Skip to content
2000
Volume 23, Issue 1
  • ISSN: 1570-159X
  • E-ISSN: 1875-6190

Abstract

Diabetes has been linked to an increased risk of mild cognitive impairment (MCI), a condition characterized by a subtle cognitive decline that may precede the development of dementia. The underlying mechanisms connecting diabetes and MCI involve complex interactions between metabolic dysregulation, inflammation, and neurodegeneration. A critical mechanism implicated in diabetes and MCI is the activation of inflammatory pathways. Chronic low-grade inflammation, as observed in diabetes, can lead to the production of pro-inflammatory cytokines such as tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), interleukin-1 beta (IL-1β), and interferon-gamma (IFNγ), each of which can exacerbate neuroinflammation and contribute to cognitive decline. A crucial enzyme involved in regulating inflammation is ADAM17, a disintegrin, and metalloproteinase, which can cleave and release TNF-α from its membrane-bound precursor and cause it to become activated. These processes, in turn, activate additional inflammation-related pathways, such as AKT, NF-κB, NLP3, MAPK, and JAK-STAT pathways. Recent research has provided novel insights into the role of ADAM17 in diabetes and neurodegenerative diseases. ADAM17 is upregulated in both diabetes and Alzheimer's disease, suggesting a shared mechanism and implicating inflammation as a possible contributor to much broader forms of pathology and pointing to a possible link between inflammation and the emergence of MCI. This review provides an overview of the different roles of ADAM17 in diabetes-associated mild cognitive impairment diseases. It identifies mechanistic connections through which ADAM17 and associated pathways may influence the emergence of mild cognitive impairment.

Loading

Article metrics loading...

/content/journals/cn/10.2174/1570159X22666240517090855
2024-07-03
2024-11-22
Loading full text...

Full text loading...

References

  1. World health day 2016: Beat diabetes.2016Available from: https://www.who.int/news-room/events/detail/2016/04/07/default-calendar/world-health-day-2016 (Accessed on: 27 April 2023).
  2. New American Diabetes Association report finds annual costs of diabetes to be $412.9 billion.Available from: https://diabetes.org/about-us/statistics/cost-diabetes (Accessed on: 27 April 2023).
  3. ProfennoL.A. PorsteinssonA.P. FaraoneS.V. Meta-analysis of Alzheimer’s disease risk with obesity, diabetes, and related disorders.Biol. Psychiatry201067650551210.1016/j.biopsych.2009.02.013 19358976
    [Google Scholar]
  4. BiesselsG.J. StaekenborgS. BrunnerE. BrayneC. ScheltensP. Risk of dementia in diabetes mellitus: A systematic review.Lancet Neurol.200651647410.1016/S1474‑4422(05)70284‑2 16361024
    [Google Scholar]
  5. YouY. LiuZ. ChenY. XuY. QinJ. GuoS. HuangJ. TaoJ. The prevalence of mild cognitive impairment in type 2 diabetes mellitus patients: A systematic review and meta-analysis.Acta Diabetol.202158667168510.1007/s00592‑020‑01648‑9 33417039
    [Google Scholar]
  6. Dementia statistics.Available from: https://www.alzint.org/about/dementia-facts-figures/dementia-statistics/ (Accessed on: 27 April 2023).
  7. PradhanA.D. MansonJ.E. RifaiN. BuringJ.E. RidkerP.M. C-reactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus.JAMA2001286332733410.1001/jama.286.3.327 11466099
    [Google Scholar]
  8. ThorandB. LöwelH. SchneiderA. KolbH. MeisingerC. FröhlichM. KoenigW. C-reactive protein as a predictor for incident diabetes mellitus among middle-aged men: Results from the MONICA Augsburg cohort study, 1984-1998.Arch. Intern. Med.20031631939910.1001/archinte.163.1.93 12523922
    [Google Scholar]
  9. OkdahlT. WegebergA.M. PociotF. BrockB. StørlingJ. BrockC. Low-grade inflammation in type 2 diabetes: A cross-sectional study from a Danish diabetes outpatient clinic.BMJ Open20221212e06218810.1136/bmjopen‑2022‑062188 36517105
    [Google Scholar]
  10. StomnaroskaR.D. NejashmikjR.V. PapazovaM. Role of inflammation in the pathogenesis of diabetic peripheral neuropathy.Open Access Maced. J. Med. Sci.20197142267227010.3889/oamjms.2019.646 31592273
    [Google Scholar]
  11. StinoA.M. RumoraA.E. KimB. FeldmanE.L. Evolving concepts on the role of dyslipidemia, bioenergetics, and inflammation in the pathogenesis and treatment of diabetic peripheral neuropathy.J. Peripher. Nerv. Syst.2020252768410.1111/jns.12387 32412144
    [Google Scholar]
  12. Donate-CorreaJ. FerriC.M. Sánchez-QuintanaF. Pérez-CastroA. González-LuisA. Martín-NúñezE. Mora-FernándezC. GonzálezN.J.F. Inflammatory cytokines in diabetic kidney disease: Pathophysiologic and therapeutic implications.Front. Med.2021762828910.3389/fmed.2020.628289 33553221
    [Google Scholar]
  13. HofherrA. WilliamsJ. GanL.M. SöderbergM. HansenP.B.L. WoollardK.J. Targeting inflammation for the treatment of Diabetic Kidney Disease: A five-compartment mechanistic model.BMC Nephrol.202223120810.1186/s12882‑022‑02794‑8 35698028
    [Google Scholar]
  14. GomułkaK. RutaM. The role of inflammation and therapeutic concepts in diabetic retinopathy—A short review.Int. J. Mol. Sci.2023242102410.3390/ijms24021024 36674535
    [Google Scholar]
  15. JiaG. HillM.A. SowersJ.R. Diabetic cardiomyopathy.Circ. Res.2018122462463810.1161/CIRCRESAHA.117.311586 29449364
    [Google Scholar]
  16. RameshP. YeoJ.L. BradyE.M. McCannG.P. Role of inflammation in diabetic cardiomyopathy.Ther. Adv. Endocrinol. Metab.2022132042018822108353010.1177/20420188221083530 35308180
    [Google Scholar]
  17. SharifS. Van der GraafY. CramerM.J. KapelleL.J. de BorstG.J. VisserenF.L.J. WesterinkJ. van PetersenR. DintherB.G.F. AlgraA. van der GraafY. GrobbeeD.E. RuttenG.E.H.M. VisserenF.L.J. de BorstG.J. KappelleL.J. LeinerT. NathoeH.M. Low-grade inflammation as a risk factor for cardiovascular events and all-cause mortality in patients with type 2 diabetes.Cardiovasc. Diabetol.202120122010.1186/s12933‑021‑01409‑0 34753497
    [Google Scholar]
