- Home
- A-Z Publications
- Current Neuropharmacology
- Previous Issues
- Volume 23, Issue 1, 2025
Current Neuropharmacology - Volume 23, Issue 1, 2025
Volume 23, Issue 1, 2025
-
-
Notch Signaling in Central Nervous System: From Cellular Development to Multiple Sclerosis Disease
Introduction/ObjectiveMultiple sclerosis (MS), is characterized by autoimmune-driven neuroinflammation, axonal degeneration, and demyelination. This study aimed to explore the therapeutic potential of targeting Notch signaling within the central nervous system (CNS) in the context of MS. Understanding the intricate roles of Notch signaling could pave the way for targeted interventions to mitigate MS progression.
MethodsA comprehensive literature review was conducted using databases such as PubMed, Web of Science, and Scopus. Keywords such as “Notch signaling,” “neuroglial interactions,” and “MS” were used. The selection criteria included relevance to neuroglial interactions, peer-reviewed publications, and studies involving animal models of MS.
ResultsThis review highlights the diverse functions of Notch signaling in CNS development, including its regulation of neural stem cell differentiation into neurons, astrocytes, and oligodendrocytes. In the context of MS, Notch signaling has emerged as a promising therapeutic target, exhibiting positive impacts on neuroprotection and remyelination. However, its intricate nature within the CNS necessitates precise modulation for therapeutic efficacy.
ConclusionThis study provides a comprehensive overview of the potential therapeutic role of Notch signaling in MS. The findings underscore the significance of Notch modulation for neuroprotection and remyelination, emphasizing the need for precision in therapeutic interventions. Further research is imperative to elucidate the specific underlying mechanisms involved, which will provide a foundation for targeted therapeutic strategies for the management of MS and related neurodegenerative disorders.
-
-
-
Current Insights into the Neurotoxicity of Melamine: A Comprehensive Review
Authors: Reza Naeimi, Fatemeh Safarpour, Hamid Askari and Maryam Ghasemi-KasmanMelamine, a heterocyclic nitrogen-rich triazine chemical compound, is widely used in various household products, including furniture, dinnerware, and kitchen appliances. The unauthorized addition of the mixture to various foodstuffs to misrepresent protein content resulted in catastrophic, frequently life-threatening health consequences for kids as well as canines and has garnered international attention. Numerous primary studies and evaluations have been focused on melamine toxicity's implications on kidney function. Despite the profusion of literature on melamine's nephrotoxicity, evidence regarding its toxicity to other organs remains scarce. A number of recent studies suggest melamine can disrupt central nervous system (CNS) function and bring about cognitive impairments, contradicting the commonly held belief that melamine's detrimental effects are limited to the urinary system. The accumulation of melamine in the body is linked to various adverse effects, including depression, impaired synaptic transmission, oxidative stress, and neurodegenerative diseases. Several mechanisms may lead to such complications. However, numerous safeguards against melamine accumulation have been identified. This review could shed light on the potential neurological effects and mechanisms underlying melamine toxicity. Afterward, we will dive into the body's possible protective mechanisms against melamine-induced toxicity.
-
-
-
Myeloid-derived Suppressor Cells and Multiple Sclerosis
Authors: Aurora Zanghì, Paola Sofia Di Filippo, Carlo Avolio and Emanuele D’AmicoMyeloid-Derived Suppressor Cells (MDSCs) are a heterogeneous population of immature myeloid cells that play important roles in maintaining immune homeostasis and regulating immune responses. MDSCs can be divided into two main subsets based on their surface markers and functional properties: granulocytic MDSCs (G-MDSCs) and monocytic MDSCs (M-MDSCs). Recently greatest attention has been paid to innate immunity in Multiple Sclerosis (MS), so the aim of our review is to provide an overview of the main characteristics of MDSCs in MS and its preclinical model by discussing the most recent data available. The immunosuppressive functions of MDSCs can be dysregulated in MS, leading to an exacerbation of the autoimmune response and disease progression. Antigen-specific peptide immunotherapy, which aims to restore tolerance while avoiding the use of non-specific immunosuppressive drugs, is a promising approach for autoimmune diseases, but the cellular mechanisms behind successful therapy remain poorly understood. Therefore, targeting MDSCs could be a promising therapeutic approach for MS. Various strategies for modulating MDSCs have been investigated, including the use of pharmacological agents, biological agents, and adoptive transfer of exogenous MDSCs. However, it remained unclear whether MDSCs display any therapeutic potential in MS and how this therapy could modulate different aspects of the disease. Collectively, all the described studies revealed a pivotal role for MDSCs in the regulation of MS.
