Skip to content
2000
Volume 23, Issue 1
  • ISSN: 1570-159X
  • E-ISSN: 1875-6190

Abstract

Introduction/Objective

Multiple sclerosis (MS), is characterized by autoimmune-driven neuroinflammation, axonal degeneration, and demyelination. This study aimed to explore the therapeutic potential of targeting Notch signaling within the central nervous system (CNS) in the context of MS. Understanding the intricate roles of Notch signaling could pave the way for targeted interventions to mitigate MS progression.

Methods

A comprehensive literature review was conducted using databases such as PubMed, Web of Science, and Scopus. Keywords such as “Notch signaling,” “neuroglial interactions,” and “MS” were used. The selection criteria included relevance to neuroglial interactions, peer-reviewed publications, and studies involving animal models of MS.

Results

This review highlights the diverse functions of Notch signaling in CNS development, including its regulation of neural stem cell differentiation into neurons, astrocytes, and oligodendrocytes. In the context of MS, Notch signaling has emerged as a promising therapeutic target, exhibiting positive impacts on neuroprotection and remyelination. However, its intricate nature within the CNS necessitates precise modulation for therapeutic efficacy.

Conclusion

This study provides a comprehensive overview of the potential therapeutic role of Notch signaling in MS. The findings underscore the significance of Notch modulation for neuroprotection and remyelination, emphasizing the need for precision in therapeutic interventions. Further research is imperative to elucidate the specific underlying mechanisms involved, which will provide a foundation for targeted therapeutic strategies for the management of MS and related neurodegenerative disorders.

Loading

Article metrics loading...

/content/journals/cn/10.2174/1570159X22666240731114906
2024-07-31
2024-11-22
Loading full text...

Full text loading...