  18. LoweG. WoodwardM. HillisG. RumleyA. LiQ. HarrapS. MarreM. HametP. PatelA. PoulterN. ChalmersJ. Circulating inflammatory markers and the risk of vascular complications and mortality in people with type 2 diabetes and cardiovascular disease or risk factors: The ADVANCE study.Diabetes20146331115112310.2337/db12‑1625 24222348
    [Google Scholar]
  19. van SlotenT.T. SedaghatS. CarnethonM.R. LaunerL.J. StehouwerC.D.A. Cerebral microvascular complications of type 2 diabetes: Stroke, cognitive dysfunction, and depression.Lancet Diabetes Endocrinol.20208432533610.1016/S2213‑8587(19)30405‑X 32135131
    [Google Scholar]
  20. SteenE. TerryB.M. RiveraE.J. CannonJ.L. NeelyT.R. TavaresR. XuX.J. WandsJ.R. de la MonteS.M. Impaired insulin and insulin-like growth factor expression and signaling mechanisms in Alzheimer’s disease--is this type 3 diabetes?J. Alzheimers Dis.200571638010.3233/JAD‑2005‑7107 15750215
    [Google Scholar]
  21. ColeJ.B. FlorezJ.C. Genetics of diabetes mellitus and diabetes complications.Nat. Rev. Nephrol.20201637739010.1038/s41581‑020‑0278‑5
    [Google Scholar]
  22. KirvalidzeM. HodkinsonA. StormanD. FairchildT.J. BałaM.M. BeridzeG. ZuriagaA. BrudascaN.I. BriniS. The role of glucose in cognition, risk of dementia, and related biomarkers in individuals without type 2 diabetes mellitus or the metabolic syndrome: A systematic review of observational studies.Neurosci. Biobehav. Rev.202213510455110.1016/j.neubiorev.2022.104551 35104494
    [Google Scholar]
  23. ChengG. HuangC. DengH. WangH. Diabetes as a risk factor for dementia and mild cognitive impairment: A meta‐analysis of longitudinal studies.Intern. Med. J.201242548449110.1111/j.1445‑5994.2012.02758.x 22372522
    [Google Scholar]
  24. MuriachM. BellverF.M. RomeroF.J. BarciaJ.M. Diabetes and the brain: Oxidative stress, inflammation, and autophagy.Oxid. Med. Cell. Longev.201420141910.1155/2014/102158 25215171
    [Google Scholar]
  25. BeckmanK.B. AmesB.N. The free radical theory of aging matures.Physiol. Rev.199878254758110.1152/physrev.1998.78.2.547 9562038
    [Google Scholar]
  26. RousselotB.D. Glucose and reactive oxygen species.Curr. Opin. Clin. Nutr. Metab. Care20025556156810.1097/00075197‑200209000‑00016 12172481
    [Google Scholar]
  27. BelfioreA. FrascaF. PandiniG. SciaccaL. VigneriR. Insulin receptor isoforms and insulin receptor/insulin-like growth factor receptor hybrids in physiology and disease.Endocr. Rev.200930658662310.1210/er.2008‑0047 19752219
    [Google Scholar]
  28. VinuesaA. PomilioC. GregosaA. BentivegnaM. PresaJ. BellottoM. SaraviaF. BeauquisJ. Inflammation and insulin resistance as risk factors and potential therapeutic targets for Alzheimer’s disease.Front. Neurosci.20211565365110.3389/fnins.2021.653651 33967682
    [Google Scholar]
  29. TucsekZ. TothP. SosnowskaD. GautamT. MitschelenM. KollerA. SzalaiG. SonntagW.E. UngvariZ. CsiszarA. Obesity in aging exacerbates blood-brain barrier disruption, neuroinflammation, and oxidative stress in the mouse hippocampus: Effects on expression of genes involved in beta-amyloid generation and Alzheimer’s disease.J. Gerontol. A Biol. Sci. Med. Sci.201469101212122610.1093/gerona/glt177 24269929
    [Google Scholar]
  30. FranceschiC. GaragnaniP. PariniP. GiulianiC. SantoroA. Inflammaging: A new immune-metabolic viewpoint for age-related diseases.Nat. Rev. Endocrinol.2018141057659010.1038/s41574‑018‑0059‑4 30046148
    [Google Scholar]
  31. SaadM.I. JenkinsB.J. The protease ADAM17 at the crossroads of disease: Revisiting its significance in inflammation, cancer, and beyond.FEBS J.20242911102410.1111/febs.16923 37540030
    [Google Scholar]
  32. RuiL. AguirreV. KimJ.K. ShulmanG.I. LeeA. CorbouldA. DunaifA. WhiteM.F. Insulin/IGF-1 and TNF-α stimulate phosphorylation of IRS-1 at inhibitory Ser307 via distinct pathways.J. Clin. Invest.2001107218118910.1172/JCI10934 11160134
    [Google Scholar]
  33. SchumacherN. Rose-JohnS. ADAM17 orchestrates Interleukin-6, TNFα and EGF-R signaling in inflammation and cancer.Biochim. Biophys. Acta Mol. Cell Res.20221869111914110.1016/j.bbamcr.2021.119141 34610348
    [Google Scholar]
  34. IshiiS. IsozakiT. FuruyaH. TakeuchiH. TsubokuraY. InagakiK. KasamaT. ADAM-17 is expressed on rheumatoid arthritis fibroblast-like synoviocytes and regulates proinflammatory mediator expression and monocyte adhesion.Arthritis Res. Ther.201820115910.1186/s13075‑018‑1657‑1 30071898
    [Google Scholar]
  35. KawaguchiM. MitsuhashiY. KondoS. Overexpression of tumour necrosis factor-alpha-converting enzyme in psoriasis.Br. J. Dermatol.2005152591591910.1111/j.1365‑2133.2005.06440.x 15888146
    [Google Scholar]
  36. CesaroA. Abakar-MahamatA. BrestP. LassalleS. SelvaE. FilippiJ. HébuterneX. HugotJ.P. DoglioA. GallandF. NaquetP. CraviariV.V. MograbiB. HofmanP.M. Differential expression and regulation of ADAM17 and TIMP3 in acute inflamed intestinal epithelia.Am. J. Physiol. Gastrointest. Liver Physiol.20092966G1332G134310.1152/ajpgi.90641.2008 19299578
    [Google Scholar]
  37. LiR. UttarwarL. GaoB. CharbonneauM. ShiY. ChanJ.S.D. DuboisC.M. KrepinskyJ.C. High glucose up-regulates ADAM17 through HIF-1α in mesangial cells.J. Biol. Chem.201529035216032161410.1074/jbc.M115.651604 26175156
    [Google Scholar]
  38. MatthewsJ. VillescasS. HeratL. SchlaichM. MatthewsV. Implications of ADAM17 activation for hyperglycaemia, obesity and type 2 diabetes.Biosci. Rep.2021415BSR2021002910.1042/BSR20210029 33904577
    [Google Scholar]
  39. GhiaroneT. GonzalezC.J.A. FooteC.A. PerezR.F.I. SantosF.L. AmadorC.F.J. de la TorreR. GangaR.R. WheelerA.A. AcevedoM.C. PadillaJ. LemusM.L.A. ADAM17 cleaves the insulin receptor ectodomain on endothelial cells and causes vascular insulin resistance.Am. J. Physiol. Heart Circ. Physiol.20223234H688H70110.1152/ajpheart.00039.2022 36018759
    [Google Scholar]
  40. ChenX. YaoJ. LaiJ. LinL. ChenY. LinY. FangW. DingC. KangD. ADAM17 aggravates the inflammatory response by modulating microglia polarization through the TGF-β1/Smad pathway following experimental traumatic brain injury.J. Neurotrauma20234013-141495150910.1089/neu.2022.0373 37029898
    [Google Scholar]
