Skip to content
2000
Volume 23, Issue 1
  • ISSN: 1570-159X
  • E-ISSN: 1875-6190

Abstract

Myeloid-Derived Suppressor Cells (MDSCs) are a heterogeneous population of immature myeloid cells that play important roles in maintaining immune homeostasis and regulating immune responses. MDSCs can be divided into two main subsets based on their surface markers and functional properties: granulocytic MDSCs (G-MDSCs) and monocytic MDSCs (M-MDSCs). Recently greatest attention has been paid to innate immunity in Multiple Sclerosis (MS), so the aim of our review is to provide an overview of the main characteristics of MDSCs in MS and its preclinical model by discussing the most recent data available. The immunosuppressive functions of MDSCs can be dysregulated in MS, leading to an exacerbation of the autoimmune response and disease progression. Antigen-specific peptide immunotherapy, which aims to restore tolerance while avoiding the use of non-specific immunosuppressive drugs, is a promising approach for autoimmune diseases, but the cellular mechanisms behind successful therapy remain poorly understood. Therefore, targeting MDSCs could be a promising therapeutic approach for MS. Various strategies for modulating MDSCs have been investigated, including the use of pharmacological agents, biological agents, and adoptive transfer of exogenous MDSCs. However, it remained unclear whether MDSCs display any therapeutic potential in MS and how this therapy could modulate different aspects of the disease. Collectively, all the described studies revealed a pivotal role for MDSCs in the regulation of MS.

Loading

Article metrics loading...

/content/journals/cn/10.2174/1570159X22999240710142942
2024-07-10
2024-11-22
Loading full text...

Full text loading...