References

  1. HauserS.L. CreeB.A.C. Treatment of multiple sclerosis: A review.Am. J. Med.20201331213801390.e210.1016/j.amjmed.2020.05.049 32682869
    [Google Scholar]
  2. DevanandM. v N, S.; Madhu, K. Signaling mechanisms involved in the regulation of remyelination in multiple sclerosis: A mini review.J. Mol. Med. (Berl.)2023101663764410.1007/s00109‑023‑02312‑9 37084092
    [Google Scholar]
  3. ZhangR. EnglerA. TaylorV. Notch: An interactive player in neurogenesis and disease.Cell Tissue Res.20183711738910.1007/s00441‑017‑2641‑9 28620760
    [Google Scholar]
  4. BassilR. OrentW. ElyamanW. Notch signaling and T-helper cells in EAE/MS.Clin. Dev. Immunol.201320131710.1155/2013/570731 24324509
    [Google Scholar]
  5. HuangJ.K. FranklinR.J.M. Regenerative medicine in multiple sclerosis: Identifying pharmacological targets of adult neural stem cell differentiation.Neurochem. Int.201159332933210.1016/j.neuint.2011.01.017 21300122
    [Google Scholar]
  6. KopanR. Notch signaling.Cold Spring Harb. Perspect. Biol.2012410a01121310.1101/cshperspect.a011213 23028119
    [Google Scholar]
  7. MajumderS. CrabtreeJ.S. GoldeT.E. MinterL.M. OsborneB.A. MieleL. Targeting Notch in oncology: The path forward.Nat. Rev. Drug Discov.202120212514410.1038/s41573‑020‑00091‑3 33293690
    [Google Scholar]
  8. ZhouB. LinW. LongY. YangY. ZhangH. WuK. ChuQ. Notch signaling pathway: Architecture, disease, and therapeutics.Signal Transduct. Target. Ther.2022719510.1038/s41392‑022‑00934‑y 35332121
    [Google Scholar]
  9. KovallR.A. GebeleinB. SprinzakD. KopanR. The canonical notch signaling pathway: Structural and biochemical insights into shape, sugar, and force.Dev. Cell201741322824110.1016/j.devcel.2017.04.001 28486129
    [Google Scholar]
  10. WangY. PanL. MoensC.B. AppelB. Notch3 establishes brain vascular integrity by regulating pericyte number.Development2014141230731710.1242/dev.096107 24306108
    [Google Scholar]
  11. KopanR. IlaganM.X.G. The canonical Notch signaling pathway: Unfolding the activation mechanism.Cell2009137221623310.1016/j.cell.2009.03.045 19379690
    [Google Scholar]
  12. TyagiA. SharmaA.K. DamodaranC. A review on notch signaling and colorectal cancer.Cells202096154910.3390/cells9061549 32630477
    [Google Scholar]
  13. D’AssoroA. Leon-FerreR. BrauneE.B. LendahlU. Roles of notch signaling in the tumor microenvironment.Int. J. Mol. Sci.20222311624110.3390/ijms23116241 35682918
    [Google Scholar]
  14. GordonW.R. Vardar-UluD. HistenG. Sanchez-IrizarryC. AsterJ.C. BlacklowS.C. Structural basis for autoinhibition of Notch.Nat. Struct. Mol. Biol.200714429530010.1038/nsmb1227 17401372
    [Google Scholar]
  15. GrootA.J. VooijsM.A. The role of adams in notch signaling.Adv. Exp. Med. Biol.2012727153610.1007/978‑1‑4614‑0899‑4_2 22399336
    [Google Scholar]
  16. LiY.M. XuM. LaiM.T. HuangQ. CastroJ.L. DiMuzio-MowerJ. HarrisonT. LellisC. NadinA. NeduvelilJ.G. RegisterR.B. SardanaM.K. ShearmanM.S. SmithA.L. ShiX.P. YinK.C. ShaferJ.A. GardellS.J. Photoactivated γ-secretase inhibitors directed to the active site covalently label presenilin 1.Nature2000405678768969410.1038/35015085 10864326
    [Google Scholar]
  17. ConnerS.D. Regulation of notch signaling through intracellular transport.Int. Rev. Cell Mol. Biol.201632310712710.1016/bs.ircmb.2015.12.002 26944620
    [Google Scholar]
  18. BrayS.J. Notch signalling in context.Nat. Rev. Mol. Cell Biol.2016171172273510.1038/nrm.2016.94 27507209
    [Google Scholar]
  19. JuryńczykM. SelmajK. Notch: A new player in MS mechanisms.J. Neuroimmunol.20102181-231110.1016/j.jneuroim.2009.08.010 19748685
    [Google Scholar]
  20. LathiaJ.D. MattsonM.P. ChengA. Notch: From neural development to neurological disorders.J. Neurochem.200810761471148110.1111/j.1471‑4159.2008.05715.x 19094054