  41. HsiaH.E. TüshausJ. BrummerT. ZhengY. ScilabraS.D. LichtenthalerS.F. Functions of ‘A disintegrin and metalloproteases (ADAMs)’ in the mammalian nervous system.Cell. Mol. Life Sci.201976163055308110.1007/s00018‑019‑03173‑7 31236626
    [Google Scholar]
  42. RosselloA. NutiE. FerriniS. FabbiM. Targeting ADAM17 sheddase activity in cancer.Curr. Drug Targets201617161908192710.2174/1389450117666160727143618 27469341
    [Google Scholar]
  43. TaylorP.C. FeldmannM. Anti-TNF biologic agents: Still the therapy of choice for rheumatoid arthritis.Nat. Rev. Rheumatol.200951057858210.1038/nrrheum.2009.181 19798034
    [Google Scholar]
  44. ZunkeF. Rose-JohnS. The shedding protease ADAM17: Physiology and pathophysiology.Biochim. Biophys. Acta Mol. Cell Res.20171864112059207010.1016/j.bbamcr.2017.07.001 28705384
    [Google Scholar]
  45. CalligarisM. CuffaroD. BonelliS. SpanòD.P. RosselloA. NutiE. ScilabraS.D. Strategies to target ADAM17 in disease: From its discovery to the iRhom revolution.Molecules202126494410.3390/molecules26040944 33579029
    [Google Scholar]
  46. LorenzenI. LokauJ. KorpysY. OldefestM. FlynnC.M. KünzelU. GarbersC. FreemanM. GrötzingerJ. DüsterhöftS. Control of ADAM17 activity by regulation of its cellular localisation.Sci. Rep.2016613506710.1038/srep35067 27731361
    [Google Scholar]
  47. LambrechtB.N. VanderkerkenM. HammadH. The emerging role of ADAM metalloproteinases in immunity.Nat. Rev. Immunol.2018181274575810.1038/s41577‑018‑0068‑5 30242265
    [Google Scholar]
  48. SrourN. LebelA. McMahonS. FournierI. FugèreM. DayR. DuboisC.M. TACE/ADAM‐17 maturation and activation of sheddase activity require proprotein convertase activity.FEBS Lett.2003554327528310.1016/S0014‑5793(03)01159‑1 14623079
    [Google Scholar]
  49. ChristovaY. AdrainC. BambroughP. IbrahimA. FreemanM. Mammalian iRhoms have distinct physiological functions including an essential role in TACE regulation.EMBO Rep.2013141088489010.1038/embor.2013.128 23969955
    [Google Scholar]
  50. LiX. MaretzkyT. WeskampG. MonetteS. QingX. IssureeP.D.A. CrawfordH.C. McIlwainD.R. MakT.W. SalmonJ.E. BlobelC.P. iRhoms 1 and 2 are essential upstream regulators of ADAM17-dependent EGFR signaling.Proc. Natl. Acad. Sci.2015112196080608510.1073/pnas.1505649112 25918388
    [Google Scholar]
  51. XuP. DerynckR. Direct activation of TACE-mediated ectodomain shedding by p38 MAP kinase regulates EGF receptor-dependent cell proliferation.Mol. Cell201037455156610.1016/j.molcel.2010.01.034 20188673
    [Google Scholar]
  52. Le GallS.M. MaretzkyT. IssureeP.D.A. NiuX.D. ReissK. SaftigP. KhokhaR. LundellD. BlobelC.P. ADAM17 is regulated by a rapid and reversible mechanism that controls access to its catalytic site.J. Cell Sci.2010123223913392210.1242/jcs.069997 20980382
    [Google Scholar]
  53. BrewK. NagaseH. The tissue inhibitors of metalloproteinases (TIMPs): An ancient family with structural and functional diversity.Biochim. Biophys. Acta Mol. Cell Res.201018031557110.1016/j.bbamcr.2010.01.003 20080133
    [Google Scholar]
  54. WisniewskaM. GoettigP. MaskosK. BelouskiE. WintersD. HechtR. BlackR. BodeW. Structural determinants of the ADAM inhibition by TIMP-3: crystal structure of the TACE-N-TIMP-3 complex.J. Mol. Biol.200838151307131910.1016/j.jmb.2008.06.088 18638486
    [Google Scholar]
  55. AdrainC. ZettlM. ChristovaY. TaylorN. FreemanM. Tumor necrosis factor signaling requires iRhom2 to promote trafficking and activation of TACE.Science2012335606522522810.1126/science.1214400 22246777
    [Google Scholar]
  56. GrieveA.G. XuH. KüU. BambroughP. SieberB. FreemanM. Phosphorylation of IRhom2 at the plasma membrane controls mammalian TACE-dependent inflammatory and growth factor signalling.eLife20176e23968
    [Google Scholar]
  57. DombernowskyS.L. PetersenS.J. PetersenC.H. InstrellR. HedegaardA.M.B. ThomasL. AtkinsK.M. AuclairS. AlbrechtsenR. MygindK.J. FröhlichC. HowellM. ParkerP. ThomasG. KveiborgM. The sorting protein PACS-2 promotes ErbB signalling by regulating recycling of the metalloproteinase ADAM17.Nat. Commun.201561751810.1038/ncomms8518 26108729
    [Google Scholar]
  58. BabendreyerA. Rojas-GonzálezD.M. GieseA.A. FellendorfS. DüsterhöftS. MelaP. LudwigA. Differential induction of the ADAM17 regulators iRhom1 and 2 in endothelial cells.Front. Cardiovasc. Med.2020761034410.3389/fcvm.2020.610344 33335915
    [Google Scholar]
  59. MaretzkyT. McIlwainD.R. IssureeP.D.A. LiX. MalapeiraJ. AminS. LangP.A. MakT.W. BlobelC.P. iRhom2 controls the substrate selectivity of stimulated ADAM17-dependent ectodomain shedding.Proc. Natl. Acad. Sci.201311028114331143810.1073/pnas.1302553110 23801765
    [Google Scholar]
  60. QianM. ShenX. WangH. The distinct role of ADAM17 in APP proteolysis and microglial activation related to Alzheimer’s Disease.Cell. Mol. Neurobiol.201636447148210.1007/s10571‑015‑0232‑4 26119306
    [Google Scholar]
  61. PeschonJ.J. SlackJ.L. ReddyP. StockingK.L. SunnarborgS.W. LeeD.C. RussellW.E. CastnerB.J. JohnsonR.S. FitznerJ.N. BoyceR.W. NelsonN. KozloskyC.J. WolfsonM.F. RauchC.T. CerrettiD.P. PaxtonR.J. MarchC.J. BlackR.A. An essential role for ectodomain shedding in mammalian development.Science199828253921281128410.1126/science.282.5392.1281 9812885
    [Google Scholar]
  62. BlackR.A. RauchC.T. KozloskyC.J. PeschonJ.J. SlackJ.L. WolfsonM.F. CastnerB.J. StockingK.L. ReddyP. SrinivasanS. A metalloproteinase disintegrin that releases tumour-necrosis factor-α from cells.Nature199738572973310.1038/385729a0
    [Google Scholar]
  63. ChalarisA. AdamN. SinaC. RosenstielP. Lehmann-KochJ. SchirmacherP. HartmannD. CichyJ. GavrilovaO. SchreiberS. JostockT. MatthewsV. HäslerR. BeckerC. NeurathM.F. ReißK. SaftigP. SchellerJ. JohnR.S. Critical role of the disintegrin metalloprotease ADAM17 for intestinal inflammation and regeneration in mice.J. Exp. Med.201020781617162410.1084/jem.20092366 20603312
    [Google Scholar]
  64. SchellerJ. ChalarisA. GarbersC. JohnR.S. ADAM17: A molecular switch to control inflammation and tissue regeneration.Trends Immunol.201132838038710.1016/j.it.2011.05.005 21752713
    [Google Scholar]
  65. Van HauwermeirenF. VandenbrouckeR.E. LibertC. Treatment of TNF mediated diseases by selective inhibition of soluble TNF or TNFR1.Cytokine Growth Factor Rev.2011225-631131910.1016/j.cytogfr.2011.09.004 21962830