-
-
-
Role of Metalloproteinases in Diabetes-associated Mild Cognitive Impairment
More LessDiabetes has been linked to an increased risk of mild cognitive impairment (MCI), a condition characterized by a subtle cognitive decline that may precede the development of dementia. The underlying mechanisms connecting diabetes and MCI involve complex interactions between metabolic dysregulation, inflammation, and neurodegeneration. A critical mechanism implicated in diabetes and MCI is the activation of inflammatory pathways. Chronic low-grade inflammation, as observed in diabetes, can lead to the production of pro-inflammatory cytokines such as tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), interleukin-1 beta (IL-1β), and interferon-gamma (IFNγ), each of which can exacerbate neuroinflammation and contribute to cognitive decline. A crucial enzyme involved in regulating inflammation is ADAM17, a disintegrin, and metalloproteinase, which can cleave and release TNF-α from its membrane-bound precursor and cause it to become activated. These processes, in turn, activate additional inflammation-related pathways, such as AKT, NF-κB, NLP3, MAPK, and JAK-STAT pathways. Recent research has provided novel insights into the role of ADAM17 in diabetes and neurodegenerative diseases. ADAM17 is upregulated in both diabetes and Alzheimer's disease, suggesting a shared mechanism and implicating inflammation as a possible contributor to much broader forms of pathology and pointing to a possible link between inflammation and the emergence of MCI. This review provides an overview of the different roles of ADAM17 in diabetes-associated mild cognitive impairment diseases. It identifies mechanistic connections through which ADAM17 and associated pathways may influence the emergence of mild cognitive impairment.
-
-
-
Depression and the Glutamate/GABA-Glutamine Cycle
More LessMany features of major depressive disorder are mirrored in rodent models of psychological stress. These models have been used to examine the relationship between the activation of the hypothalamic-pituitary axis in response to stress, the development of oxidative stress and neuroinflammation, the dominance of cholinergic neurotransmission and the associated increase in REM sleep pressure. Rodent models have also provided valuable insights into the impairment of glycolysis and brain glucose utilization by the brain under stress, the resulting decrease in brain energy production and the reduction in glutamate/GABA-glutamine cycling. The rapidly acting antidepressants, scopolamine, ketamine and ECT, all raise extracellular glutamate and scopolamine and ketamine have specifically been shown to increase glutamate/GABA-glutamine cycling in men and rodents with corresponding short-term relief of depression. The nightly use of gammahydroxybutyrate (GHB) may achieve more permanent results and may even act prophylactically to prevent the development or recurrence of depression. GHB is a GABAB agonist and restores the normal balance between cholinergic and monoaminergic neurotransmission by inhibiting cholinergic neurotransmission. It relieves REM sleep pressure. GHB’s metabolism generates NADPH, a key antioxidant cofactor. Its metabolism also generates succinate, the tricarboxylic acid cycle intermediate, to provide energy to the cell and to synthesize glutamate. In both animals and man, GHB increases the level of brain glutamate.
-
-
-
Ischemic Stroke and Autophagy: The Roles of Long Non-Coding RNAs
Ischemic stroke is a significant cause of morbidity and mortality worldwide. Autophagy, a process of intracellular degradation, has been shown to play a crucial role in the pathogenesis of ischemic stroke. Long non-coding RNAs (lncRNAs) have emerged as essential regulators of autophagy in various diseases, including ischemic stroke. Recent studies have identified several lncRNAs that modulate autophagy in ischemic stroke, including MALAT1, MIAT, SNHG12, H19, AC136007. 2, C2dat2, MEG3, KCNQ1OT1, SNHG3, and RMRP. These lncRNAs regulate autophagy by interacting with key proteins involved in the autophagic process, such as Beclin-1, ATG7, and LC3. Understanding the role of lncRNAs in regulating autophagy in ischemic stroke may provide new insights into the pathogenesis of this disease and identify potential therapeutic targets for its treatment.