    [Google Scholar]
  21. LingE.A. WongW.C. The origin and nature of ramified and amoeboid microglia: A historical review and current concepts.Glia19937191810.1002/glia.440070105 8423067
    [Google Scholar]
  22. LingE.A. Some aspects of amoeboid microglia in the corpus callosum and neighbouring regions of neonatal rats.J. Anat.1976121Pt 12945 1254530
    [Google Scholar]
  23. PivnevaT.A. Microglia in normal condition and pathology. Fiziol Zh (1994)20085458189 19058517
    [Google Scholar]
  24. CaoQ. LuJ. KaurC. SivakumarV. LiF. CheahP.S. DheenS.T. LingE.A. Expression of Notch‐1 receptor and its ligands Jagged‐1 and Delta‐1 in amoeboid microglia in postnatal rat brain and murine BV‐2 cells.Glia200856111224123710.1002/glia.20692 18449946
    [Google Scholar]
  25. GuoJ. ZhangX.L.N. BaoZ.R. YangX.K. LiL.S. ZiY. LiF. WuC.Y. LiJ.J. YuanY. Gastrodin regulates the notch signaling pathway and Sirt3 in activated microglia in cerebral hypoxic-ischemia neonatal rats and in activated BV-2 microglia.Neuromol. Med.202123334836210.1007/s12017‑020‑08627‑x 33095377
    [Google Scholar]
  26. MinterL.M. TurleyD.M. DasP. ShinH.M. JoshiI. LawlorR.G. ChoO.H. PalagaT. GottipatiS. TelferJ.C. KosturaL. FauqA.H. SimpsonK. SuchK.A. MieleL. GoldeT.E. MillerS.D. OsborneB.A. Inhibitors of γ-secretase block in vivo and in vitro T helper type 1 polarization by preventing Notch upregulation of Tbx21.Nat. Immunol.20056768068810.1038/ni1209x 15991363
    [Google Scholar]
  27. ArumugamT.V. ChanS.L. JoD.G. YilmazG. TangS.C. ChengA. GleichmannM. OkunE. DixitV.D. ChigurupatiS. MughalM.R. OuyangX. MieleL. MagnusT. PoosalaS. GrangerD.N. MattsonM.P. Gamma secretase-mediated Notch signaling worsens brain damage and functional outcome in ischemic stroke.Nat. Med.200612662162310.1038/nm1403 16680150
    [Google Scholar]
  28. WuF. ZuoH.J. RenX.Q. WangP.X. LiF. LiJ.J. Gastrodin regulates the Notch-1 signal pathway via renin-angiotensin system in activated microglia.Neuromolecular Med.20232514052 35749056
    [Google Scholar]
  29. QinB. LiY. LiuX. GongD. ZhengW. Notch activation enhances microglial CX3CR1/P38 MAPK pathway in rats model of vincristine-induced peripheral neuropathy.Neurosci. Lett.202071513462410.1016/j.neulet.2019.134624 31726181
    [Google Scholar]
  30. GrandbarbeL. MichelucciA. HeurtauxT. HemmerK. MorgaE. HeuschlingP. Notch signaling modulates the activation of microglial cells.Glia200755151519153010.1002/glia.20553 17705199
    [Google Scholar]
  31. ChennA. A top-NOTCH way to make astrocytes.Dev. Cell200916215815910.1016/j.devcel.2009.01.019 19217415
    [Google Scholar]
  32. MagnussonJ.P. ZamboniM. SantopoloG. MoldJ.E. Barrientos-SomarribasM. Talavera-LopezC. AnderssonB. FrisénJ. Activation of a neural stem cell transcriptional program in parenchymal astrocytes.eLife20209e5973310.7554/eLife.59733 32744501
    [Google Scholar]
  33. Acaz-FonsecaE. Ortiz-RodriguezA. AzcoitiaI. Garcia-SeguraL.M. ArevaloM.A. Notch signaling in astrocytes mediates their morphological response to an inflammatory challenge.Cell Death Discov.2019518510.1038/s41420‑019‑0166‑6 30962951
    [Google Scholar]
  34. NamihiraM. KohyamaJ. SemiK. SanosakaT. DeneenB. TagaT. NakashimaK. Committed neuronal precursors confer astrocytic potential on residual neural precursor cells.Dev. Cell200916224525510.1016/j.devcel.2008.12.014 19217426
    [Google Scholar]
  35. MillerF.D. GauthierA.S. Timing is everything: making neurons versus glia in the developing cortex.Neuron200754335736910.1016/j.neuron.2007.04.019 17481390
    [Google Scholar]
  36. MorrowT. SongM.R. GhoshA. Sequential specification of neurons and glia by developmentally regulated extracellular factors.Development2001128183585359410.1242/dev.128.18.3585 11566862