    [Google Scholar]
  66. SchwarzJ. SchmidtS. WillO. KoudelkaT. KöhlerK. BossM. RabeB. TholeyA. SchellerJ. Schmidt-ArrasD. SchwakeM. Rose-JohnS. ChalarisA. Polo-like kinase 2, a novel ADAM17 signaling component, regulates tumor necrosis factor α ectodomain shedding.J. Biol. Chem.201428953080309310.1074/jbc.M113.536847 24338472
    [Google Scholar]
  67. ManeyS.K. McIlwainD.R. PolzR. PandyraA.A. SundaramB. WolffD. OhishiK. MaretzkyT. BrookeM.A. EversA. VasudevanA.A.J. AghaeepourN. SchellerJ. MünkC. HäussingerD. MakT.W. NolanG.P. KelsellD.P. BlobelC.P. LangK.S. LangP.A. Deletions in the cytoplasmic domain of iRhom1 and iRhom2 promote shedding of the TNF receptor by the protease ADAM17.Sci. Signal.20158401ra10910.1126/scisignal.aac5356 26535007
    [Google Scholar]
  68. BlobelC.P. ADAMs: Key components in EGFR signalling and development.Nat. Rev. Mol. Cell Biol.200561324310.1038/nrm1548 15688065
    [Google Scholar]
  69. SealsD.F. CourtneidgeS.A. The ADAMs family of metalloproteases: Multidomain proteins with multiple functions.Genes Dev.200317173010.1101/gad.1039703 12514095
    [Google Scholar]
  70. KraakmanM.J. KammounH.L. AllenT.L. DeswaerteV. HenstridgeD.C. EstevezE. MatthewsV.B. NeillB. WhiteD.A. MurphyA.J. PeijsL. YangC. RisisS. BruceC.R. DuX.J. BobikA. Lee-YoungR.S. KingwellB.A. VasanthakumarA. ShiW. KalliesA. LancasterG.I. Rose-JohnS. FebbraioM.A. Blocking IL-6 trans-signaling prevents high-fat diet-induced adipose tissue macrophage recruitment but does not improve insulin resistance.Cell Metab.201521340341610.1016/j.cmet.2015.02.006 25738456
    [Google Scholar]
  71. RehmanK. AkashM.S.H. LiaqatA. KamalS. QadirM.I. RasulA. Role of interleukin-6 in development of insulin resistance and type 2 diabetes mellitus.Crit. Rev. Eukaryot. Gene Expr.20172722923610.1615/CritRevEukaryotGeneExpr.2017019712
    [Google Scholar]
  72. UchikawaS. YodaM. TohmondaT. KanajiA. MatsumotoM. ToyamaY. HoriuchiK. ADAM17 regulates IL-1 signaling by selectively releasing IL-1 receptor type 2 from the cell surface.Cytokine201571223824510.1016/j.cyto.2014.10.032 25461404
    [Google Scholar]
  73. WangY. KimK.A. KimJ.H. SulH.S. Pref-1, a preadipocyte secreted factor that inhibits adipogenesis.J. Nutr.2006136122953295610.1093/jn/136.12.2953 17116701
    [Google Scholar]
  74. MonroyA. KamathS. ChavezA.O. CentonzeV.E. VeerasamyM. BarrentineA. WewerJ.J. ColettaD.K. JenkinsonC. JhinganR.M. SmoklerD. ReynaS. MusiN. KhokkaR. FedericiM. TripathyD. DeFronzoR.A. FolliF. Impaired regulation of the TNF-α converting enzyme/tissue inhibitor of metalloproteinase 3 proteolytic system in skeletal muscle of obese type 2 diabetic patients: A new mechanism of insulin resistance in humans.Diabetologia200952102169218110.1007/s00125‑009‑1451‑3 19633828
    [Google Scholar]
  75. de MeijerV.E. LeH.D. MeiselJ.A. SharmaA.K. PopovY. PuderM. Tumor necrosis factor α-converting enzyme inhibition reverses hepatic steatosis and improves insulin sensitivity markers and surgical outcome in mice.PLoS One201169e2558710.1371/journal.pone.0025587 21980496
    [Google Scholar]
  76. KanekoH. AnzaiT. HoriuchiK. MorimotoK. AnzaiA. NagaiT. SuganoY. MaekawaY. ItohH. YoshikawaT. OkadaY. OgawaS. FukudaK. Tumor necrosis factor-α converting enzyme inactivation ameliorates high-fat diet-induced insulin resistance and altered energy homeostasis.Circ. J.201175102482249010.1253/circj.CJ‑11‑0182 21785222
    [Google Scholar]
  77. MatsuiY. TomaruU. MiyoshiA. ItoT. FukayaS. MiyoshiH. AtsumiT. IshizuA. Overexpression of TNF-α converting enzyme promotes adipose tissue inflammation and fibrosis induced by high fat diet.Exp. Mol. Pathol.201497335435810.1016/j.yexmp.2014.09.017 25236578
    [Google Scholar]
  78. KawasakiS. MotoshimaH. HanataniS. TakakiY. IgataM. TsutsumiA. MatsumuraT. KondoT. SenokuchiT. IshiiN. KinoshitaH. FukudaK. KawashimaJ. ShimodaS. NishikawaT. ArakiE. Regulation of TNFα converting enzyme activity in visceral adipose tissue of obese mice.Biochem. Biophys. Res. Commun.201343041189119410.1016/j.bbrc.2012.12.086 23274494
    [Google Scholar]
  79. LownikJ.C. FarrarJ.S. PearceJ.V. CeliF.S. MartinR.K. Adipocyte ADAM17 plays a limited role in metabolic inflammation.Adipocyte20209150952210.1080/21623945.2020.1814544 32892692
    [Google Scholar]
  80. YongS.B. SongY. KimY.H. Visceral adipose tissue macrophage-targeted TACE silencing to treat obesity-induced type 2 diabetes.Biomaterials2017148818910.1016/j.biomaterials.2017.09.023 28985514
    [Google Scholar]
  81. MaekawaM. TadakiH. TomimotoD. OkumaC. SanoR. IshiiY. KatsudaY. YoshiuchiH. KakefudaR. OhtaT. A novel TNF-α converting enzyme (TACE) selective inhibitor JTP-96193 prevents insulin resistance in KK-Ay type 2 diabetic mice and diabetic peripheral neuropathy in type 1 diabetic mice.Biol. Pharm. Bull.2019421119061912
    [Google Scholar]
  82. TogashiN. UraN. HigashiuraK. MurakamiH. ShimamotoK. Effect of TNF-alpha--converting enzyme inhibitor on insulin resistance in fructose-fed rats.Hypertension200239257858010.1161/hy0202.103290 11882611
    [Google Scholar]
  83. PrasadM. JayaramanS. RajagopalP. VeeraraghavanV.P. KumarP.K. PiramanayagamS. PariL. Diosgenin inhibits ER stress-induced inflammation in aorta via iRhom2/TACE mediated signaling in experimental diabetic rats: An in vivo and in silico approach.Chem. Biol. Interact.202235810988510.1016/j.cbi.2022.109885 35305976
    [Google Scholar]
  84. SerinoM. MenghiniR. FiorentinoL. AmorusoR. MaurielloA. LauroD. SbracciaP. HribalM.L. LauroR. FedericiM. Mice heterozygous for tumor necrosis factor-alpha converting enzyme are protected from obesity-induced insulin resistance and diabetes.Diabetes200756102541254610.2337/db07‑0360 17646208
    [Google Scholar]
  85. VassarR. BennettB.D. KhanB.S. KahnS. MendiazE.A. DenisP. TeplowD.B. RossS. AmaranteP. LoeloffR. LuoY. FisherS. FullerJ. EdensonS. LileJ. JarosinskiM.A. BiereA.L. CurranE. BurgessT. LouisJ.C. CollinsF. TreanorJ. RogersG. CitronM. β-secretase cleavage of Alzheimer’s amyloid precursor protein by the transmembrane aspartic protease BACE.Science1999286544073574110.1126/science.286.5440.735 10531052
