechanism study. J. Nanopart. Res. 2021 23 5 114 10.1007/s11051‑021‑05214‑4
    [Google Scholar]
  71. Pimentel L.S. Turini C.A. Santos P.S. Morais M.A. Souza A.G. Barbosa M.B. Martins E.M.N. Coutinho L.B. Furtado C.A. Ladeira L.O. Martins J.R. Goulart L.R. Faria P.C.B. Balanced Th1/Th2 immune response induced by MSP1a functional motif coupled to multiwalled carbon nanotubes as anti-anaplasmosis vaccine in murine model. Nanomedicine 2020 24 102137 10.1016/j.nano.2019.102137 31857182
    [Google Scholar]
  72. Ye L. Chen W. Chen Y. Qiu Y. Yi J. Li X. Lin Q. Guo B. Functionalized multiwalled carbon nanotube-ethosomes for transdermal delivery of ketoprofen: Ex- vivo and in vivo evaluation. J. Drug Deliv. Sci. Technol. 2022 69 103098 10.1016/j.jddst.2022.103098
    [Google Scholar]
  73. Ren Z. Luo Y. Liu X. Zhang J. Chen S. Yu R. Xu Y. Meng Z. Li J. Ma Y. Huang Y. Qin T. Preparation, characterization and controlled-release property of CS crosslinked MWCNT based on Hericium erinaceus polysaccharides. Int. J. Biol. Macromol. 2020 153 1310 1318 10.1016/j.ijbiomac.2019.10.266 31758997
    [Google Scholar]
  74. Farshidfar N. Tanideh N. Emami Z. Aslani F.S. Sarafraz N. Khodabandeh Z. Zare S. Farshidfar G. Nikoofal-Sahlabadi S. Tayebi L. Zarei M. Incorporation of curcumin into collagen-multiwalled carbon nanotubes nanocomposite scaffold: An in vitro and in vivo study. J. Mater. Res. Technol. 2022 21 4558 4576 10.1016/j.jmrt.2022.11.022
    [Google Scholar]
/content/journals/cnanom/10.2174/0124681873331266241003104137
Loading
/content/journals/cnanom/10.2174/0124681873331266241003104137
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: nanoparticle ; carbon nanotubes ; functionalization ; Nanotechnology ; drug delivery
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test