References

  1. GabrilovichD.I. NagarajS. Myeloid-derived suppressor cells as regulators of the immune system.Nat. Rev. Immunol.20099316217410.1038/nri2506 19197294
    [Google Scholar]
  2. VegliaF. SansevieroE. GabrilovichD.I. Myeloid-derived suppressor cells in the era of increasing myeloid cell diversity.Nat. Rev. Immunol.202121848549810.1038/s41577‑020‑00490‑y 33526920
    [Google Scholar]
  3. CrookK.R. LiuP. Role of myeloid-derived suppressor cells in autoimmune disease.World J. Immunol.201441263310.5411/wji.v4.i1.26 25621222
    [Google Scholar]
  4. ConsonniF.M. PortaC. MarinoA. PandolfoC. MolaS. Bleve, A Myeloid-derived suppressor cells: Ductile targets in disease.Front. Immunol.201910949
    [Google Scholar]
  5. Sanchez-PinoM.D. DeanM.J. OchoaA.C. Myeloid-derived suppressor cells (MDSC): When good intentions go awry.Cell. Immunol.202136210430210.1016/j.cellimm.2021.104302 33592540
    [Google Scholar]
  6. PeranzoniE. ZilioS. MarigoI. DolcettiL. ZanovelloP. MandruzzatoS. BronteV. Myeloid-derived suppressor cell heterogeneity and subset definition.Curr. Opin. Immunol.201022223824410.1016/j.coi.2010.01.021 20171075
    [Google Scholar]
  7. BronteV. BrandauS. ChenS.H. ColomboM.P. FreyA.B. GretenT.F. MandruzzatoS. MurrayP.J. OchoaA. Ostrand-RosenbergS. RodriguezP.C. SicaA. UmanskyV. VonderheideR.H. GabrilovichD.I. Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards.Nat. Commun.2016711215010.1038/ncomms12150 27381735
    [Google Scholar]
  8. DumitruC.A. MosesK. TrellakisS. LangS. BrandauS. Neutrophils and granulocytic myeloid-derived suppressor cells: Immunophenotyping, cell biology and clinical relevance in human oncology.Cancer Immunol. Immunother.20126181155116710.1007/s00262‑012‑1294‑5 22692756
    [Google Scholar]
  9. FilipazziP. HuberV. RivoltiniL. Phenotype, function and clinical implications of myeloid-derived suppressor cells in cancer patients.Cancer Immunol. Immunother.201261225526310.1007/s00262‑011‑1161‑9 22120756
    [Google Scholar]
  10. MillrudC.R. BergenfelzC. LeanderssonK. On the origin of myeloid-derived suppressor cells.Oncotarget2017823649366510.18632/oncotarget.12278 27690299
    [Google Scholar]
  11. FengP.H. LeeK.Y. ChangY.L. ChanY.F. KuoL.W. LinT.Y. ChungF.T. KuoC.S. YuC.T. LinS.M. WangC.H. ChouC.L. HuangC.D. KuoH.P. CD14(+)S100A9(+) monocytic myeloid-derived suppressor cells and their clinical relevance in non-small cell lung cancer.Am. J. Respir. Crit. Care Med.2012186101025103610.1164/rccm.201204‑0636OC 22955317
    [Google Scholar]
  12. ZhaoF. HoechstB. DuffyA. GamrekelashviliJ. FioravantiS. MannsM.P. GretenT.F. KorangyF. S100A9 a new marker for monocytic human myeloid‐derived suppressor cells.Immunology2012136217618310.1111/j.1365‑2567.2012.03566.x 22304731
    [Google Scholar]
  13. BergenfelzC. LeanderssonK. The generation and identity of human myeloid-derived suppressor cells.Front. Oncol.20201010910.3389/fonc.2020.00109
    [Google Scholar]
  14. ZhaoY. WuT. ShaoS. ShiB. ZhaoY. Phenotype, development, and biological function of myeloid-derived suppressor cells.OncoImmunology201652e100498310.1080/2162402X.2015.1004983 27057424
    [Google Scholar]
  15. PillayJ. TakT. KampV.M. KoendermanL. Immune suppression by neutrophils and granulocytic myeloid-derived suppressor cells: Similarities and differences.Cell. Mol. Life Sci.201370203813382710.1007/s00018‑013‑1286‑4 23423530
    [Google Scholar]
  16. Bar-OrA. NuttallR.K. DuddyM. AlterA. KimH.J. IferganI. PenningtonC.J. BourgoinP. EdwardsD.R. YongV.W. Analyses of all matrix metalloproteinase members in leukocytes emphasize monocytes as major inflammatory mediators in multiple sclerosis.Brain2003126122738274910.1093/brain/awg285 14506071
    [Google Scholar]
  17. ParisiL. GiniE. BaciD. TremolatiM. FanuliM. BassaniB. FarronatoG. BrunoA. MortaraL. Macrophage polarization in chronic inflammatory diseases: Killers or builders?J. Immunol. Res.2018201812510.1155/2018/8917804 29507865
    [Google Scholar]
  18. RederA.T. GençK. ByskoshP.V. PorriniA.M. Monocyte activation in multiple sclerosis.Mult. Scler.199843162168
    [Google Scholar]
  19. PalumboG.A. ParrinelloN.L. GiallongoC. D’AmicoE. ZanghìA. PuglisiF. ConticelloC. ChiarenzaA. TibulloD. RaimondoF.D. RomanoA. Monocytic myeloid derived suppressor cells in hematological malignancies.Int. J. Mol. Sci.20192021545910.3390/ijms20215459 31683978
    [Google Scholar]
  20. YounJ.I. NagarajS. CollazoM. GabrilovichD.I. Subsets of myeloid-derived suppressor cells in tumor-bearing mice.J. Immunol.200818185791580210.4049/jimmunol.181.8.5791