    [Google Scholar]
  86. KuhnP.H. WangH. DislichB. ColomboA. ZeitschelU. EllwartJ.W. KremmerE. RoßnerS. LichtenthalerS.F. ADAM10 is the physiologically relevant, constitutive α-secretase of the amyloid precursor protein in primary neurons.EMBO J.201029173020303210.1038/emboj.2010.167 20676056
    [Google Scholar]
  87. LeeH. HoeH.S. Inhibition of CDK4/6 regulates AD pathology, neuroinflammation and cognitive function through DYRK1A/STAT3 signaling.Pharmacol. Res.202319010672510.1016/j.phrs.2023.106725 36907286
    [Google Scholar]
  88. BhardwajT. GiriR. Potential of ADAM 17 signal peptide to form amyloid aggregates in vitro.ACS Chem. Neurosci.202314203818382510.1021/acschemneuro.3c00424 37802503
    [Google Scholar]
  89. PietriM. DakowskiC. HannaouiS. Alleaume-ButauxA. Hernandez-RappJ. RagagninA. Mouillet-RichardS. HaikS. BaillyY. PeyrinJ.M. LaunayJ.M. KellermannO. SchneiderB. PDK1 decreases TACE-mediated α-secretase activity and promotes disease progression in prion and Alzheimer’s diseases.Nat. Med.20131991124113110.1038/nm.3302 23955714
    [Google Scholar]
  90. FeuerbachD. SchindlerP. BarskeC. JollerS. LoukaB.E. WorringerK.A. KommineniS. KaykasA. HoD.J. YeC. WelzenbachK. ElainG. KleinL. BrzakI. MirA.K. FaradyC.J. AichholzR. PoppS. GeorgeN. NeumannU. ADAM17 is the main sheddase for the generation of human triggering receptor expressed in myeloid cells (hTREM2) ectodomain and cleaves TREM2 after Histidine 157.Neurosci. Lett.201766010911410.1016/j.neulet.2017.09.034 28923481
    [Google Scholar]
  91. KleinbergerG. YamanishiY. Suárez-CalvetM. CzirrE. LohmannE. CuyversE. StruyfsH. PettkusN. Wenninger-WeinzierlA. MazaheriF. TahirovicS. LleóA. AlcoleaD. ForteaJ. WillemM. LammichS. MolinuevoJ.L. Sánchez-ValleR. AntonellA. RamirezA. HenekaM.T. SleegersK. van der ZeeJ. MartinJ.J. EngelborghsS. TatlidedeD.A. ZetterbergH. Van BroeckhovenC. GurvitH. CorayW.T. HardyJ. ColonnaM. HaassC. TREM2 mutations implicated in neurodegeneration impair cell surface transport and phagocytosis.Sci. Transl. Med.20146243243ra8610.1126/scitranslmed.3009093 24990881
    [Google Scholar]
  92. SunQ. HampelH. BlennowK. ListaS. LeveyA. TangB. LiR. ShenY. Increased plasma TACE activity in subjects with mild cognitive impairment and patients with Alzheimer’s disease.J. Alzheimers Dis.201441387788610.3233/JAD‑140177 24685635
    [Google Scholar]
  93. SkovronskyD.M. FathS. LeeV.M.Y. MillaM.E. Neuronal localization of the TNFα converting enzyme (TACE) in brain tissue and its correlation to amyloid plaques.J. Neurobiol.2001491404610.1002/neu.1064 11536196
    [Google Scholar]
  94. SastreM. WalterJ. GentlemanS.M. Interactions between APP secretases and inflammatory mediators.J. Neuroinflammation2008512510.1186/1742‑2094‑5‑25 18564425
    [Google Scholar]
  95. PalazuelosJ. CrawfordH.C. KlingenerM. SunB. KarelisJ. RainesE.W. AguirreA. TACE/ADAM17 is essential for oligodendrocyte development and CNS myelination.J. Neurosci.20143436118841189610.1523/JNEUROSCI.1220‑14.2014 25186737
    [Google Scholar]
  96. CagninA. BrooksD.J. KennedyA.M. GunnR.N. MyersR. TurkheimerF.E. JonesT. BanatiR.B. In-vivo measurement of activated microglia in dementia.Lancet2001358928046146710.1016/S0140‑6736(01)05625‑2 11513911
    [Google Scholar]
  97. HenekaM.T. SastreM. OzimekD.L. DewachterI. WalterJ. KlockgetherT. Van LeuvenF. Focal glial activation coincides with increased BACE1 activation and precedes amyloid plaque deposition in APP[V717I] transgenic mice.J. Neuroinflammation2005212210.1186/1742‑2094‑2‑22 16212664
    [Google Scholar]
  98. McAlpineF.E. LeeJ.K. HarmsA.S. RuhnK.A. JonesB.M. HongJ. DasP. GoldeT.E. LaFerlaF.M. OddoS. BleschA. TanseyM.G. Inhibition of soluble TNF signaling in a mouse model of Alzheimer’s disease prevents pre-plaque amyloid-associated neuropathology.Neurobiol. Dis.200934116317710.1016/j.nbd.2009.01.006 19320056
    [Google Scholar]
  99. GartonK.J. GoughP.J. PhilalayJ. WilleP.T. BlobelC.P. WhiteheadR.H. DempseyP.J. RainesE.W. Stimulated shedding of vascular cell adhesion molecule 1 (VCAM-1) is mediated by tumor necrosis factor-α-converting enzyme (ADAM 17).J. Biol. Chem.200327839374593746410.1074/jbc.M305877200 12878595
    [Google Scholar]
  100. TsakadzeN.L. SithuS.D. SenU. EnglishW.R. MurphyG. D’SouzaS.E. Tumor necrosis factor-α-converting enzyme (TACE/ADAM-17) mediates the ectodomain cleavage of intercellular adhesion molecule-1 (ICAM-1).J. Biol. Chem.200628163157316410.1074/jbc.M510797200 16332693
    [Google Scholar]
  101. NormanM.U. JamesW.G. HickeyM.J. Differential roles of ICAM-1 and VCAM-1 in leukocyte-endothelial cell interactions in skin and brain of MRL/fas lpr mice.J. Leukoc. Biol.2008841687610.1189/jlb.1107796 18426970
    [Google Scholar]
  102. IemmoloM. GhersiG. BivonaG. The cytokine CX3CL1 and ADAMs/MMPs in concerted cross-talk influencing neurodegenerative diseases.Int. J. Mol. Sci.2023249802610.3390/ijms24098026 37175729
    [Google Scholar]
  103. QiuX. WangJ. ZhangW. DuanC. ChenT. ZhangD. SuJ. GaoL. Disruption of the ADAM17/NF-κB feedback loop in astrocytes ameliorates HIV-1 Tat-induced inflammatory response and neuronal death.J. Neurovirol.202329328329610.1007/s13365‑023‑01131‑5 37185939
    [Google Scholar]
  104. HartlD. MayP. GuW. MayhausM. PichlerS. SpaniolC. GlaabE. BobbiliD.R. AntonyP. KoegelsbergerS. KurzA. GrimmerT. MorganK. VardarajanB.N. ReitzC. HardyJ. BrasJ. GuerreiroR. BallingR. SchneiderJ.G. RiemenschneiderM. A rare loss-of-function variant of ADAM17 is associated with late-onset familial Alzheimer disease.Mol. Psychiatry202025362963910.1038/s41380‑018‑0091‑8 29988083
    [Google Scholar]
  105. TianY. FopianoK.A. BunchaV. LangL. SuggsH.A. WangR. RudicR.D. FilosaJ.A. BagiZ. The role of ADAM17 in cerebrovascular and cognitive function in the APP/PS1 mouse model of Alzheimer’s disease.Front. Mol. Neurosci.202316112593210.3389/fnmol.2023.1125932 36937050
    [Google Scholar]
  106. ZhangH. WeiM. SunN. WangH. FanH. Melatonin attenuates chronic stress-induced hippocampal inflammatory response and apoptosis by inhibiting ADAM17/TNF-α axis.Food Chem. Toxicol.202216911344110.1016/j.fct.2022.113441 36162616
