Skip to content
2000
Cover image Placeholder

Abstract

Breast cancer (BC) is the second most prevalent cancer among women and can originate from the tubes, connective tissue, and lobules of the breast. The primary focus of this review is to highlight the significant advancement in the development of receptor-targeted nanotherapy for the management of metastatic breast cancer. These innovative systems directly target the specific cancer cell receptor to enhance the precision and effectiveness of the treatment. Inadequate therapy and incorrect diagnosis in conventional treatment have contributed to the rising mortality rate from breast cancer. BC that has spread to another organ in the body, commonly called Metastatic breast cancer (MBC) or Stage IV metastases, is an aggressive and heterogeneous illness that decreases the prognosis. The current treatment methods for MBC are similar to initial-stage breast cancer, which involve hormonal surgery, chemotherapy, immunotherapy, and radiation therapy with poor specificity and invasive. Moreover, treating MBC is more difficult because the cancer cells varies depending on the organ. Nanotechnology provides valuable insights for treating MBC that enable the early identification of tumor cells. Moreover, it can also transport therapeutic agents directly to the targeted sites while reducing the toxicity to healthy tissue. Due to its multifunctional, programmable, and trackable properties, future research and treatment may succeed with nanotechnology-based imaging and therapy. The present study summarizes an overview of nanotechnology-based drug delivery methods (NDDM) and receptor-targeting nanotherapy (RTN) that are applied in MBC therapy to gain attention in clinical applications. Clinical trial studies have also been discussed along with receptor-targeting nanomedicine and the status of the most relevant patent.

Loading

Article metrics loading...

/content/journals/cnanom/10.2174/0124681873349949241015175025
2024-10-18
2024-11-23
Loading full text...

Full text loading...

References

  1. Sharma G. Dave R. Sanadya J. Sharma P. Sharma K.K. Various types and management of breast cancer: An overview. J. Adv. Pharm. Technol. Res. 2010 1 2 109 126 10.4103/2231‑4040.72251 22247839
    [Google Scholar]
  2. Drukteinis J.S. Mooney B.P. Flowers C.I. Gatenby R.A. Beyond mammography: New frontiers in breast cancer screening. Am. J. Med. 2013 126 6 472 479 10.1016/j.amjmed.2012.11.025 23561631
    [Google Scholar]
  3. Howlader N. Cronin K.A. Kurian A.W. Andridge R. Differences in breast cancer survival by molecular subtypes in the United States. Cancer Epidemiol. Biomarkers Prev. 2018 27 6 619 626 10.1158/1055‑9965.EPI‑17‑0627 29593010
    [Google Scholar]
  4. Mu Q. Wang H. Zhang M. Nanoparticles for imaging and treatment of metastatic breast cancer. Expert Opin. Drug Deliv. 2017 14 1 123 136 10.1080/17425247.2016.1208650 27401941
    [Google Scholar]
  5. Carty N.J. Foggitt A. Hamilton C.R. Royle G.T. Taylor I. Patterns of clinical metastasis in breast cancer: An analysis of 100 patients. Eur. J. Surg. Oncol. 1995 21 6 607 608 10.1016/S0748‑7983(95)95176‑8 8631404
    [Google Scholar]
  6. O’Shaughnessy J. Extending survival with chemotherapy in metastatic breast cancer. Oncologist 2005 10 S3 20 29 10.1634/theoncologist.10‑90003‑20 16368868
    [Google Scholar]
  7. Chiang A.C. Massagué J. Molecular basis of metastasis. N. Engl. J. Med. 2008 359 26 2814 2823 10.1056/NEJMra0805239 19109576
    [Google Scholar]
  8. Lang T. Dong X. Zheng Z. Liu Y. Wang G. Yin Q. Li Y. Tumor microenvironment-responsive docetaxel-loaded micelle combats metastatic breast cancer. Sci. Bull. (Beijing) 2019 64 2 91 100 10.1016/j.scib.2018.12.025 36659642
    [Google Scholar]
  9. Jones S.E. Metastatic breast cancer: The treatment challenge. Clin. Breast Cancer 2008 8 3 224 233 10.3816/CBC.2008.n.025 18650152
    [Google Scholar]
  10. Lu J. Steeg P.S. Price J.E. Krishnamurthy S. Mani S.A. Reuben J. Cristofanilli M. Dontu G. Bidaut L. Valero V. Hortobagyi G.N. Yu D. Breast cancer metastasis: Challenges and opportunities. Cancer Res. 2009 69 12 4951 4953 10.1158/0008‑5472.CAN‑09‑0099 19470768
    [Google Scholar]
  11. Banimohamad-Shotorbani B. Karkan S.F. Rahbarghazi R. Mehdipour A. Jarolmasjed S. Saghati S. Shafaei H. Application of mesenchymal stem cell sheet for regeneration of craniomaxillofacial bone defects. Stem Cell Res. Ther. 2023 14 1 68 10.1186/s13287‑023‑03309‑4 37024981
    [Google Scholar]
  12. Mustafa G. Hassan D. Zeeshan M. Ruiz-Pulido G. Ebrahimi N. Mobashar A. Pourmadadi M. Rahdar A. Sargazi S. Fathi-karkan S. Medina D.I. Díez-Pascual A.M. Advances in nanotechnology versus stem cell therapy for the theranostics of Huntington’s disease. J. Drug Deliv. Sci. Technol. 2023 87 104774 10.1016/j.jddst.2023.104774
    [Google Scholar]
  13. Fathi-Karkan S. Heidarzadeh M. Narmi M.T. Mardi N. Amini H. Saghati S. Abrbekoh F.N. Saghebasl S. Rahbarghazi R. Khoshfetrat A.B. Exosome-loaded microneedle patches: Promising factor delivery route. Int. J. Biol. Macromol. 2023 243 125232 10.1016/j.ijbiomac.2023.125232 37302628
    [Google Scholar]
  14. Fathi Karkan S. Davaran S. Akbarzadeh A. Cisplatin-loaded superparamagnetic nanoparticles modified with PCL-PEG copolymers as a treatment of A549 lung cancer cells. Nanomedicine Research Journal. 2019 4 4 209 219
    [Google Scholar]
  15. Shen S. Xia J.X. Wang J. Nanomedicine-mediated cancer stem cell therapy. Biomaterials 2016 74 1 18 10.1016/j.biomaterials.2015.09.037 26433488
    [Google Scholar]
  16. He Q. Guo S. Qian Z. Chen X. Development of individualized anti-metastasis strategies by engineering nanomedicines. Chem. Soc. Rev. 2015 44 17 6258 6286 10.1039/C4CS00511B 26056688
    [Google Scholar]
  17. Dissanayake R. Towner R. Ahmed M. Metastatic breast cancer: Review of emerging nanotherapeutics. Cancers (Basel) 2023 15 11 2906 10.3390/cancers15112906 37296869