    [Google Scholar]
  21. CorzoC.A. CotterM.J. ChengP. ChengF. KusmartsevS. SotomayorE. Mechanism regulating reactive oxygen species in tumor-induced myeloid-derived suppressor cells.J. Immunol.200918295693570110.4049/jimmunol.0900092
    [Google Scholar]
  22. OhlK. TenbrockK. Reactive oxygen species as regulators of MDSC-mediated immune suppression.Front. Immunol.20189249910.3389/fimmu.2018.02499 30425715
    [Google Scholar]
  23. ChoH. KangH. LeeH. KimC. Programmed cell death 1 (PD-1) and cytotoxic T Lymphocyte-Associated Antigen 4 (CTLA-4) in viral hepatitis.Int. J. Mol. Sci.2017187151710.3390/ijms18071517 28703774
    [Google Scholar]
  24. ZhangH. DaiZ. WuW. WangZ. ZhangN. ZhangL. ZengW.J. LiuZ. ChengQ. Regulatory mechanisms of immune checkpoints PD-L1 and CTLA-4 in cancer.J. Exp. Clin. Cancer Res.202140118410.1186/s13046‑021‑01987‑7 34088360
    [Google Scholar]
  25. McGinleyM.P. GoldschmidtC.H. Rae-GrantA.D. Diagnosis and treatment of multiple sclerosis.JAMA2021325876577910.1001/jama.2020.26858 33620411
    [Google Scholar]
  26. ThompsonA.J. BanwellB.L. BarkhofF. CarrollW.M. CoetzeeT. ComiG. CorrealeJ. FazekasF. FilippiM. FreedmanM.S. FujiharaK. GalettaS.L. HartungH.P. KapposL. LublinF.D. MarrieR.A. MillerA.E. MillerD.H. MontalbanX. MowryE.M. SorensenP.S. TintoréM. TraboulseeA.L. TrojanoM. UitdehaagB.M.J. VukusicS. WaubantE. WeinshenkerB.G. ReingoldS.C. CohenJ.A. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria.Lancet Neurol.201817216217310.1016/S1474‑4422(17)30470‑2 29275977
    [Google Scholar]
  27. ThompsonA.J. BaranziniS.E. GeurtsJ. HemmerB. CiccarelliO. Multiple sclerosis.Lancet2018391101301622163610.1016/S0140‑6736(18)30481‑1 29576504
    [Google Scholar]
  28. LublinF.D. ReingoldS.C. CohenJ.A. CutterG.R. SørensenP.S. ThompsonA.J. WolinskyJ.S. BalcerL.J. BanwellB. BarkhofF. BeboB.Jr CalabresiP.A. ClanetM. ComiG. FoxR.J. FreedmanM.S. GoodmanA.D. IngleseM. KapposL. KieseierB.C. LincolnJ.A. LubetzkiC. MillerA.E. MontalbanX. O’ConnorP.W. PetkauJ. PozzilliC. RudickR.A. SormaniM.P. StüveO. WaubantE. PolmanC.H. Defining the clinical course of multiple sclerosis.Neurology201483327828610.1212/WNL.0000000000000560 24871874
    [Google Scholar]
  29. TurC. Carbonell-MirabentP. Cobo-CalvoÁ. Otero-RomeroS. ArrambideG. MidagliaL. CastillóJ. Vidal-JordanaÁ. Rodríguez-AcevedoB. ZabalzaA. GalánI. NosC. SalernoA. AugerC. ParetoD. ComabellaM. RíoJ. Sastre-GarrigaJ. RoviraÀ. TintoréM. MontalbanX. Association of early progression independent of relapse activity with long-term disability after a first demyelinating event in multiple sclerosis.JAMA Neurol.202380215116010.1001/jamaneurol.2022.4655 36534392
    [Google Scholar]
  30. TelesfordK.M. AmezcuaL. TardoL. HortonL. LundB.T. RederA.T. VartanianT. MonsonN.L. Understanding humoral immunity and multiple sclerosis severity in Black, and Latinx patients.Front. Immunol.202314117299310.3389/fimmu.2023.1172993 37215103
    [Google Scholar]
  31. BaskaranA.B. GrebenciucovaE. ShoemakerT. GrahamE.L. Current updates on the diagnosis and management of multiple sclerosis for the general neurologist.J. Clin. Neurol.202319321722910.3988/jcn.2022.0208 37151139
    [Google Scholar]
  32. MatsuzakaY. YashiroR. Unraveling the immunopathogenesis of multiple sclerosis: The dynamic dance of plasmablasts and pathogenic T cells.Biologics20233323225210.3390/biologics3030013
    [Google Scholar]
  33. LiuR. DuS. ZhaoL. JainS. SahayK. RizvanovA. LezhnyovaV. KhaibullinT. MartynovaE. KhaiboullinaS. BaranwalM. Autoreactive lymphocytes in multiple sclerosis: Pathogenesis and treatment target.Front. Immunol.20221399646910.3389/fimmu.2022.996469 36211343
    [Google Scholar]
  34. KunklM. FrascollaS. AmorminoC. VolpeE. TuostoL. T Helper Cells: The modulators of inflammation in multiple sclerosis.Cells20209248210.3390/cells9020482 32093011
    [Google Scholar]
  35. ChastainE.M.L. DuncanD.A.S. RodgersJ.M. MillerS.D. The role of antigen presenting cells in multiple sclerosis.Biochim. Biophys. Acta Mol. Basis Dis.20111812226527410.1016/j.bbadis.2010.07.008
    [Google Scholar]
  36. GandhiR. LaroniA. WeinerH.L. Role of the innate immune system in the pathogenesis of multiple sclerosis.J. Neuroimmunol.20102211-271410.1016/j.jneuroim.2009.10.015 19931190
    [Google Scholar]
  37. FreemanL. LongbrakeE.E. CoyleP.K. HendinB. VollmerT. High-Efficacy therapies for treatment-naïve individuals with relapsing–remitting multiple sclerosis.CNS Drugs202236121285129910.1007/s40263‑022‑00965‑7 36350491
    [Google Scholar]