    [Google Scholar]
  107. LichtenthalerS.F. O’HaraB.F. BlobelC.P. iRhoms in the brain - A new frontier?Cell Cycle201514193003300410.1080/15384101.2015.1084187 26291882
    [Google Scholar]
  108. De JagerP.L. SrivastavaG. LunnonK. BurgessJ. SchalkwykL.C. YuL. EatonM.L. KeenanB.T. ErnstJ. McCabeC. TangA. RajT. ReplogleJ. BrodeurW. GabrielS. ChaiH.S. YounkinC. YounkinS.G. ZouF. SzyfM. EpsteinC.B. SchneiderJ.A. BernsteinB.E. MeissnerA. TanerE.N. ChibnikL.B. KellisM. MillJ. BennettD.A. Alzheimer’s disease: Early alterations in brain DNA methylation at ANK1, BIN1, RHBDF2 and other loci.Nat. Neurosci.20141791156116310.1038/nn.3786 25129075
    [Google Scholar]
  109. ApoG.E. MayaM.A. DíazF.M. PereyraS.J. Structural brain changes associated with overweight and obesity.J. Obes.2021202111810.1155/2021/6613385 34327017
    [Google Scholar]
  110. YunJ.H. LeeD.H. JeongH.S. KimH.S. YeS.K. ChoC.H. STAT3 activation in microglia exacerbates hippocampal neuronal apoptosis in diabetic brains.J. Cell. Physiol.2021236107058707010.1002/jcp.30373 33754353
    [Google Scholar]
  111. AsslihS. DamriO. AgamG. Neuroinflammation as a common denominator of complex diseases (cancer, diabetes type 2, and neuropsychiatric disorders).Int. J. Mol. Sci.20212211613810.3390/ijms22116138 34200240
    [Google Scholar]
  112. NewcombeE.A. Camats-PernaJ. SilvaM.L. ValmasN. HuatT.J. MedeirosR. Inflammation: The link between comorbidities, genetics, and Alzheimer’s disease.J. Neuroinflammation201815127610.1186/s12974‑018‑1313‑3 30249283
    [Google Scholar]
  113. PivovarovaO. HöhnA. GruneT. PfeifferA.F.H. RudovichN. Insulin-degrading enzyme: New therapeutic target for diabetes and Alzheimer’s disease?Ann. Med.201648861462410.1080/07853890.2016.1197416 27320287
    [Google Scholar]
  114. ArnoldS.E. ArvanitakisZ. RambachM.S.L. KoenigA.M. WangH.Y. AhimaR.S. CraftS. GandyS. BuettnerC. StoeckelL.E. HoltzmanD.M. NathanD.M. Brain insulin resistance in type 2 diabetes and Alzheimer disease: Concepts and conundrums.Nat. Rev. Neurol.201814316818110.1038/nrneurol.2017.185 29377010
    [Google Scholar]
  115. TuX. ZhangH. ShiS. LiangR. WangC. ChenC. YangW. 5-LOX inhibitor zileuton reduces inflammatory reaction and ischemic brain damage through the activation of PI3K/Akt signaling pathway.Neurochem. Res.201641102779278710.1007/s11064‑016‑1994‑x 27380038
    [Google Scholar]
  116. StoeckelL.E. ArvanitakisZ. GandyS. SmallD. KahnC.R. LeoneP.A. PawlykA. SherwinR. SmithP. Complex mechanisms linking neurocognitive dysfunction to insulin resistance and other metabolic dysfunction.F1000 Res.2016535310.12688/f1000research.8300.2 27303627
    [Google Scholar]
  117. LuchsingerJ.A. ReitzC. PatelB. TangM.X. ManlyJ.J. MayeuxR. Relation of diabetes to mild cognitive impairment.Arch. Neurol.200764457057510.1001/archneur.64.4.570 17420320
    [Google Scholar]
  118. QutubA.A. HuntC.A. Glucose transport to the brain: A systems model.Brain Res. Brain Res. Rev.200549359561710.1016/j.brainresrev.2005.03.002 16269321
    [Google Scholar]
  119. ZhaoR.R. O’SullivanA.J. SinghF.M.A. Exercise or physical activity and cognitive function in adults with type 2 diabetes, insulin resistance or impaired glucose tolerance: A systematic review.Eur. Rev. Aging Phys. Act.2018151110.1186/s11556‑018‑0190‑1 29387262
    [Google Scholar]
  120. MooreE.M. ManderA.G. AmesD. KotowiczM.A. CarneR.P. BrodatyH. WoodwardM. BoundyK. EllisK.A. BushA.I. FauxN.G. MartinsR. SzoekeC. RoweC. WattersD.A. Increased risk of cognitive impairment in patients with diabetes is associated with metformin.Diabetes Care201336102981298710.2337/dc13‑0229 24009301
    [Google Scholar]
  121. ChenS. PengJ. SherchanP. MaY. XiangS. YanF. ZhaoH. JiangY. WangN. ZhangJ.H. ZhangH. TREM2 activation attenuates neuroinflammation and neuronal apoptosis via PI3K/Akt pathway after intracerebral hemorrhage in mice.J. Neuroinflammation202017116810.1186/s12974‑020‑01853‑x 32466767
    [Google Scholar]
  122. FeldmanE.L. O’brienP.D. HinderL.M. CallaghanB.C. Neurological consequences of obesity.Lancet Neurol.2017166465477
    [Google Scholar]
  123. QuanY. DuJ. WangX. High glucose stimulates GRO secretion from rat microglia via ROS, PKC, and NF‐κB pathways.J. Neurosci. Res.200785143150315910.1002/jnr.21421 17639599
    [Google Scholar]
  124. QuanY. JiangC. XueB. ZhuS. WangX. High glucose stimulates TNFα and MCP-1 expression in rat microglia via ROS and NF-κB pathways.Acta Pharmacol. Sin.201132218819310.1038/aps.2010.174 21293471
    [Google Scholar]
  125. VuongB. OderoG. RozbacherS. StevensonM. KereliukS.M. PereiraT.J. DolinskyV.W. KauppinenT.M. Exposure to gestational diabetes mellitus induces neuroinflammation, derangement of hippocampal neurons, and cognitive changes in rat offspring.J. Neuroinflammation20171418010.1186/s12974‑017‑0859‑9 28388927
    [Google Scholar]
  126. ZhuS.H. LiuB.Q. HaoM.J. FanY.X. QianC. TengP. ZhouX.W. HuL. LiuW.T. YuanZ.L. LiQ.P. Paeoniflorin suppressed high glucose-induced retinal microglia MMP-9 expression and inflammatory response via inhibition of TLR4/NF-κB pathway through upregulation of SOCS3 in diabetic retinopathy.Inflammation20174051475148610.1007/s10753‑017‑0571‑z 28639050
    [Google Scholar]
  127. XuX. ZhangA. ZhuY. HeW. DiW. FangY. ShiX. MFG‐E8 reverses microglial‐induced neurotoxic astrocyte (A1) via NF‐κB and PI3K‐Akt pathways.J. Cell. Physiol.2019234190491410.1002/jcp.26918 30076715
    [Google Scholar]
  128. GrellM. DouniE. WajantH. LöhdenM. ClaussM. MaxeinerB. GeorgopoulosS. LesslauerW. KolliasG. PfizenmaierK. ScheurichP. The transmembrane form of tumor necrosis factor is the prime activating ligand of the 80 kDa tumor necrosis factor receptor.Cell199583579380210.1016/0092‑8674(95)90192‑2 8521496
    [Google Scholar]
  129. BlockM.L. ZeccaL. HongJ.S. Microglia-mediated neurotoxicity: Uncovering the molecular mechanisms.Nat. Rev. Neurosci.200781576910.1038/nrn2038 17180163
    [Google Scholar]
  130. LiH. MeiX-Y. WangM-N. ZhangT-Y. ZhangY. LuB. ShengY-C. Scutellarein alleviates the dysfunction of inner blood-retinal-barrier initiated by hyperglycemia-stimulated microglia cells.Int. J. Ophthalmol.202013101538154510.18240/ijo.2020.10.05 33078102