    [Google Scholar]
  18. Afzal M. Alharbi K.S. Alruwaili N.K. Al-Abassi F.A. Al-Malki A.A.L. Kazmi I. Nanomedicine in treatment of breast cancer – A challenge to conventional therapy. Semin. Cancer Biol. 269 279 292 2021 10.1016/j.semcancer.2019.12.016 31870940
    [Google Scholar]
  19. Lee J.J. Saiful Yazan L. Che Abdullah C.A. A review on current nanomaterials and their drug conjugate for targeted breast cancer treatment. Int. J. Nanomedicine 2017 12 2373 2384 10.2147/IJN.S127329 28392694
    [Google Scholar]
  20. Sung H. Ferlay J. Siegel R.L. Laversanne M. Soerjomataram I. Jemal A. Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021 71 3 209 249 10.3322/caac.21660 33538338
    [Google Scholar]
  21. Siersbæk R. Kumar S. Carroll J.S. Signaling pathways and steroid receptors modulating estrogen receptor α function in breast cancer. Genes Dev. 2018 32 17-18 1141 1154 10.1101/gad.316646.118 30181360
    [Google Scholar]
  22. Sun Y.S. Zhao Z. Yang Z.N. Xu F. Lu H.J. Zhu Z.Y. Shi W. Jiang J. Yao P.P. Zhu H.P. Risk factors and preventions of breast cancer. Int. J. Biol. Sci. 2017 13 11 1387 1397 10.7150/ijbs.21635 29209143
    [Google Scholar]
  23. Siegel R.L. Miller K.D. Jemal A. Cancer statistics, 2019. CA Cancer J. Clin. 2019 69 1 7 34 10.3322/caac.21551 30620402
    [Google Scholar]
  24. Stewart B.W. Wild C.P. World Cancer Report 2014. Geneva, Switzerland WHO Press 2014
    [Google Scholar]
  25. Torre L.A. Bray F. Siegel R.L. Ferlay J. Lortet-Tieulent J. Jemal A. Global cancer statistics, 2012. CA Cancer J. Clin. 2015 65 2 87 108 10.3322/caac.21262 25651787
    [Google Scholar]
  26. DeSantis C. Siegel R. Bandi P. Jemal A. Breast cancer statistics, 2011. CA Cancer J. Clin. 2011 61 6 408 418 10.3322/caac.20134 21969133
    [Google Scholar]
  27. Kim M.Y. Breast cancer metastasis. Translational Research in Breast Cancer Springer Singapore 2021 183 204 10.1007/978‑981‑32‑9620‑6_9
    [Google Scholar]
  28. Karaman S. Detmar M. Mechanisms of lymphatic metastasis. J. Clin. Invest. 2014 124 3 922 928 10.1172/JCI71606 24590277
    [Google Scholar]
  29. DeSantis C.E. Ma J. Gaudet M.M. Newman L.A. Miller K.D. Goding Sauer A. Jemal A. Siegel R.L. Breast cancer statistics, 2019. CA Cancer J. Clin. 2019 69 6 438 451 10.3322/caac.21583 31577379
    [Google Scholar]
  30. Chen Y. Tang Z. Liu J. Ren C. Zhang Y. Xu H. Li Q. Zhang Q. A multilocus-dendritic boronic acid functionalized magnetic nanoparticle for capturing circulating tumor cells in the peripheral blood of mice with metastatic breast cancer. Anal. Chim. Acta 2024 1297 342381 10.1016/j.aca.2024.342381 38438224
    [Google Scholar]
  31. Taghavi S. Tabasi H. Zahiri M. Abnous K. Mohammad Taghdisi S. Nekooei S. Nekooei N. Ramezani M. Alibolandi M. Surface engineering of hollow gold nanoparticle with mesenchymal stem cell membrane and MUC-1 aptamer for targeted theranostic application against metastatic breast cancer. Eur. J. Pharm. Biopharm. 2023 187 76 86 10.1016/j.ejpb.2023.04.014 37100090
    [Google Scholar]
  32. Abu-Serie M.M. Abdelfattah E.Z.A. Anti-metastatic breast cancer potential of novel nanocomplexes of diethyldithiocarbamate and green chemically synthesized iron oxide nanoparticles. Int. J. Pharm. 2022 627 122208 10.1016/j.ijpharm.2022.122208 36122615
    [Google Scholar]
  33. Karuppaiah A. Babu D. Selvaraj D. Natrajan T. Rajan R. Gautam M. Ranganathan H. Siram K. Nesamony J. Sankar V. Building and behavior of a pH-stimuli responsive chitosan nanoparticles loaded with folic acid conjugated gemcitabine silver colloids in MDA-MB-453 metastatic breast cancer cell line and pharmacokinetics in rats. Eur. J. Pharm. Sci. 2021 165 105938 10.1016/j.ejps.2021.105938 34256103
    [Google Scholar]
  34. Karuppaiah A. Siram K. Selvaraj D. Ramasamy M. Babu D. Sankar V. Synergistic and enhanced anticancer effect of a facile surface modified non-cytotoxic silver nanoparticle conjugated with gemcitabine in metastatic breast cancer cells. Mater. Today Commun. 2020 23 100884 10.1016/j.mtcomm.2019.100884
    [Google Scholar]
  35. Zhou P. Qin J. Zhou C. Wan G. Liu Y. Zhang M. Yang X. Zhang N. Wang Y. Multifunctional nanoparticles based on a polymeric copper chelator for combination treatment of metastatic breast cancer. Biomaterials 2019 195 86 99 10.1016/j.biomaterials.2019.01.007 30623789
    [Google Scholar]
  36. Sun H. Cao D. Wu H. Liu H. Ke X. Ci T. Development of low molecular weight heparin based nanoparticles for metastatic breast cancer therapy. Int. J. Biol. Macromol. 2018 112 343 355 10.1016/j.ijbiomac.2018.01.195 29409771
    [Google Scholar]
  37. Morshed R.A. Muroski M.E. Dai Q. Wegscheid M.L. Auffinger B. Yu D. Han Y. Zhang L. Wu M. Cheng Y. Lesniak M.S. Cell-penetrating peptide- modified gold nanoparticles for the delivery of doxorubicin to brain metastatic breast cancer. Mol. Pharm. 2016 13 6 1843 1854 10.1021/acs.molpharmaceut.6b00004 27169484
    [Google Scholar]
  38. Thamake S.I. Raut S.L. Gryczynski Z. Ranjan A.P. Vishwanatha J.K. Alendronate coated poly-lactic-co-glycolic acid (PLGA) nanoparticles for active targeting of metastatic breast cancer. Biomaterials 2012 33 29 7164 7173 10.1016/j.biomaterials.2012.06.026 22795543
    [Google Scholar]
  39. Cortes J. Saura C. Nanoparticle albumin-bound (nab™)-paclitaxel: Improving efficacy and tolerability by targeted drug delivery in metastatic breast cancer. Eur. J. Cancer, Suppl. 2010 8 1 1 10 10.1016/S1359‑6349(10)70002‑1
    [Google Scholar]
  40. Tang X. Loc W.S. Dong C. Matters G.L. Butler P.J. Kester M. Meyers C. Jiang Y. Adair J.H. The use of nanoparticulates to treat breast cancer. Nanomedicine (Lond.) 2017 12 19 2367 2388 10.2217/nnm‑2017‑0202 28868970
    [Google Scholar]
  41. Saravanakumar K. Anbazhagan S. Pujani Usliyanage J. Vishven Naveen K. Wijesinghe U. Xiaowen H. Vishnu Priya V. Thiripuranathar G. Wang M.H. A comprehensive review on immuno-nanomedicine for breast cancer therapy: Technical challenges and troubleshooting measures. Int. Immunopharmacol. 2022 103 108433 10.1016/j.intimp.2021.108433 34922248