    [Google Scholar]
  37. BayraktarO.A. FuentealbaL.C. Alvarez-BuyllaA. RowitchD.H. Astrocyte development and heterogeneity.Cold Spring Harb. Perspect. Biol.201571a02036210.1101/cshperspect.a020362 25414368
    [Google Scholar]
  38. TakizawaT. NakashimaK. NamihiraM. OchiaiW. UemuraA. YanagisawaM. FujitaN. NakaoM. TagaT. DNA methylation is a critical cell-intrinsic determinant of astrocyte differentiation in the fetal brain.Dev. Cell20011674975810.1016/S1534‑5807(01)00101‑0 11740937
    [Google Scholar]
  39. GaianoN. NyeJ.S. FishellG. Radial glial identity is promoted by Notch1 signaling in the murine forebrain.Neuron200026239540410.1016/S0896‑6273(00)81172‑1 10839358
    [Google Scholar]
  40. AbneyE.R. WilliamsB.P. RaffM.C. Tracing the development of oligodendrocytes from precursor cells using monoclonal antibodies, fluorescence-activated cell sorting, and cell culture.Dev. Biol.1983100116617110.1016/0012‑1606(83)90207‑5 6194025
    [Google Scholar]
  41. WangS. SdrullaA.D. diSibioG. BushG. NofzigerD. HicksC. WeinmasterG. BarresB.A. Notch receptor activation inhibits oligodendrocyte differentiation.Neuron1998211637510.1016/S0896‑6273(00)80515‑2 9697852
    [Google Scholar]
  42. SunQ. HuH-J. FanD-F. YeZ-H. Effects of hyperbaric oxygen on Notch signaling pathway after severe carbon monoxide poisoning in mice.Med. Gas Res.2023131232810.4103/2045‑9912.344971 35946219
    [Google Scholar]
  43. LeeJ.E. Basic helix-loop-helix genes in neural development.Curr. Opin. Neurobiol.199771132010.1016/S0959‑4388(97)80115‑8 9039799
    [Google Scholar]
  44. KageyamaR. NakanishiS. Helix-loop-helix factors in growth and differentiation of the vertebrate nervous system.Curr. Opin. Genet. Dev.19977565966510.1016/S0959‑437X(97)80014‑7 9388783
    [Google Scholar]
  45. ElbazB. PopkoB. Molecular control of oligodendrocyte development.Trends Neurosci.201942426327710.1016/j.tins.2019.01.002 30770136
    [Google Scholar]
  46. WadaT. KagawaT. IvanovaA. ZalcB. ShirasakiR. MurakamiF. IemuraS. UenoN. IkenakaK. Dorsal spinal cord inhibits oligodendrocyte development.Dev. Biol.20002271425510.1006/dbio.2000.9869 11076675
    [Google Scholar]
  47. MaQ. SommerL. CserjesiP. AndersonD.J. Mash1 and neurogenin1 expression patterns define complementary domains of neuroepithelium in the developing CNS and are correlated with regions expressing notch ligands.J. Neurosci.199717103644365210.1523/JNEUROSCI.17‑10‑03644.1997 9133387
    [Google Scholar]
  48. HardyR.J. Dorsoventral patterning and oligodendroglial specification in the developing central nervous system.J. Neurosci. Res.199750213914510.1002/(SICI)1097‑4547(19971015)50:2<139::AID‑JNR3>3.0.CO;2‑G 9373024
    [Google Scholar]
  49. DawsonM. PolitoA. LevineJ.M. ReynoldsR. NG2-expressing glial progenitor cells: an abundant and widespread population of cycling cells in the adult rat CNS.Mol. Cell. Neurosci.200324247648810.1016/S1044‑7431(03)00210‑0 14572468
    [Google Scholar]
  50. BelachewS. ChittajalluR. AguirreA.A. YuanX. KirbyM. AndersonS. GalloV. Postnatal NG2 proteoglycan-expressing progenitor cells are intrinsically multipotent and generate functional neurons.J. Cell Biol.2003161116918610.1083/jcb.200210110 12682089
    [Google Scholar]
  51. LiR. ZhangP. ZhangM. YaoZ. The roles of neuron-NG2 glia synapses in promoting oligodendrocyte development and remyelination.Cell Tissue Res.20203811435310.1007/s00441‑020‑03195‑9 32236697
    [Google Scholar]
  52. ZhuX. BerglesD.E. NishiyamaA. NG2 cells generate both oligodendrocytes and gray matter astrocytes.Development2008135114515710.1242/dev.004895 18045844
    [Google Scholar]