    [Google Scholar]
  131. HuangL. YouJ. YaoY. XieM. High glucose induces pyroptosis of retinal microglia through NLPR3 inflammasome signaling.Arq. Bras. Oftalmol.2021841677310.5935/0004‑2749.20210010 33470344
    [Google Scholar]
  132. von HerrmannK.M. AndersonF.L. MartinezE.M. YoungA.L. HavrdaM.C. Slc6a3-dependent expression of a CAPS-associated Nlrp3 allele results in progressive behavioral abnormalities and neuroinflammation in aging mice.J. Neuroinflammation202017121310.1186/s12974‑020‑01866‑6 32680528
    [Google Scholar]
  133. McGeoughM.D. WreeA. InzaugaratM.E. HaimovichA. JohnsonC.D. PeñaC.A. ManskyG.R. BroderickL. FeldsteinA.E. HoffmanH.M. TNF regulates transcription of NLRP3 inflammasome components and inflammatory molecules in cryopyrinopathies.J. Clin. Invest.2017127124488449710.1172/JCI90699 29130929
    [Google Scholar]
  134. BogoyevitchM.A. CourtN.W. Counting on mitogen-activated protein kinases-ERKs 3, 4, 5, 6, 7 and 8.Cell. Signal.200416121345135410.1016/j.cellsig.2004.05.004 15381250
    [Google Scholar]
  135. HerlaarE. BrownZ. p38 MAPK signalling cascades in inflammatory disease.Mol. Med. Today199951043944710.1016/S1357‑4310(99)01544‑0 10498912
    [Google Scholar]
  136. HensleyK. FloydR.A. ZhengN.Y. NaelR. RobinsonK.A. NguyenX. PyeQ.N. StewartC.A. GeddesJ. MarkesberyW.R. PatelE. JohnsonG.V.W. BingG. p38 kinase is activated in the Alzheimer’s disease brain.J. Neurochem.19997252053205810.1046/j.1471‑4159.1999.0722053.x 10217284
    [Google Scholar]
  137. KimS.H. SmithC.J. Van EldikL.J. Importance of MAPK pathways for microglial pro-inflammatory cytokine IL-1β production.Neurobiol. Aging200425443143910.1016/S0197‑4580(03)00126‑X 15013563
    [Google Scholar]
  138. XuP. LiuJ. YumotoS.M. DerynckR. TACE activation by MAPK-mediated regulation of cell surface dimerization and TIMP3 association.Sci. Signal.20125222ra3410.1126/scisignal.2002689 22550340
    [Google Scholar]
  139. HotamisligilG.S. BudavariA. MurrayD. SpiegelmanB.M. Reduced tyrosine kinase activity of the insulin receptor in obesity-diabetes. Central role of tumor necrosis factor-alpha.J. Clin. Invest.19949441543154910.1172/JCI117495 7523453
    [Google Scholar]
  140. HeP. ZhongZ. LindholmK. BerningL. LeeW. LemereC. StaufenbielM. LiR. ShenY. Deletion of tumor necrosis factor death receptor inhibits amyloid β generation and prevents learning and memory deficits in Alzheimer’s mice.J. Cell Biol.2007178582984110.1083/jcb.200705042 17724122
    [Google Scholar]
  141. LiX. LiM. TianL. ChenJ. LiuR. NingB. Reactive astrogliosis: Implications in spinal cord injury progression and therapy.Oxid. Med. Cell. Longev.2020202011410.1155/2020/9494352 32884625
    [Google Scholar]
  142. MülbergJ. SchooltinkH. StoyanT. GüntherM. GraeveL. BuseG. MackiewiczA. HeinrichP.C. Rose-JohnS. The soluble interleukin‐6 receptor is generated by shedding.Eur. J. Immunol.199323247348010.1002/eji.1830230226 8436181
    [Google Scholar]
  143. StarkG.R. DarnellJ.E.Jr The JAK-STAT pathway at twenty.Immunity201236450351410.1016/j.immuni.2012.03.013 22520844
    [Google Scholar]
  144. LokauJ. GarbersC. Activating mutations of the gp130/JAK/STAT pathway in human diseases.Adv. Protein Chem. Struct. Biol.201911628330910.1016/bs.apcsb.2018.11.007 31036294
    [Google Scholar]
  145. SecnikJ. XuH. SchwertnerE. HammarN. AlvarssonM. WinbladB. EriksdotterM. PtacekG.S. ReligaD. The association of antidiabetic medications and Mini-Mental State Examination scores in patients with diabetes and dementia.Alzheimers Res. Ther.202113119710.1186/s13195‑021‑00934‑0 34857046
    [Google Scholar]
  146. LuoA. XieZ. WangY. WangX. LiS. YanJ. ZhanG. ZhouZ. ZhaoY. LiS. Type 2 diabetes mellitus-associated cognitive dysfunction: Advances in potential mechanisms and therapies.Neurosci. Biobehav. Rev.202213710464210.1016/j.neubiorev.2022.104642 35367221
    [Google Scholar]
  147. EmmanouilidouE. MinakakiG. KeramiotiM.V. XylakiM. BalafasE. PiterouC.M. KloukinaI. VekrellisK. GABA transmission via ATP-dependent K+ channels regulates α-synuclein secretion in mouse striatum.Brain2016139387189010.1093/brain/awv403 26912647
    [Google Scholar]
  148. PugaS.K. ColoradoR.J. AlcaláP.R.A. OrtegaP.F. Subclinical doses of ATP-sensitive potassium channel modulators prevent alterations in memory and synaptic plasticity induced by Amyloid-β.J. Alzheimers Dis.201757120522610.3233/JAD‑160543 28222502
    [Google Scholar]
  149. HsuC.C. WahlqvistM.L. LeeM.S. TsaiH.N. Incidence of dementia is increased in type 2 diabetes and reduced by the use of sulfonylureas and metformin.J. Alzheimers Dis.201124348549310.3233/JAD‑2011‑101524 21297276
    [Google Scholar]
  150. FloryJ. LipskaK. Metformin in 2019.JAMA2019321191926192710.1001/jama.2019.3805 31009043
    [Google Scholar]
  151. KhattarD. KhaliqF. VaneyN. MadhuS.V. Is metformin-induced vitamin B12 deficiency responsible for cognitive decline in type 2 diabetes?Indian J. Psychol. Med.201638428529010.4103/0253‑7176.185952 27570337
    [Google Scholar]
  152. ThangthaengN. RutledgeM. WongJ.M. VannP.H. ForsterM.J. SumienN. Metformin impairs spatial memory and visual acuity in old male mice.Aging Dis.201781173010.14336/AD.2016.1010 28203479
    [Google Scholar]
  153. PratchayasakulW. JinawongK. PongkanW. JaiwongkamT. ArunsakB. ChunchaiT. TokudaM. ChattipakornN. ChattipakornS.C. Not only metformin, but also D-allulose, alleviates metabolic disturbance and cognitive decline in prediabetic rats.Nutr. Neurosci.20222561115112710.1080/1028415X.2020.1840050 33151133
    [Google Scholar]
  154. LuchsingerJ.A. PerezT. ChangH. MehtaP. SteffenerJ. PradabhanG. IchiseM. ManlyJ. DevanandD.P. BagiellaE. Metformin in amnestic mild cognitive impairment: Results of a pilot randomized placebo controlled clinical trial.J. Alzheimers Dis.201651250151410.3233/JAD‑150493 26890736
    [Google Scholar]
  155. SamarasK. MakkarS. CrawfordJ.D. KochanN.A. WenW. DraperB. TrollorJ.N. BrodatyH. SachdevP.S. Metformin use is associated with slowed cognitive decline and reduced incident dementia in older adults with type 2 diabetes: The sydney memory and ageing study.Diabetes Care202043112691270110.2337/dc20‑0892 32967921