    [Google Scholar]
  42. Alavi M. Hamidi M. Passive and active targeting in cancer therapy by liposomes and lipid nanoparticles. Drug Metab. Pers. Ther. 2019 34 1 20180032 10.1515/dmpt‑2018‑0032 30707682
    [Google Scholar]
  43. Forouhari S. Beygi Z. Mansoori Z. Hajsharifi S. Heshmatnia F. Gheibihayat S.M. Liposomes: Ideal drug delivery systems in breast cancer. Biotechnol. Appl. Biochem. 2022 69 5 1867 1884 10.1002/bab.2253 34505736
    [Google Scholar]
  44. Jiang Y. Jiang Z. Wang M. Ma L. Current understandings and clinical translation of nanomedicines for breast cancer therapy. Adv. Drug Deliv. Rev. 2022 180 114034 10.1016/j.addr.2021.114034 34736986
    [Google Scholar]
  45. Bobo D. Robinson K.J. Islam J. Thurecht K.J. Corrie S.R. Nanoparticle-based medicines: A review of FDA-approved materials and clinical trials to date. Pharm. Res. 2016 33 10 2373 2387 10.1007/s11095‑016‑1958‑5 27299311
    [Google Scholar]
  46. Ventola C.L. Progress in nanomedicine: Approved and investigational nanodrugs. P. T. 2017 42 12 742 755 29234213
    [Google Scholar]
  47. Barenholz Y.C. Doxil® — The first FDA-approved nano-drug: Lessons learned. J. Control. Release 2012 160 2 117 134 10.1016/j.jconrel.2012.03.020 22484195
    [Google Scholar]
  48. Sharma A. Sharma U.S. Liposomes in drug delivery: Progress and limitations. Int. J. Pharm. 1997 154 2 123 140 10.1016/S0378‑5173(97)00135‑X
    [Google Scholar]
  49. Sharma A. Mayhew E. Bolcsak L. Cavanaugh C. Harmon P. Janoff A. Bernacki R.J. Activity of paclitaxel liposome formulations against human ovarian tumor xenografts. Int. J. Cancer 1997 71 1 103 107 9096672
    [Google Scholar]
  50. Hu W. Qi Q. Hu H. Wang C. Zhang Q. Zhang Z. Zhao Y. Yu X. Guo M. Du S. Lu Y. Fe3O4 liposome for photothermal/chemo-synergistic inhibition of metastatic breast tumor. Colloids Surf. A Physicochem. Eng. Asp. 2022 634 127921 10.1016/j.colsurfa.2021.127921
    [Google Scholar]
  51. Pourmadadi M. Ostovar S. Ruiz-Pulido G. Hassan D. Souri M. Manicum A.L.E. Behzadmehr R. Fathi-karkan S. Rahdar A. Medina D.I. Pandey S. Novel epirubicin-loaded nanoformulations: Advancements in polymeric nanocarriers for efficient targeted cellular and subcellular anticancer drug delivery. Inorg. Chem. Commun. 2023 155 110999 10.1016/j.inoche.2023.110999
    [Google Scholar]
  52. Roostaee M. Derakhshani A. Mirhosseini H. Banaee Mofakham E. Fathi-Karkan S. Mirinejad S. Sargazi S. Barani M. Composition, preparation methods, and applications of nanoniosomes as codelivery systems: A review of emerging therapies with emphasis on cancer. Nanoscale 2024 16 6 2713 2746 10.1039/D3NR03495J 38213285
    [Google Scholar]
  53. Javad Javid-Naderi M. Valizadeh N. Banimohamad-Shotorbani B. Shahgolzari M. Shayegh F. Maleki-baladi R. Sargazi S. Fathi-karkan S. Exploring the biomedical potential of iron vanadate Nanoparticles: A comprehensive review. Inorg. Chem. Commun. 2023 157 111423 10.1016/j.inoche.2023.111423
    [Google Scholar]
  54. Farasati Far B. Maleki-baladi R. Fathi-karkan S. Babaei M. Sargazi S. Biomedical applications of cerium vanadate nanoparticles: A review. J. Mater. Chem. B Mater. Biol. Med. 2024 12 3 609 636 10.1039/D3TB01786A 38126443
    [Google Scholar]
  55. Fathi-karkan S. Zeeshan M. Qindeel M. Eshaghi Malekshah R. Rahdar A. Ferreira L.F.R. NPs loaded with zoledronic acid as an advanced tool for cancer therapy. J. Drug Deliv. Sci. Technol. 2023 87 104805 10.1016/j.jddst.2023.104805
    [Google Scholar]
  56. Saghati S. Rahbarghazi R. Fathi Karkan S. Nazifkerdar S. Khoshfetrat A.B. Tayefi Nasrabadi H. Shape memory polymers in osteochondral tissue engineering. J. Res. Clin. Med. 2022 10 30 10.34172/jrcm.2022.030
    [Google Scholar]
  57. Vilar G. Tulla-Puche J. Albericio F. Polymers and drug delivery systems. Curr. Drug Deliv. 2012 9 4 367 394 10.2174/156720112801323053 22640038
    [Google Scholar]
  58. Juan A. Cimas F.J. Bravo I. Pandiella A. Ocaña A. Alonso-Moreno C. An overview of antibody conjugated polymeric nanoparticles for breast cancer therapy. Pharmaceutics 2020 12 9 802 10.3390/pharmaceutics12090802 32854255
    [Google Scholar]
  59. Hu C. Fan F. Qin Y. Huang C. Zhang Z. Guo Q. Zhang L. Pang X. Ou-Yang W. Zhao K. Zhu D. Zhang L. Redox-sensitive folate-conjugated polymeric nanoparticles for combined chemotherapy and photothermal therapy against breast cancer. J. Biomed. Nanotechnol. 2018 14 12 2018 2030 10.1166/jbn.2018.2647 30305210
    [Google Scholar]
  60. Chandra Hembram K. Prabha S. Chandra R. Ahmed B. Nimesh S. Advances in preparation and characterization of chitosan nanoparticles for therapeutics. Artif. Cells Nanomed. Biotechnol. 2016 44 1 305 314 10.3109/21691401.2014.948548 25137489
    [Google Scholar]
  61. Ebrahimi E. Akbarzadeh A. Abbasi E. Khandaghi A.A. Abasalizadeh F. Davaran S. Novel drug delivery system based on doxorubicin-encapsulated magnetic nanoparticles modified with PLGA-PEG1000 copolymer. Artif. Cells Nanomed. Biotechnol. 2016 44 1 290 297 10.3109/21691401.2014.944646 25111052
    [Google Scholar]
  62. Zielińska A. Carreiró F. Oliveira A.M. Neves A. Pires B. Venkatesh D.N. Durazzo A. Lucarini M. Eder P. Silva A.M. Santini A. Souto E.B. Polymeric nanoparticles: Production, characterization, toxicology and ecotoxicology. Molecules 2020 25 16 3731 10.3390/molecules25163731 32824172
    [Google Scholar]
  63. Niu S. Williams G.R. Wu J. Wu J. Zhang X. Zheng H. Li S. Zhu L-M. A novel chitosan-based nanomedicine for multi-drug resistant breast cancer therapy. Chem. Eng. J. 2019 369 134 149 10.1016/j.cej.2019.02.201
    [Google Scholar]
  64. Fatima I. Zeinalilathori S. Qindeel M. Kharaba Z. Sahebzade M.S. Rahdar A. Zeinali S. Fathi-karkan S. Khan A. Ghazy E. Pandey S. Advances in targeted nano-delivery of bevacizumab using nanoparticles: Current insights, innovations, and future perspectives. J. Drug Deliv. Sci. Technol. 2024 98 105850 10.1016/j.jddst.2024.105850