  53. KhazaeiM. AhujaC.S. NakashimaH. NagoshiN. LiL. WangJ. ChioJ. BadnerA. SeligmanD. IchiseA. ShibataS. FehlingsM.G. GDNF rescues the fate of neural progenitor grafts by attenuating Notch signals in the injured spinal cord in rodents.Sci. Transl. Med.202012525eaau353810.1126/scitranslmed.aau3538 31915299
    [Google Scholar]
  54. HespZ.C. YosephR.Y. SuzukiR. JukkolaP. WilsonC. NishiyamaA. McTigueD.M. Proliferating NG2-cell-dependent angiogenesis and scar formation alter axon growth and functional recovery after spinal cord injury in mice.J. Neurosci.20183861366138210.1523/JNEUROSCI.3953‑16.2017 29279310
    [Google Scholar]
  55. QianD. LiL. RongY. LiuW. WangQ. ZhouZ. GuC. HuangY. ZhaoX. ChenJ. FanJ. YinG. Blocking Notch signal pathway suppresses the activation of neurotoxic A1 astrocytes after spinal cord injury.Cell Cycle201918213010302910.1080/15384101.2019.1667189 31530090
    [Google Scholar]
  56. BoulangerJ.J. MessierC. Oligodendrocyte progenitor cells are paired with GABA neurons in the mouse dorsal cortex: Unbiased stereological analysis.Neuroscience201736212714010.1016/j.neuroscience.2017.08.018 28827179
    [Google Scholar]
  57. ChenB.Y. ZhengM.H. ChenY. DuY.L. SunX.L. ZhangX. DuanL. GaoF. LiangL. QinH.Y. LuoZ.J. HanH. Myeloid-specific blockade of notch signaling by RBP-J knockout attenuates spinal cord injury accompanied by compromised inflammation response in mice.Mol. Neurobiol.20155231378139010.1007/s12035‑014‑8934‑z 25344316
    [Google Scholar]
  58. ZhangY. ArgawA.T. GurfeinB.T. ZameerA. SnyderB.J. GeC. LuQ.R. RowitchD.H. RaineC.S. BrosnanC.F. JohnG.R. Notch1 signaling plays a role in regulating precursor differentiation during CNS remyelination.Proc. Natl. Acad. Sci. USA200910645191621916710.1073/pnas.0902834106 19855010
    [Google Scholar]
  59. StidworthyM.F. GenoudS. LiW-W. LeoneD.P. ManteiN. SuterU. FranklinR.J. Notch1 and Jagged1 are expressed after CNS demyelination, but are not a major rate-determining factor during remyelination.Brain200412791928194110.1093/brain/awh217 15289265
    [Google Scholar]
  60. HuQ.D. AngB.T. KarsakM. HuW.P. CuiX.Y. DukaT. TakedaY. ChiaW. SankarN. NgY.K. LingE.A. MaciagT. SmallD. TrifonovaR. KopanR. OkanoH. NakafukuM. ChibaS. HiraiH. AsterJ.C. SchachnerM. PallenC.J. WatanabeK. XiaoZ.C. F3/contactin acts as a functional ligand for Notch during oligodendrocyte maturation.Cell2003115216317510.1016/S0092‑8674(03)00810‑9 14567914
    [Google Scholar]
  61. GreigL.C. WoodworthM.B. GalazoM.J. PadmanabhanH. MacklisJ.D. Molecular logic of neocortical projection neuron specification, development and diversity.Nat. Rev. Neurosci.2013141175576910.1038/nrn3586 24105342
    [Google Scholar]
  62. NoctorS.C. Martínez-Cerdeño, V.; Ivic, L.; Kriegstein, A.R. Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases.Nat. Neurosci.20047213614410.1038/nn1172 14703572
    [Google Scholar]
  63. Marín, O. Cellular and molecular mechanisms controlling the migration of neocortical interneurons.Eur. J. Neurosci.20133812019202910.1111/ejn.12225 23651101
    [Google Scholar]
  64. Urbán, N.; van den Berg, D.L.C.; Forget, A.; Andersen, J.; Demmers, J.A.A.; Hunt, C.; Ayrault, O.; Guillemot, F. Return to quiescence of mouse neural stem cells by degradation of a proactivation protein.Science2016353629629229510.1126/science.aaf4802 27418510
    [Google Scholar]
  65. RolandoC. ErniA. GrisonA. BeattieR. EnglerA. GokhaleP.J. MiloM. WegleiterT. JessbergerS. TaylorV. Multipotency of adult hippocampal NSCs in vivo is restricted by drosha/NFIB.Cell Stem Cell201619565366210.1016/j.stem.2016.07.003 27545503
    [Google Scholar]
  66. BonaguidiM.A. WheelerM.A. ShapiroJ.S. StadelR.P. SunG.J. MingG. SongH. In vivo clonal analysis reveals self-renewing and multipotent adult neural stem cell characteristics.Cell201114571142115510.1016/j.cell.2011.05.024 21664664
    [Google Scholar]