    [Google Scholar]
  156. CampbellJ.M. StephensonM.D. de CourtenB. ChapmanI. BellmanS.M. AromatarisE. Metformin use associated with reduced risk of dementia in patients with diabetes: A systematic review and meta-analysis.J. Alzheimers Dis.20186541225123610.3233/JAD‑180263 30149446
    [Google Scholar]
  157. MalazyT.O. BandarianF. QorbaniM. MohseniS. MirsadeghiS. PeimaniM. LarijaniB. The effect of metformin on cognitive function: A systematic review and meta-analysis.J. Psychopharmacol.202236666667910.1177/02698811211057304 35297284
    [Google Scholar]
  158. TengZ. FengJ. QiQ. DongY. XiaoY. XieX. MengN. ChenH. ZhangW. LvP. Long-term use of metformin is associated with reduced risk of cognitive impairment with alleviation of cerebral small vessel disease burden in patients with type 2 diabetes.Front. Aging Neurosci.20211377379710.3389/fnagi.2021.773797 34776938
    [Google Scholar]
  159. McIntyreR.S. SoczynskaJ.K. WoldeyohannesH.O. LewisG.F. LeiterL.A. MacQueenG.M. MirandaA. FulgosiD. KonarskiJ.Z. KennedyS.H. Thiazolidinediones: Novel treatments for cognitive deficits in mood disorders?Expert Opin. Pharmacother.20078111615162810.1517/14656566.8.11.1615 17685880
    [Google Scholar]
  160. CortezI. HernandezC.M. DineleyK.T. Enhancement of select cognitive domains with rosiglitazone implicates dorsal hippocampus circuitry sensitive to PPARγ agonism in an Alzheimer’s mouse model.Brain Behav.2021112e0197310.1002/brb3.1973 33382528
    [Google Scholar]
  161. SatoT. HanyuH. HiraoK. KanetakaH. SakuraiH. IwamotoT. Efficacy of PPAR-γ agonist pioglitazone in mild Alzheimer disease.Neurobiol. Aging20113291626163310.1016/j.neurobiolaging.2009.10.009 19923038
    [Google Scholar]
  162. DickerD. DPP-4 inhibitors.Diabetes Care201134S2S276S27810.2337/dc11‑s229 21525468
    [Google Scholar]
  163. MüllerT.D. FinanB. BloomS.R. D’AlessioD. DruckerD.J. FlattP.R. FritscheA. GribbleF. GrillH.J. HabenerJ.F. HolstJ.J. LanghansW. MeierJ.J. NauckM.A. TilveP.D. PocaiA. ReimannF. SandovalD.A. SchwartzT.W. SeeleyR.J. StemmerK. ChristensenT.M. WoodsS.C. DiMarchiR.D. TschöpM.H. Glucagon-like peptide 1 (GLP-1).Mol. Metab.2019307213010.1016/j.molmet.2019.09.010 31767182
    [Google Scholar]
  164. JiangL.Y. TangS.S. WangX.Y. LiuL.P. LongY. HuM. LiaoM.X. DingQ.L. HuW. LiJ.C. HongH. PPARγ agonist pioglitazone reverses memory impairment and biochemical changes in a mouse model of type 2 diabetes mellitus.CNS Neurosci. Ther.201218865966610.1111/j.1755‑5949.2012.00341.x 22620268
    [Google Scholar]
  165. FemminellaG.D. FrangouE. LoveS.B. BuszaG. HolmesC. RitchieC. LawrenceR. McFarlaneB. TadrosG. RidhaB.H. BannisterC. WalkerZ. ArcherH. CoulthardE. UnderwoodB.R. PrasannaA. KorantengP. KarimS. JunaidK. McGuinnessB. NilforooshanR. MacharouthuA. DonaldsonA. ThackerS. RussellG. MalikN. MateV. KnightL. KshemendranS. HarrisonJ. BrooksD.J. PassmoreA.P. BallardC. EdisonP. EdisonP. Evaluating the effects of the novel GLP-1 analogue liraglutide in Alzheimer’s disease: Study protocol for a randomised controlled trial (ELAD study).Trials201920119110.1186/s13063‑019‑3259‑x 30944040
    [Google Scholar]
  166. HölscherC. Protective properties of GLP‐1 and associated peptide hormones in neurodegenerative disorders.Br. J. Pharmacol.2022179469571410.1111/bph.15508 33900631
    [Google Scholar]
  167. GaultV.A. LennoxR. FlattP.R. Sitagliptin, a dipeptidyl peptidase‐4 inhibitor, improves recognition memory, oxidative stress and hippocampal neurogenesis and upregulates key genes involved in cognitive decline.Diabetes Obes. Metab.201517440341310.1111/dom.12432 25580570
    [Google Scholar]
  168. D’AmicoM. FilippoD.C. MarfellaR. AbbatecolaA.M. FerraraccioF. RossiF. PaolissoG. Long-term inhibition of dipeptidyl peptidase-4 in Alzheimer’s prone mice.Exp. Gerontol.201045320220710.1016/j.exger.2009.12.004 20005285
    [Google Scholar]
  169. BadawiG.A. Abd El FattahM.A. ZakiH.F. El SayedM.I. Sitagliptin and liraglutide reversed nigrostriatal degeneration of rodent brain in rotenone-induced Parkinson’s disease.Inflammopharmacology201725336938210.1007/s10787‑017‑0331‑6 28258522
    [Google Scholar]
  170. LabandeiraC.M. BauF.A. RonA.D. MuñozA. LosadaA.G. KoukoulisA. LopezR.J. PerezR.A.I. Diabetes, insulin and new therapeutic strategies for Parkinson’s disease: Focus on glucagon-like peptide-1 receptor agonists.Front. Neuroendocrinol.20216210091410.1016/j.yfrne.2021.100914 33845041
    [Google Scholar]
  171. FreiherrJ. HallschmidM. FreyW.H.II BrünnerY.F. ChapmanC.D. HölscherC. CraftS. De FeliceF.G. BenedictC. Intranasal insulin as a treatment for Alzheimer’s disease: A review of basic research and clinical evidence.CNS Drugs201327750551410.1007/s40263‑013‑0076‑8 23719722
    [Google Scholar]
  172. LebovitzH.E. Insulin: Potential negative consequences of early routine use in patients with type 2 diabetes.Diabetes Care201134S2S225S23010.2337/dc11‑s225 21525460
    [Google Scholar]
  173. PalleriaC. LeporiniC. MaidaF. SuccurroE. De SarroG. ArturiF. RussoE. Potential effects of current drug therapies on cognitive impairment in patients with type 2 diabetes.Front. Neuroendocrinol.201642769210.1016/j.yfrne.2016.07.002 27521218
    [Google Scholar]
  174. MoneP. LombardiA. GambardellaJ. PansiniA. MacinaG. MorganteM. FrulloneS. SantulliG. Empagliflozin improves cognitive impairment in frail older adults with type 2 diabetes and heart failure with preserved ejection fraction.Diabetes Care20224551247125110.2337/dc21‑2434 35287171
    [Google Scholar]
  175. KuhlaA. BrichmannE. RühlmannC. ThieleR. MeuthL. VollmarB. Metformin therapy aggravates neurodegenerative processes in ApoE–/– mice.J. Alzheimers Dis.20196841415142710.3233/JAD‑181017 30909226
    [Google Scholar]
/content/journals/cn/10.2174/1570159X22666240517090855
Loading
/content/journals/cn/10.2174/1570159X22666240517090855
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): dementia; diabetes; inflammation; Mild cognitive impairment; MMPs; T2DM
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test