    [Google Scholar]
  65. Davodabadi F. Mirinejad S. Malik S. Dhasmana A. Ulucan-Karnak F. Sargazi S. Sargazi S. Fathi-Karkan S. Rahdar A. Nanotherapeutic approaches for delivery of long non-coding RNAs: An updated review with emphasis on cancer. Nanoscale 2024 16 8 3881 3914 10.1039/D3NR05656B 38353296
    [Google Scholar]
  66. Bakhshi S. Shoari A. Alibolandi P. Ganji M. Ghazy E. Rahdar A. Fathi-karkan S. Pandey S. Emerging innovations in vincristine-encapsulated nanoparticles: Pioneering a new era in oncological therapeutics. J. Drug Deliv. Sci. Technol. 2023 ••• 105270
    [Google Scholar]
  67. Pourmadadi M. Gerami S.E. Ajalli N. Yazdian F. Rahdar A. Fathi-karkan S. Aboudzadeh M.A. Novel pH-responsive hybrid hydrogels for controlled delivery of curcumin: Overcoming conventional constraints and enhancing cytotoxicity in MCF-7 cells. Hybrid Advances 2024 6 100210 10.1016/j.hybadv.2024.100210
    [Google Scholar]
  68. Yadav P. Ambudkar S.V. Rajendra Prasad N. Emerging nanotechnology-based therapeutics to combat multidrug-resistant cancer. J. Nanobiotechnology 2022 20 1 423 10.1186/s12951‑022‑01626‑z 36153528
    [Google Scholar]
  69. Avramović N. Mandić B. Savić-Radojević A. Simić T. Polymeric nanocarriers of drug delivery systems in cancer therapy. Pharmaceutics 2020 12 4 298 10.3390/pharmaceutics12040298 32218326
    [Google Scholar]
  70. Hanafy N. El-Kemary M. Leporatti S. Micelles structure development as a strategy to improve smart cancer therapy. Cancers (Basel) 2018 10 7 238 10.3390/cancers10070238 30037052
    [Google Scholar]
  71. Gong Z. Chen M. Ren Q. Yue X. Dai Z. Fibronectin-targeted dual-acting micelles for combination therapy of metastatic breast cancer. Signal Transduct. Target. Ther. 2020 5 1 12 10.1038/s41392‑019‑0104‑3 32296050
    [Google Scholar]
  72. Kesharwani P. Tekade R.K. Gajbhiye V. Jain K. Jain N.K. Cancer targeting potential of some ligand-anchored poly(propylene imine) dendrimers: A comparison. Nanomedicine 2011 7 3 295 304 10.1016/j.nano.2010.10.010 21070888
    [Google Scholar]
  73. Kesharwani P. Chadar R. Shukla R. Jain G.K. Aggarwal G. Abourehab M.A.S. Sahebkar A. Recent advances in multifunctional dendrimer-based nanoprobes for breast cancer theranostics. J. Biomater. Sci. Polym. Ed. 2022 33 18 2433 2471 10.1080/09205063.2022.2103627 35848467
    [Google Scholar]
  74. Guo X.L. Kang X.X. Wang Y.Q. Zhang X.J. Li C.J. Liu Y. Du L.B. Co-delivery of cisplatin and doxorubicin by covalently conjugating with polyamidoamine dendrimer for enhanced synergistic cancer therapy. Acta Biomater. 2019 84 367 377 10.1016/j.actbio.2018.12.007 30528609
    [Google Scholar]
  75. Finlay J. Roberts C.M. Lowe G. Loeza J. Rossi J.J. Glackin C.A. RNA-based TWIST1 inhibition via dendrimer complex to reduce breast cancer cell metastasis. BioMed Res. Int. 2015 2015 1 1 12 10.1155/2015/382745 25759817
    [Google Scholar]
  76. Sargent L.M. Shvedova A.A. Hubbs A.F. Salisbury J.L. Benkovic S.A. Kashon M.L. Lowry D.T. Murray A.R. Kisin E.R. Friend S. McKinstry K.T. Battelli L. Reynolds S.H. Induction of aneuploidy by single-walled carbon nanotubes. Environ. Mol. Mutagen. 2009 50 8 708 717 10.1002/em.20529 19774611
    [Google Scholar]
  77. Jin G. He R. Liu Q. Lin M. Dong Y. Li K. Tang B.Z. Liu B. Xu F. Near-infrared light-regulated cancer theranostic nanoplatform based on aggregation-induced emission luminogen encapsulated upconversion nanoparticles. Theranostics 2019 9 1 246 264 10.7150/thno.30174 30662565
    [Google Scholar]
  78. Sinha N. Yeow J.T.W. Carbon nanotubes for biomedical applications. IEEE Trans. Nanobiosci. 2005 4 2 180 195 10.1109/TNB.2005.850478 16117026
    [Google Scholar]
  79. McKernan P. Virani N.A. Faria G.N.F. Karch C.G. Prada Silvy R. Resasco D.E. Thompson L.F. Harrison R.G. Targeted single-walled carbon nanotubes for photothermal therapy combined with immune checkpoint inhibition for the treatment of metastatic breast cancer. Nanoscale Res. Lett. 2021 16 1 9 10.1186/s11671‑020‑03459‑x 33411055
    [Google Scholar]
  80. Granja A. Pinheiro M. Sousa C.T. Reis S. Gold nanostructures as mediators of hyperthermia therapies in breast cancer. Biochem. Pharmacol. 2021 190 114639 10.1016/j.bcp.2021.114639 34077740
    [Google Scholar]
  81. Li Z. Huang H. Tang S. Li Y. Yu X.F. Wang H. Li P. Sun Z. Zhang H. Liu C. Chu P.K. Small gold nanorods laden macrophages for enhanced tumor coverage in photothermal therapy. Biomaterials 2016 74 144 154 10.1016/j.biomaterials.2015.09.038 26454052
    [Google Scholar]
  82. Vemuri S.K. Halder S. Banala R.R. Rachamalla H.K. Devraj V.M. Mallarpu C.S. Neerudu U.K. Bodlapati R. Mukherjee S. Venkata S.G.P. Venkata G.R.A. Thakkumalai M. Jana K. Modulatory effects of biosynthesized gold nanoparticles conjugated with curcumin and paclitaxel on tumorigenesis and metastatic pathways — in vitro and in vivo studies. Int. J. Mol. Sci. 2022 23 4 2150 10.3390/ijms23042150 35216264
    [Google Scholar]
  83. Tharkar P. Madani A.U. Lasham A. Shelling A.N. Al-Kassas R. Nanoparticulate carriers: An emerging tool for breast cancer therapy. J. Drug Target. 2015 23 2 97 108 10.3109/1061186X.2014.958844 25230853
    [Google Scholar]
  84. Helle M. Cassette E. Bezdetnaya L. Pons T. Leroux A. Plénat F. Visualisation of sentinel lymph node with indium-based near infrared emitting Quantum Dots in a murine metastatic breast cancer model. PLoS One 2012 7 8 10.1371/journal.pone.0044433 22952979
    [Google Scholar]
  85. Tagde P. Najda A. Nagpal K. Kulkarni G.T. Shah M. Ullah O. Balant S. Rahman M.H. Nanomedicine-based delivery strategies for breast cancer treatment and management. Int. J. Mol. Sci. 2022 23 5 2856 10.3390/ijms23052856 35269998
    [Google Scholar]