  67. StumpG. DurrerA. KleinA.L. LütolfS. SuterU. TaylorV. Notch1 and its ligands Delta-like and Jagged are expressed and active in distinct cell populations in the postnatal mouse brain.Mech. Dev.20021141-215315910.1016/S0925‑4773(02)00043‑6 12175503
    [Google Scholar]
  68. OttoneC. KruscheB. WhitbyA. ClementsM. QuadratoG. PitulescuM.E. AdamsR.H. ParrinelloS. Direct cell–cell contact with the vascular niche maintains quiescent neural stem cells.Nat. Cell Biol.201416111045105610.1038/ncb3045 25283993
    [Google Scholar]
  69. KawaguchiD. FurutachiS. KawaiH. HozumiK. GotohY. Dll1 maintains quiescence of adult neural stem cells and segregates asymmetrically during mitosis.Nat. Commun.201341188010.1038/ncomms2895 23695674
    [Google Scholar]
  70. DunwoodieS.L. The role of Notch in patterning the human vertebral column.Curr. Opin. Genet. Dev.200919432933710.1016/j.gde.2009.06.005 19608404
    [Google Scholar]
  71. ShimojoH. OhtsukaT. KageyamaR. Dynamic expression of notch signaling genes in neural stem/progenitor cells.Front. Neurosci.201157810.3389/fnins.2011.00078 21716644
    [Google Scholar]
  72. HaynesL.W. The Neuron in Tissue Culture-IBRO Handbook Series: Methods in the Neuroscience.John Wiley & Sons, Ltd.1999
    [Google Scholar]
  73. WuJ. DingD. LiQ. WangX. SunY. LiL.J. Lipoxin A4 regulates lipopolysaccharide-induced BV2 microglial activation and differentiation via the notch signaling pathway.Front. Cell. Neurosci.2019131910.3389/fncel.2019.00019 30778288
    [Google Scholar]
  74. NapoliI. NoonL.A. RibeiroS. KeraiA.P. ParrinelloS. RosenbergL.H. CollinsM.J. HarrisinghM.C. WhiteI.J. WoodhooA. LloydA.C. A central role for the ERK-signaling pathway in controlling Schwann cell plasticity and peripheral nerve regeneration in vivo.Neuron201273472974210.1016/j.neuron.2011.11.031 22365547
    [Google Scholar]
  75. WoodhooA. AlonsoM.B.D. DroggitiA. TurmaineM. D’AntonioM. ParkinsonD.B. WiltonD.K. Al-ShawiR. SimonsP. ShenJ. GuillemotF. RadtkeF. MeijerD. FeltriM.L. WrabetzL. MirskyR. JessenK.R. Notch controls embryonic Schwann cell differentiation, postnatal myelination and adult plasticity.Nat. Neurosci.200912783984710.1038/nn.2323 19525946
    [Google Scholar]
  76. GuoC.C. JiaoC. GaoZ.M. Silencing of LncRNA BDNF-AS attenuates Aβ25-35-induced neurotoxicity in PC12 cells by suppressing cell apoptosis and oxidative stress.Neurol. Res.201840979580410.1080/01616412.2018.1480921 29902125
    [Google Scholar]
  77. AlberiL. LiuS. WangY. BadieR. Smith-HicksC. WuJ. PierfeliceT.J. AbazyanB. MattsonM.P. KuhlD. PletnikovM. WorleyP.F. GaianoN. Activity-induced Notch signaling in neurons requires Arc/Arg3.1 and is essential for synaptic plasticity in hippocampal networks.Neuron201169343744410.1016/j.neuron.2011.01.004 21315255
    [Google Scholar]
  78. BasakO. GiachinoC. FioriniE. MacDonaldH.R. TaylorV. Neurogenic subventricular zone stem/progenitor cells are Notch1-dependent in their active but not quiescent state.J. Neurosci.201232165654566610.1523/JNEUROSCI.0455‑12.2012 22514327
    [Google Scholar]
  79. KageyamaR. OhtsukaT. KobayashiT. The Hes gene family: repressors and oscillators that orchestrate embryogenesis.Development200713471243125110.1242/dev.000786 17329370
    [Google Scholar]
  80. AndersenJ. Urbán, N.; Achimastou, A.; Ito, A.; Simic, M.; Ullom, K.; Martynoga, B.; Lebel, M.; Göritz, C.; Frisén, J.; Nakafuku, M.; Guillemot, F. A transcriptional mechanism integrating inputs from extracellular signals to activate hippocampal stem cells.Neuron20148351085109710.1016/j.neuron.2014.08.004 25189209
    [Google Scholar]
  81. LugertS. VogtM. TchorzJ.S. MüllerM. GiachinoC. TaylorV. Homeostatic neurogenesis in the adult hippocampus does not involve amplification of Ascl1high intermediate progenitors.Nat. Commun.20123167010.1038/ncomms1670 22334073