-
-
-
Bibliometric Analysis of Alzheimer's Disease and Depression
Authors: Sixin Li, Qian Zhang, Jian Liu, Nan Zhang, Xinyu Li, Ying Liu, Huiwen Qiu, Jing Li and Hui CaoBackgroundThe link between Alzheimer's disease and depression has been confirmed by clinical and epidemiological research. Therefore, our study examined the literary landscape and prevalent themes in depression-related research works on Alzheimer's disease through bibliometric analysis.
MethodsRelevant literature was identified from the Web of Science core collection. Bibliometric parameters were extracted, and the major contributors were defined in terms of countries, institutions, authors, and articles using Microsoft Excel 2019 and VOSviewer. VOSviewer and CiteSpace were employed to visualize the scientific networks and seminal topics.
ResultsThe analysis of literature utilised 10,553 articles published from 1991 until 2023. The three countries or regions with the most publications were spread across the United States, China, and England. The University of Toronto and the University of Pittsburgh were the major contributors to the institutions. Lyketsos, Constantine G., Cummings, JL were found to make outstanding contributions. Journal of Alzheimer's Disease was identified as the most productive journal. Furthermore, “Alzheimer’s”, “depression”, “dementia”, and “mild cognitive decline” were the main topics of discussion during this period.
LimitationsData were searched from a single database to become compatible with VOSviewer and CiteSpace, leading to a selection bias. Manuscripts in English were considered, leading to a language bias.
ConclusionArticles on “Alzheimer’s” and “depression” displayed an upward trend. The prevalent themes addressed were the mechanisms of depression-associated Alzheimer's disease, the identification of depression and cognitive decline in the early stages of Alzheimer's, alleviating depression and improving life quality in Alzheimer's patients and their caregivers, and diagnosing and treating neuropsychiatric symptoms in Alzheimer. Future research on these hot topics would promote understanding in this field.
-
-
-
Vitamin B6 Via p-JNK/Nrf-2/NF-κB Signaling Ameliorates Cadmium Chloride-Induced Oxidative Stress Mediated Memory Deficits in Mice Hippocampus
BackgroundCadmium chloride (Cd) is a pervasive environmental heavy metal pollutant linked to mitochondrial dysfunction, memory loss, and genetic disorders, particularly in the context of neurodegenerative diseases like Alzheimer's disease (AD).
MethodsThis study investigated the neurotherapeutic potential of vitamin B6 (Vit. B6) in mitigating Cd-induced oxidative stress and neuroinflammation-mediated synaptic and memory dysfunction. Adult albino mice were divided into four groups: Control (saline-treated), Cd-treated, Cd+Vit. B6-treated, and Vit. B6 alone-treated. Cd and Vit. B6 were administered intraperitoneally, and behavioral tests (Morris Water Maze, Y-Maze) were conducted. Subsequently, western blotting, antioxidant assays, blood glucose, and hyperlipidemia assessments were performed.
ResultsCd-treated mice exhibited impaired cognitive function, while Cd+Vit. B6-treated mice showed significant improvement. Cd-induced neurotoxic effects, including oxidative stress and neuroinflammation, were observed, along with disruptions in synaptic proteins (SYP and PSD95) and activation of p-JNK. Vit. B6 administration mitigated these effects, restoring synaptic and memory deficits. Molecular docking and MD simulation studies confirmed Vit. B6's inhibitory effect on IL-1β, NRF2, and p-JNK proteins.
ConclusionThese results highlight Vit. B6 as a safe therapeutic supplement to mitigate neurodegenerative disorders, emphasizing the importance of assessing nutritional interventions for combating environmental neurotoxicity in the interest of public health.
-
Volumes & issues
-
Volume 23 (2025)
-
Volume 22 (2024)
-
Volume 21 (2023)
-
Volume 20 (2022)
-
Volume 19 (2021)
-
Volume 18 (2020)
-
Volume 17 (2019)
-
Volume 16 (2018)
-
Volume 15 (2017)
-
Volume 14 (2016)
-
Volume 13 (2015)
-
Volume 12 (2014)
-
Volume 11 (2013)
-
Volume 10 (2012)
-
Volume 9 (2011)
-
Volume 8 (2010)
-
Volume 7 (2009)
-
Volume 6 (2008)
-
Volume 5 (2007)
-
Volume 4 (2006)
-
Volume 3 (2005)
-
Volume 2 (2004)
-
Volume 1 (2003)