  86. Ozgenc E. Karpuz M. Arzuk E. Gonzalez-Alvarez M. Sanz M.B. Gundogdu E. Gonzalez-Alvarez I. Radiolabeled trastuzumab solid lipid nanoparticles for breast cancer cell: in vitro and in vivo studies. ACS Omega 2022 7 34 30015 30027 10.1021/acsomega.2c03023 36061662
    [Google Scholar]
  87. Liu Q. Li J. Pu G. Zhang F. Liu H. Zhang Y. Co-delivery of baicalein and doxorubicin by hyaluronic acid decorated nanostructured lipid carriers for breast cancer therapy. Drug Deliv. 2016 23 4 1364 1368 10.3109/10717544.2015.1031295 25874959
    [Google Scholar]
  88. Selvamuthukumar S. Velmurugan R. Nanostructured lipid carriers: A potential drug carrier for cancer chemotherapy. Lipids Health Dis. 2012 11 1 159 10.1186/1476‑511X‑11‑159 23167765
    [Google Scholar]
  89. Haider M. Abdin S.M. Kamal L. Orive G. Nanostructured lipid carriers for delivery of chemotherapeutics: A review. Pharmaceutics 2020 12 3 288 10.3390/pharmaceutics12030288 32210127
    [Google Scholar]
  90. Sherif A.Y. Harisa G.I. Shahba A.A. Nasr F.A. Taha E.I. Alqahtani A.S. Assembly of nanostructured lipid carriers loaded gefitinib and simvastatin as hybrid therapy for metastatic breast cancer: Codelivery and repurposing approach. Drug Dev. Res. 2023 84 7 1453 1467 10.1002/ddr.22097 37519092
    [Google Scholar]
  91. Siddhartha V.T. Pindiprolu S.K.S.S. Chintamaneni P.K. Tummala S. Nandha Kumar S. RAGE receptor targeted bioconjuguate lipid nanoparticles of diallyl disulfide for improved apoptotic activity in triple negative breast cancer: in vitro studies. Artif. Cells Nanomed. Biotechnol. 2018 46 2 387 397 10.1080/21691401.2017.1313267 28415882
    [Google Scholar]
  92. Liu D. Zhang Q. Wang J. Fan L. Zhu W. Cai D. Hyaluronic acid- coated single-walled carbon nanotubes loaded with doxorubicin for the treatment of breast cancer. Pharmazie 2019 74 2 83 90 30782256
    [Google Scholar]
  93. Moreira A.F. Dias D.R. Correia I.J. Stimuli-responsive mesoporous silica nanoparticles for cancer therapy: A review. Microporous Mesoporous Mater. 2016 236 141 157 10.1016/j.micromeso.2016.08.038
    [Google Scholar]
  94. Feng Y. Panwar N. Tng D.J.H. Tjin S.C. Wang K. Yong K.T. The application of mesoporous silica nanoparticle family in cancer theranostics. Coord. Chem. Rev. 2016 319 86 109 10.1016/j.ccr.2016.04.019
    [Google Scholar]
  95. Wang Y. Xie Y. Kilchrist K.V. Li J. Duvall C.L. Oupický D. Endosomolytic and tumor-penetrating mesoporous silica nanoparticles for siRNA/miRNA combination cancer therapy. ACS Appl. Mater. Interfaces 2020 12 4 4308 4322 10.1021/acsami.9b21214 31939276
    [Google Scholar]
  96. Andisheh F. Oroojalian F. Shakour N. Ramezani M. Shamsara J. Khodaverdi E. Nassirli H. Hadizadeh F. Alibolandi M. Docetaxel encapsulation in nanoscale assembly micelles of folate-PEG-docetaxel conjugates for targeted fighting against metastatic breast cancer in vitro and in vivo. Int. J. Pharm. 2021 605 120822 10.1016/j.ijpharm.2021.120822 34182039
    [Google Scholar]
  97. Normanno N. De Luca A. Bianco C. Strizzi L. Mancino M. Maiello M.R. Carotenuto A. De Feo G. Caponigro F. Salomon D.S. Epidermal growth factor receptor (EGFR) signaling in cancer. Gene 2006 366 1 2 16 10.1016/j.gene.2005.10.018 16377102
    [Google Scholar]
  98. Brinkman A.M. Chen G. Wang Y. Hedman C.J. Sherer N.M. Havighurst T.C. Gong S. Xu W. Aminoflavone-loaded EGFR-targeted unimolecular micelle nanoparticles exhibit anti- cancer effects in triple negative breast cancer. Biomaterials 2016 101 20 31 10.1016/j.biomaterials.2016.05.041 27267625
    [Google Scholar]
  99. Gumuskaya B. Alper M. Hucumenoglu S. Altundag K. Uner A. Guler G. EGFR expression and gene copy number in triple-negative breast carcinoma. Cancer Genet. Cytogenet. 2010 203 2 222 229 10.1016/j.cancergencyto.2010.07.118 21156237
    [Google Scholar]
  100. Reis-Filho JS. Pinheiro C. Lambros M. EGFR amplification and lack of activating mutations in metaplastic breast carcinomas. J. Pathol. 2006 209 4 445 453 10.1002/path.2004 16739104
    [Google Scholar]
  101. Das M. Mohanty C. Sahoo S.K. Ligand-based targeted therapy for cancer tissue. Expert Opin. Drug Deliv. 2009 6 3 285 304 10.1517/17425240902780166 19327045
    [Google Scholar]
  102. Chen J. He H. Deng C. Yin L. Zhong Z. Saporin-loaded CD44 and EGFR dual-targeted nanogels for potent inhibition of metastatic breast cancer in vivo. Int. J. Pharm. 2019 560 57 64 10.1016/j.ijpharm.2019.01.040 30699364
    [Google Scholar]
  103. Pourmadadi M. Mohammadzadeh V. Sadat Mohammadi Z. Poorkhalili P. Afjoul N. Behzadmehr R. Fathi-Karkan S. Rahdar A. Ghotekar S. Advances in erlotinib delivery systems: Addressing challenges and exploring opportunities in EGFR-targeted cancer therapies. Inorg. Chem. Commun. 2024 161 112114 10.1016/j.inoche.2024.112114
    [Google Scholar]
  104. Wen Y. Ouyang D. Zou Q. Chen Q. Luo N. He H. Anwar M. Yi W. A literature review of the promising future of TROP2: A potential drug therapy target. Ann. Transl. Med. 2022 10 24 1403 10.21037/atm‑22‑5976 36660684
    [Google Scholar]
  105. Chmielewska A. Kubiatowski T. Role of TROP 2 overexpression in selected solid tumors. Oncol. Clin. Pract. 2023 19 6 427 432 10.5603/OCP.2023.0017
    [Google Scholar]
  106. Sakach E. Sacks R. Kalinsky K. Trop-2 as a therapeutic target in breast cancer. Cancers (Basel) 2022 14 23 5936 10.3390/cancers14235936 36497418
    [Google Scholar]
  107. Assaraf Y.G. Leamon C.P. Reddy J.A. The folate receptor as a rational therapeutic target for personalized cancer treatment. Drug Resist. Updat. 2014 17 4-6 89 95 10.1016/j.drup.2014.10.002 25457975
    [Google Scholar]
  108. Boogerd L.S.F. Boonstra M.C. Beck A.J. Charehbili A. Hoogstins C.E.S. Prevoo H.A.J.M. Singhal S. Low P.S. van de Velde C.J.H. Vahrmeijer A.L. Concordance of folate receptor-α expression between biopsy, primary tumor and metastasis in breast cancer and lung cancer patients. Oncotarget 2016 7 14 17442 17454 10.18632/oncotarget.7856 26943581
    [Google Scholar]