    [Google Scholar]
  82. BasakO. TaylorV. Identification of self‐replicating multipotent progenitors in the embryonic nervous system by high Notch activity and Hes5 expression.Eur. J. Neurosci.20072541006102210.1111/j.1460‑9568.2007.05370.x 17331197
    [Google Scholar]
  83. BreunigJ.J. SilbereisJ. VaccarinoF.M. Šestan, N.; Rakic, P. Notch regulates cell fate and dendrite morphology of newborn neurons in the postnatal dentate gyrus.Proc. Natl. Acad. Sci. USA200710451205582056310.1073/pnas.0710156104 18077357
    [Google Scholar]
  84. AblesJ.L. DeCarolisN.A. JohnsonM.A. RiveraP.D. GaoZ. CooperD.C. RadtkeF. HsiehJ. EischA.J. Notch1 is required for maintenance of the reservoir of adult hippocampal stem cells.J. Neurosci.20103031104841049210.1523/JNEUROSCI.4721‑09.2010 20685991
    [Google Scholar]
  85. EhmO. Göritz, C.; Covic, M.; Schäffner, I.; Schwarz, T.J.; Karaca, E.; Kempkes, B.; Kremmer, E.; Pfrieger, F.W.; Espinosa, L.; Bigas, A.; Giachino, C.; Taylor, V.; Frisén, J.; Lie, D.C. RBPJkappa-dependent signaling is essential for long-term maintenance of neural stem cells in the adult hippocampus.J. Neurosci.20103041137941380710.1523/JNEUROSCI.1567‑10.2010 20943920
    [Google Scholar]
  86. LavadoA. OliverG. Jagged1 is necessary for postnatal and adult neurogenesis in the dentate gyrus.Dev. Biol.20143881112110.1016/j.ydbio.2014.02.004 24530424
    [Google Scholar]
  87. ZhangY. KimM.S. JiaB. YanJ. Zuniga-HertzJ.P. HanC. CaiD. Hypothalamic stem cells control ageing speed partly through exosomal miRNAs.Nature20175487665525710.1038/nature23282 28746310
    [Google Scholar]
  88. MagnussonJ.P. Göritz, C.; Tatarishvili, J.; Dias, D.O.; Smith, E.M.K.; Lindvall, O.; Kokaia, Z.; Frisén, J. A latent neurogenic program in astrocytes regulated by Notch signaling in the mouse.Science2014346620623724110.1126/science.346.6206.237 25301628
    [Google Scholar]
  89. QiaoJ. ZhaoJ. ChangS. SunQ. LiuN. DongJ. ChenY. YangD. YeD. LiuX. YuY. ChenW. ZhuS. WangG. JiaW. XiJ. KangJ. MicroRNA-153 improves the neurogenesis of neural stem cells and enhances the cognitive ability of aged mice through the notch signaling pathway.Cell Death Differ.202027280882510.1038/s41418‑019‑0388‑4 31296962
    [Google Scholar]
  90. RansohoffR.M. Animal models of multiple sclerosis: the good, the bad and the bottom line.Nat. Neurosci.20121581074107710.1038/nn.3168 22837037
    [Google Scholar]
  91. StromnesI.M. GovermanJ.M. Passive induction of experimental allergic encephalomyelitis.Nat. Protoc.2006141952196010.1038/nprot.2006.284 17487182
    [Google Scholar]
  92. KeerthivasanS. SuleimanR. LawlorR. RoderickJ. BatesT. MinterL. AnguitaJ. JuncadellaI. NickoloffB.J. Le PooleI.C. MieleL. OsborneB.A. Notch signaling regulates mouse and human Th17 differentiation.J. Immunol.2011187269270110.4049/jimmunol.1003658 21685328
    [Google Scholar]
  93. JurynczykM. JurewiczA. RaineC.S. SelmajK. Notch3 inhibition in myelin-reactive T cells down-regulates protein kinase C theta and attenuates experimental autoimmune encephalomyelitis.J. Immunol.200818042634264010.4049/jimmunol.180.4.2634 18250475
    [Google Scholar]
  94. WongchanaW. LawlorR.G. OsborneB.A. PalagaT. Impact of Notch1 deletion in macrophages on proinflammatory cytokine production and the outcome of experimental autoimmune encephalomyelitis.J. Immunol.2015195115337534610.4049/jimmunol.1401770 26503951
    [Google Scholar]
  95. Fernández, M.; Monsalve, E.M.; López-López, S.; Ruiz-García, A.; Mellado, S.; Caminos, E.; García-Ramírez, J.J.; Laborda, J.; Tranque, P.; Díaz-Guerra, M.J.M. Absence of Notch1 in murine myeloid cells attenuates the development of experimental autoimmune encephalomyelitis by affecting Th1 and Th17 priming.Eur. J. Immunol.201747122090210010.1002/eji.201646901 28762472