  109. Elnakat H. Ratnam M. Distribution, functionality and gene regulation of folate receptor isoforms: Implications in targeted therapy. Adv. Drug Deliv. Rev. 2004 56 8 1067 1084 10.1016/j.addr.2004.01.001 15094207
    [Google Scholar]
  110. Jahan S. Karim M.E. Chowdhury E.H. Nanoparticles targeting receptors on breast cancer for efficient delivery of chemotherapeutics. Biomedicines 2021 9 2 114 10.3390/biomedicines9020114 33530291
    [Google Scholar]
  111. Niza E. Noblejas-López M.M. Bravo I. Nieto-Jiménez C. Castro-Osma J.A. Canales-Vázquez J. Lara-Sanchez A. Galán Moya E.M. Burgos M. Ocaña A. Alonso-Moreno C. Trastuzumab-targeted biodegradable nanoparticles for enhanced delivery of dasatinib in HER2+ metastasic breast cancer. Nanomaterials (Basel) 2019 9 12 1793 10.3390/nano9121793 31888247
    [Google Scholar]
  112. Allegra J.C. Lippman M.E. Growth of a human breast cancer cell line in serum-free hormone-supplemented medium. Cancer Res. 1978 38 11 Pt 1 3823 3829 212180
    [Google Scholar]
  113. Fontana F. Esser A.K. Egbulefu C. Karmakar P. Su X. Allen J.S. Xu Y. Davis J.L. Gabay A. Xiang J. Kwakwa K.A. Manion B. Bakewell S. Li S. Park H. Lanza G.M. Achilefu S. Weilbaecher K.N. Transferrin receptor in primary and metastatic breast cancer: Evaluation of expression and experimental modulation to improve molecular targeting. PLoS One 2023 18 12 e0293700 10.1371/journal.pone.0293700 38117806
    [Google Scholar]
  114. Taheri A. Dinarvand R. Nouri F.S. Khorramizadeh M.R. Borougeni A.T. Mansoori P. Atyabi F. Use of biotin targeted methotrexate-human serum albumin conjugated nanoparticles to enhance methotrexate antitumor efficacy. Int. J. Nanomedicine 2011 6 1863 1874 21931482
    [Google Scholar]
  115. Sadat Abolmaali S. Zarenejad S. Mohebi Y. Najafi H. Javanmardi S. Abedi M. Mohammad Tamaddon A. Biotin receptor- targeting nanogels loaded with methotrexate for enhanced antitumor efficacy in triple-negative breast cancer in vitro and in vivo models. Int. J. Pharm. 2022 624 122049 10.1016/j.ijpharm.2022.122049 35878871
    [Google Scholar]
  116. Huerta-Reyes M. Maya-Núñez G. Pérez-Solis M.A. López-Muñoz E. Guillén N. Olivo-Marin J.C. Aguilar-Rojas A. Treatment of breast cancer with gonadotropin-releasing hormone analogs. Front. Oncol. 2019 9 943 10.3389/fonc.2019.00943 31632902
    [Google Scholar]
  117. Li M. Tang Z. Zhang Y. Lv S. Li Q. Chen X. Targeted delivery of cisplatin by LHRH-peptide conjugated dextran nanoparticles suppresses breast cancer growth and metastasis. Acta Biomater. 2015 18 132 143 10.1016/j.actbio.2015.02.022 25735801
    [Google Scholar]
  118. Almoustafa H.A. Alshawsh M.A. Chik Z. Targeted polymeric nanoparticle for anthracycline delivery in hypoxia-induced drug resistance in metastatic breast cancer cells. Anticancer Drugs 2021 32 7 745 754 10.1097/CAD.0000000000001065 33675612
    [Google Scholar]
  119. Soleimani A. Mirzavi F. Nikoofal-Sahlabadi S. Nikpoor A.R. Taghizadeh B. Barati M. Soukhtanloo M. Jaafari M.R. CD73 downregulation by EGFR-targeted liposomal CD73 siRNA potentiates antitumor effect of liposomal doxorubicin in 4T1 tumor-bearing mice. Sci. Rep. 2022 12 1 10423 10.1038/s41598‑022‑14392‑7 35729230
    [Google Scholar]
  120. Chen S.H. Liu T.I. Chuang C.L. Chen H.H. Chiang W.H. Chiu H.C. Alendronate/folic acid-decorated polymeric nanoparticles for hierarchically targetable chemotherapy against bone metastatic breast cancer. J. Mater. Chem. B Mater. Biol. Med. 2020 8 17 3789 3800 10.1039/D0TB00046A 32150202
    [Google Scholar]
  121. Liu L. Bi Y. Zhou M. Chen X. He X. Zhang Y. Sun T. Ruan C. Chen Q. Wang H. Jiang C. Biomimetic human serum albumin nanoparticle for efficiently targeting therapy to metastatic breast cancers. ACS Appl. Mater. Interfaces 2017 9 8 7424 7435 10.1021/acsami.6b14390 28150932
    [Google Scholar]
  122. Fang H. Zhao X. Gu X. Sun H. Cheng R. Zhong Z. Deng C. CD44-targeted multifunctional nanomedicines based on a single-component hyaluronic acid conjugate with all-natural precursors: Construction and treatment of metastatic breast tumors in vivo. Biomacromolecules 2020 21 1 104 113 10.1021/acs.biomac.9b01012 31532629
    [Google Scholar]
  123. Hayward S.L. Francis D.M. Kholmatov P. Kidambi S. Targeted delivery of MicroRNA125a-5p by engineered lipid nanoparticles for the treatment of HER2 positive metastatic breast cancer. J. Biomed. Nanotechnol. 2016 12 3 554 568 10.1166/jbn.2016.2194 27280253
    [Google Scholar]
  124. Liang D.S. Zhang W.J. Wang A.T. Su H.T. Zhong H.J. Qi X.R. Treating metastatic triple negative breast cancer with CD44/neuropilin dual molecular targets of multifunctional nanoparticles. Biomaterials 2017 137 23 36 10.1016/j.biomaterials.2017.05.022 28528300
    [Google Scholar]
  125. Jung K.H. Lee J. Park J. Kim D. Moon S.H. Cho Y. Lee K.H. Targeted therapy of triple negative MDA‑MB‑468 breast cancer with curcumin delivered by epidermal growth factor‑conjugated phospholipid nanoparticles. Oncol. Lett. 2018 15 6 9093 9100 10.3892/ol.2018.8471 29805641
    [Google Scholar]
  126. Leuschner C. Kumar C.S.S.R. Hansel W. Hormes J. Targeting breast cancer cells and their metastases through luteinizing hormone releasing hormone (LHRH) receptors using magnetic nanoparticles. J. Biomed. Nanotechnol. 2005 1 2 229 233 10.1166/jbn.2005.027
    [Google Scholar]
  127. Parvani J.G. Gujrati M.D. Mack M.A. Schiemann W.P. Lu Z.R. Silencing β3 integrin by targeted ECO/siRNA nanoparticles inhibits EMT and metastasis of triple-negative breast cancer. Cancer Res. 2015 75 11 2316 2325 10.1158/0008‑5472.CAN‑14‑3485 25858145
    [Google Scholar]
  128. Carney C.P. Kapur A. Anastasiadis P. Ritzel R.M. Chen C. Woodworth G.F. Winkles J.A. Kim A.J. Fn14-Directed DART nanoparticles selectively target neoplastic cells in preclinical models of triple-negative breast cancer brain metastasis. Mol. Pharm. 2023 20 1 314 330 10.1021/acs.molpharmaceut.2c00663 36374573
    [Google Scholar]
  129. Study Of abraxane® and carboplatin as first-line treatment for triple negative metastatic breast cancer. NCT01207102 2011
  130. A phase II study to explore the safety, tolerability, and preliminary antitumor activity of sitravatinib plus Tislelizumab or combination with nab-paclitaxel in patients with locally recurrent or metastatic triple-negative breast cancer (TNBC). NCT04734262 2021
  131. Phase II study with abraxane, bevacizumab and carboplatin in triple negative metastatic breast cancer (ABC). NCT00479674 2007
  132. 2017 An early phase study of abraxane combined with phenelzine sulfate in patients with metastatic or advanced breast cancer (Epi-PRIMED). NCT03505528
  133. 2005 A Phase II Trial of Abraxane™ Given Weekly as a Single Agent in First-line Treatment of Metastatic Breast Cancer. NCT00251472
  134. 2013 Schedules of Nab-Paclitaxel in Metastatic Breast Cancer (SNAP). NCT01746225
  135. 2008 A phase i/ii clinical trial of vidaza with Abraxane in patients with advanced/metastatic solid tumors and breast cancer. NCT00748553
  136. 2001 Study of ABI-007 and taxol in patients with metastatic breast cancer. NCT00046527
  137. Zdravka M. Mehmet V. Yigit A. Therapeutic nanoparticles and methods of use thereof. U.S. Patent 9629812B2 2014
  138. Dhar S. Choi J. Marrache S. Immune-stimulating photoactive hybrid nanoparticles. U.S. Patent 9517277B2 2019
  139. Kim AJ. Woodworth GF. Winkles JA. Wadajkar A. Decreased adhesivity receptor-targeted nanoparticles for fn14-positive tumors. U.S. Patent 11045428B2 2021
  140. Liu X. Kim P. Kirkland R. Methods for predicting response of triple-negative breast cancer to therapy. U.S. Patent 10697967B2 2020
  141. Sethuraman S. Subramanian A. Dhandapania R. A nano theranostic system for circulating tumour clusters in metastatic breast cancer. IN Patent 202241046314 2022
  142. Neil P. Soon-Shiong P. Combinations and modes of administration of therapeutic agents and combination therapy. U.S. Patent 20200316216A1 2020
  143. Alhasan AH. Omar H. Fardous R. Immune suppressing nanoparticles for robust sensitization of drug-resistant cancer. U.S. Patent 20230248659 2023
  144. Desai N.P. Patrick S.-S. Nanoparticles of paclitaxel and albumin in combination with bevacizumab against cancer. EP. Patent 3108885 2016
  145. Chen D.S. Methods of treating locally advanced or metastatic breast cancers using pd-1 axis binding antagonists and taxanes. AU Patent 2016280070 2016
  146. Geena R. Low-dose pharmaceutical composition. IN Patent 970MUM2014 2015
  147. Schnitt S.J. Moran M.S. Giuliano A.E. Lumpectomy margins for invasive breast cancer and ductal carcinoma in situ: Current guideline recommendations, their implications, and impact. J. Clin. Oncol. 2020 38 20 2240 2245 10.1200/JCO.19.03213 32442067
    [Google Scholar]
  148. Maughan K.L. Lutterbie M.A. Ham P.S. Treatment of breast cancer. Am. Fam. Physician 2010 81 11 1339 1346 20521754
    [Google Scholar]
  149. Grubbé E.H. Priority in the therapeutic use of X-rays. Radiology 1933 21 2 156 162 10.1148/21.2.156
    [Google Scholar]
  150. Ye J.C. Formenti S.C. Integration of radiation and immunotherapy in breast cancer - Treatment implications. Breast 2018 38 66 74 10.1016/j.breast.2017.12.005 29253718
    [Google Scholar]
  151. Liu W. Chen B. Zheng H. Xing Y. Chen G. Zhou P. Qian L. Min Y. Advances of nanomedicine in radiotherapy. Pharmaceutics 2021 13 11 1757 10.3390/pharmaceutics13111757 34834172
    [Google Scholar]
  152. Omidi Y. Mobasher M. Castejon A.M. Mahmoudi M. Recent advances in nanoscale targeted therapy of HER2-positive breast cancer. J. Drug Target. 2022 30 7 687 708 10.1080/1061186X.2022.2055045 35321601
    [Google Scholar]
  153. Miller K.D. Sledge G.W. The role of chemotherapy for metastatic breast cancer. Hematol. Oncol. Clin. North Am. 1999 13 2 415 434 10.1016/S0889‑8588(05)70063‑0 10363138
    [Google Scholar]
  154. Nabholtz J.M. Gligorov J. The role of taxanes in the treatment of breast cancer. Expert Opin. Pharmacother. 2005 6 7 1073 1094 10.1517/14656566.6.7.1073 15957963
    [Google Scholar]
  155. Yang F. He Q. Dai X. Zhang X. Song D. The potential role of nanomedicine in the treatment of breast cancer to overcome the obstacles of current therapies. Front. Pharmacol. 2023 14 1143102 10.3389/fphar.2023.1143102 36909177
    [Google Scholar]
  156. Ahmad M.Z. Alasiri A.S. Alasmary M.Y. Abdullah M.M. Ahmad J. Abdel Wahab B.A. M Alqahtani S.A. Pathak K. Mustafa G. Khan M.A. Saikia R. Gogoi U. Emerging advances in nanomedicine for breast cancer immunotherapy: Opportunities and challenges. Immunotherapy 2022 14 12 957 983 10.2217/imt‑2021‑0348 35852105
    [Google Scholar]
  157. Fraguas-Sánchez A.I. Lozza I. Torres-Suárez A.I. Actively targeted nanomedicines in breast cancer: from pre-clinal investigation to clinic. Cancers (Basel) 2022 14 5 1198 10.3390/cancers14051198 35267507
    [Google Scholar]
  158. Navarro-Ocón A. Blaya-Cánovas J.L. López-Tejada A. Blancas I. Sánchez-Martín R.M. Garrido M.J. Griñán-Lisón C. Calahorra J. Cara F.E. Ruiz-Cabello F. Marchal J.A. Aptsiauri N. Granados-Principal S. Nanomedicine as a promising tool to overcome immune escape in breast cancer. Pharmaceutics 2022 14 3 505 10.3390/pharmaceutics14030505 35335881
    [Google Scholar]
  159. Kwapisz D. Pembrolizumab and atezolizumab in triple-negative breast cancer. Cancer Immunol. Immunother. 2021 70 3 607 617 10.1007/s00262‑020‑02736‑z 33015734
    [Google Scholar]
  160. Robson M.E. Im S.A. Senkus E. Xu B. Domchek S.M. Masuda N. Delaloge S. Tung N. Armstrong A. Dymond M. Fielding A. Allen A. Conte P. OlympiAD extended follow-up for overall survival and safety: Olaparib versus chemotherapy treatment of physician’s choice in patients with a germline BRCA mutation and HER2-negative metastatic breast cancer. Eur. J. Cancer 2023 184 39 47 10.1016/j.ejca.2023.01.031 36893711
    [Google Scholar]