    [Google Scholar]
  96. ReynoldsN.D. LukacsN.W. LongN. KarpusW.J. Delta-like ligand 4 regulates central nervous system T cell accumulation during experimental autoimmune encephalomyelitis.J. Immunol.201118752803281310.4049/jimmunol.1100160 21788444
    [Google Scholar]
  97. BassilR. ZhuB. LahoudY. RiellaL.V. YagitaH. ElyamanW. KhouryS.J. Notch ligand delta-like 4 blockade alleviates experimental autoimmune encephalomyelitis by promoting regulatory T cell development.J. Immunol.201118752322232810.4049/jimmunol.1100725 21813770
    [Google Scholar]
  98. ElyamanW. BradshawE.M. WangY. OukkaM. Kivisäkk, P.; Chiba, S.; Yagita, H.; Khoury, S.J. JAGGED1 and delta1 differentially regulate the outcome of experimental autoimmune encephalomyelitis.J. Immunol.200717995990599810.4049/jimmunol.179.9.5990 17947672
    [Google Scholar]
  99. ZhuG. WangX. XiaoH. LiuX. FangY. ZhaiB. XuR. HanG. ChenG. HouC. ShenB. LiY. MaN. WuH. LiuG. WangR. Both Notch1 and its ligands in B cells promote antibody production.Mol. Immunol.201791172310.1016/j.molimm.2017.08.021 28863329
    [Google Scholar]
  100. PalaciosR. GoniJ. Martinez-ForeroI. IranzoJ. SepulcreJ. MeleroI. VillosladaP. A network analysis of the human T-cell activation gene network identifies JAGGED1 as a therapeutic target for autoimmune diseases.PLoS One2007211e122210.1371/journal.pone.0001222 18030350
    [Google Scholar]
  101. ElyamanW. BassilR. BradshawE.M. OrentW. LahoudY. ZhuB. RadtkeF. YagitaH. KhouryS.J. Notch receptors and Smad3 signaling cooperate in the induction of interleukin-9-producing T cells.Immunity201236462363410.1016/j.immuni.2012.01.020 22503540
    [Google Scholar]
  102. FanH. ZhaoJ.G. YanJ.Q. DuG.Q. FuQ.Z. ShiJ. YangY.H. DuX.W. BaiX.L. Effect of Notch1 gene on remyelination in multiple sclerosis in mouse models of acute demyelination.J. Cell. Biochem.2018119119284929410.1002/jcb.27197 30010211
    [Google Scholar]
  103. MathieuP.A. Almeira GubianiM.F. Rodríguez, D.; Gómez Pinto, L.I.; Calcagno, M.L.; Adamo, A.M. Demyelination-remyelination in the central nervous system: Ligand-dependent participation of the notch signaling pathway.Toxicol. Sci.2019171117219210.1093/toxsci/kfz130 31168611
    [Google Scholar]
  104. ChariD.M. Remyelination in multiple sclerosis.Int. Rev. Neurobiol.20077958962010.1016/S0074‑7742(07)79026‑8 17531860
    [Google Scholar]
  105. JohnG.R. ShankarS.L. Shafit-ZagardoB. MassimiA. LeeS.C. RaineC.S. BrosnanC.F. Multiple sclerosis: Re-expression of a developmental pathway that restricts oligodendrocyte maturation.Nat. Med.20028101115112110.1038/nm781 12357247
    [Google Scholar]
  106. ChristopoulosP.F. Gjølberg, T.T.; Krüger, S.; Haraldsen, G.; Andersen, J.T.; Sundlisæter, E. Targeting the notch signaling pathway in chronic inflammatory diseases.Front. Immunol.20211266820710.3389/fimmu.2021.668207 33912195
    [Google Scholar]
  107. KremerD. KüryP. DuttaR. Promoting remyelination in multiple sclerosis: Current drugs and future prospects.Mult. Scler.201521554154910.1177/1352458514566419 25623245
    [Google Scholar]
  108. DeshmukhV.A. TardifV. LyssiotisC.A. GreenC.C. KermanB. KimH.J. PadmanabhanK. SwobodaJ.G. AhmadI. KondoT. GageF.H. TheofilopoulosA.N. LawsonB.R. SchultzP.G. LairsonL.L. A regenerative approach to the treatment of multiple sclerosis.Nature2013502747132733210.1038/nature12647 24107995
    [Google Scholar]
  109. HoD.M. Artavanis-TsakonasS. LouviA. The Notch pathway in CNS homeostasis and neurodegeneration.Wiley Interdiscip. Rev. Dev. Biol.202091e35810.1002/wdev.358 31502763
    [Google Scholar]
/content/journals/cn/10.2174/1570159X22666240731114906
Loading
/content/journals/cn/10.2174/1570159X22666240731114906
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test