  161. You S. Sang D. Xu F. Luo T. Yuan P. Xie Y. Wang B. Real-world data of triplet combination of pyrotinib, trastuzumab, and chemotherapy in HER2-positive metastatic breast cancer: A multicenter, retrospective study. Ther. Adv. Med. Oncol. 2023 15 17588359231217972 10.1177/17588359231217972 38145113
    [Google Scholar]
  162. Huang M. O’Shaughnessy J. Haiderali A. Pan W. Hu P. Chaudhuri M. Le Bailly De Tilleghem C. Cappoen N. Fasching P.A. Q-TWiST analysis of pembrolizumab combined with chemotherapy as first-line treatment of metastatic triple-negative breast cancer that expresses PD-L1. Eur. J. Cancer 2022 177 45 52 10.1016/j.ejca.2022.09.029 36323052
    [Google Scholar]
  163. Coutinho-Almeida J. Silva A.S. Redondo P. Rodrigues P.P. Ferreira A. CDK4/6 inhibitors and endocrine therapy in the treatment of metastatic breast cancer: A real-world and propensity score-adjusted comparison. Cancer Treat. Res. Commun. 2024 40 100818 10.1016/j.ctarc.2024.100818 38761788
    [Google Scholar]
  164. Caliskan Yildirim E. Atag E. Coban E. Umit Unal O. Celebi A. Keser M. Uzun M. Keskinkilic M. Tanrikulu Simsek E. Sari M. Yavuzsen T. The effect of low HER2 expression on treatment outcomes in metastatic hormone receptor positive breast cancer patients treated with a combination of a CDK4/6 inhibitor and endocrine therapy: A multicentric retrospective study. Breast 2023 70 56 62 10.1016/j.breast.2023.06.006 37343321
    [Google Scholar]
  165. Chowdhary M. Sen N. Chowdhary A. Usha L. Cobleigh M.A. Wang D. Patel K.R. Barry P.N. Rao R.D. Safety and efficacy of palbociclib and radiation therapy in patients with metastatic breast cancer: Initial results of a novel combination. Adv. Radiat. Oncol. 2019 4 3 453 457 10.1016/j.adro.2019.03.011 31360799
    [Google Scholar]
  166. Guerini A.E. Pedretti S. Salah E. Simoncini E.L. Maddalo M. Pegurri L. Pedersini R. Vassalli L. Pasinetti N. Peretto G. Triggiani L. Costantino G. Figlia V. Alongi F. Magrini S.M. Buglione M. A single-center retrospective safety analysis of cyclin-dependent kinase 4/6 inhibitors concurrent with radiation therapy in metastatic breast cancer patients. Sci. Rep. 2020 10 1 13589 10.1038/s41598‑020‑70430‑2 32788596
    [Google Scholar]
  167. Martin S. Pflumio C. Trensz P. Schaff-Wendling F. Weindling M.K. Fischbach C. Pierard L. Limacher J.M. Nader R. Velten M. Petit T. Consequences of discontinuing a 4/6 cyclin D-dependent kinase inhibitor during endocrine treatment in hormone-sensitive metastatic breast cancer patients in the context of the COVID-19 outbreak. Clin. Breast Cancer 2023 23 1 32 37 10.1016/j.clbc.2022.10.006 36414498
    [Google Scholar]
  168. Hassan F. Wang J.H. O’Leary D.P. Corrigan M. Redmond H.P. Association of preoperative and postoperative circulating tumour DNA (ctDNA) with PIK3CA gene mutation with risk of recurrence in patients with non-metastatic breast cancer. Surg. Oncol. 2024 54 102060 10.1016/j.suronc.2024.102060 38603927
    [Google Scholar]
  169. Li H. Wu Y. Zou H. Koner S. Plichta J.K. Tolaney S.M. Zhang J. He Y.W. Wei Q. Tang L. Zhang H. Zhang B. Guo Y. Chen X. Li K. Lian L. Ma F. Luo S. Clinical efficacy of CDK4/6 inhibitor plus endocrine therapy in HR-positive/HER2-0 and HER2-low- positive metastatic breast cancer: A secondary analysis of PALOMA-2 and PALOMA-3 trials. EBioMedicine 2024 105 105186 10.1016/j.ebiom.2024.105186 38861871
    [Google Scholar]
  170. Gao J.J. Cheng J. Bloomquist E. Sanchez J. Wedam S.B. Singh H. Amiri-Kordestani L. Ibrahim A. Sridhara R. Goldberg K.B. Theoret M.R. Kluetz P.G. Blumenthal G.M. Pazdur R. Beaver J.A. Prowell T.M. CDK4/6 inhibitor treatment for patients with hormone receptor-positive, HER2-negative, advanced or metastatic breast cancer: a US Food and Drug Administration pooled analysis. Lancet Oncol. 2020 21 2 250 260 10.1016/S1470‑2045(19)30804‑6 31859246
    [Google Scholar]
  171. Gao J.J. Cheng J. Beaver J.A. Prowell T.M. Ethnicity-based differences in breast cancer features and responsiveness to CDK4/6 inhibitors combined with endocrine therapy – Authors’ reply. Lancet Oncol. 2020 21 3 e131 10.1016/S1470‑2045(20)30095‑4 32135115
    [Google Scholar]
  172. Resources for information | Approved drugs. 2022 Available from: https://www.fda.gov/drugs/drug-approvals-and-databases/resources-information-approved-drugs
  173. Mani K. Deng D. Lin C. Wang M. Hsu M.L. Zaorsky N.G. Causes of death among people living with metastatic cancer. Nat. Commun. 2024 15 1 1519 10.1038/s41467‑024‑45307‑x 38374318
    [Google Scholar]
  174. Zhang N. Xiong G. Liu Z. Toxicity of metal-based nanoparticles: Challenges in the nano era. Front. Bioeng. Biotechnol. 2022 10 1001572 10.3389/fbioe.2022.1001572 36619393
    [Google Scholar]
  175. Ali F. Neha K. Parveen S. Current regulatory landscape of nanomaterials and nanomedicines: A global perspective. J. Drug Deliv. Sci. Technol. 2023 80 104118 10.1016/j.jddst.2022.104118
    [Google Scholar]
  176. Milewska S. Niemirowicz-Laskowska K. Siemiaszko G. Nowicki P. Wilczewska A.Z. Car H. Current trends and challenges in pharmacoeconomic aspects of nanocarriers as drug delivery systems for cancer treatment. Int. J. Nanomedicine 2021 16 6593 6644 10.2147/IJN.S323831 34611400
    [Google Scholar]
  177. Yu J. Mu Q. Fung M. Xu X. Zhu L. Ho R.J.Y. Challenges and opportunities in metastatic breast cancer treatments: Nano-drug combinations delivered preferentially to metastatic cells may enhance therapeutic response. Pharmacol. Ther. 2022 236 108108 10.1016/j.pharmthera.2022.108108 34999182
    [Google Scholar]
  178. Grobmyer S.R. Zhou G. Gutwein L.G. Iwakuma N. Sharma P. Hochwald S.N. Nanoparticle delivery for metastatic breast cancer. Nanomedicine 2012 8 Suppl. 1 S21 S30 10.1016/j.nano.2012.05.011 22640908
    [Google Scholar]
/content/journals/cnanom/10.2174/0124681873349949241015175025
Loading
/content/journals/cnanom/10.2174/0124681873349949241015175025
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test