  38. XuD. LiC. XuY. HuangM. CuiD. XieJ. Myeloid-derived suppressor cell: A crucial player in autoimmune diseases.Front. Immunol.202213102161210.3389/fimmu.2022.1021612 36569895
    [Google Scholar]
  39. RaberP. OchoaA.C. RodríguezP.C. Metabolism of L-arginine by myeloid-derived suppressor cells in cancer: Mechanisms of T cell suppression and therapeutic perspectives.Immunol. Invest.2012416-761463410.3109/08820139.2012.680634 23017138
    [Google Scholar]
  40. BrunoA. MortaraL. BaciD. NoonanD.M. AlbiniA. Myeloid derived suppressor cells interactions with natural killer cells and pro-angiogenic activities: Roles in tumor progression.Front. Immunol.201910771
    [Google Scholar]
  41. KrishnamoorthyM. GerhardtL. Maleki VarekiS. Immunosuppressive effects of myeloid-derived suppressor cells in cancer and immunotherapy.Cells2021105117010.3390/cells10051170 34065010
    [Google Scholar]
  42. De VeirmanK. Van ValckenborghE. LahmarQ. GeeraertsX. De BruyneE. MenuE. Myeloid-derived suppressor cells as therapeutic target in hematological malignancies.Front. Oncol.2014434910.3389/fonc.2014.00349
    [Google Scholar]
  43. GhorbaniM.M. FarazmandfarT. AbediankenariS. HassanniaH. MalekiZ. ShahbaziM. Treatment of EAE mice with Treg, G-MDSC and IL-2: A new insight into cell therapy for multiple sclerosis.Immunotherapy2022141078979810.2217/imt‑2021‑0045 35678041
    [Google Scholar]
  44. Melero-JerezC. Fernández-GómezB. Lebrón-GalánR. OrtegaM.C. Sánchez-de LaraI. OjalvoA.C. ClementeD. de CastroF. Myeloid‐derived suppressor cells support remyelination in a murine model of multiple sclerosis by promoting oligodendrocyte precursor cell survival, proliferation, and differentiation.Glia202169490592410.1002/glia.23936 33217041
    [Google Scholar]
  45. Melero-JerezC. Alonso-GómezA. MoñivasE. Lebrón-GalánR. Machín-DíazI. de CastroF. ClementeD. The proportion of myeloid-derived suppressor cells in the spleen is related to the severity of the clinical course and tissue damage extent in a murine model of multiple sclerosis.Neurobiol. Dis.202014010486910.1016/j.nbd.2020.104869 32278882
    [Google Scholar]
  46. ElliottD.M. SinghN. NagarkattiM. NagarkattiP.S. Cannabidiol attenuates experimental autoimmune encephalomyelitis model of multiple sclerosis through induction of myeloid-derived suppressor cells.Front. Immunol.20189178210.3389/fimmu.2018.01782
    [Google Scholar]
  47. MechaM. FeliúA. MachínI. CorderoC. Carrillo-SalinasF. MestreL. Hernández-TorresG. Ortega-GutiérrezS. López-RodríguezM.L. de CastroF. ClementeD. GuazaC. 2‐AG limits Theiler’s virus induced acute neuroinflammation by modulating microglia and promoting MDSCs.Glia20186671447146310.1002/glia.23317 29484707
    [Google Scholar]
  48. BowenJ.L. OlsonJ.K. Innate immune CD11b+Gr-1+ cells, suppressor cells, affect the immune response during Theiler’s virus-induced demyelinating disease.J. Immunol. (Baltimore, Md)20091831169716980
    [Google Scholar]
  49. WegnerA. VerhagenJ. WraithD.C. Myeloid‐derived suppressor cells mediate tolerance induction in autoimmune disease.Immunology20171511264210.1111/imm.12718 28140447
    [Google Scholar]
  50. Casacuberta-SerraS. CostaC. EixarchH. MansillaM.J. López-EstévezS. MartorellL. ParésM. MontalbanX. EspejoC. BarquineroJ. Myeloid-derived suppressor cells expressing a self-antigen ameliorate experimental autoimmune encephalomyelitis.Exp. Neurol.2016286506010.1016/j.expneurol.2016.09.012 27693617
    [Google Scholar]
  51. IoannouM. AlissafiT. LazaridisI. DeraosG. MatsoukasJ. GravanisA. Crucial role of granulocytic myeloid-derived suppressor cells in the regulation of central nervous system autoimmune disease.J. Immunol.201218831136114610.4049/jimmunol.1101816
    [Google Scholar]
  52. DagkonakiA. PapalambrouA. AvlonitiM. GkikaA. EvangelidouM. AndroutsouM.E. TseliosT. ProbertL. Maturation of circulating Ly6ChiCCR2+ monocytes by mannan-MOG induces antigen-specific tolerance and reverses autoimmune encephalomyelitis.Front. Immunol.20221397200310.3389/fimmu.2022.972003 36159850
    [Google Scholar]
  53. IshiharaA. IshiharaJ. WatkinsE.A. TremainA.C. NguyenM. SolankiA. KatsumataK. MansurovA. BudinaE. AlparA.T. HosseinchiP. MaillatL. RedaJ.W. KageyamaT. SwartzM.A. YubaE. HubbellJ.A. Prolonged residence of an albumin–IL-4 fusion protein in secondary lymphoid organs ameliorates experimental autoimmune encephalomyelitis.Nat. Biomed. Eng.20205538739810.1038/s41551‑020‑00627‑3 33046864
    [Google Scholar]
  54. Moliné-VelázquezV. CuervoH. Vila-del SolV. OrtegaM.C. ClementeD. de CastroF. Myeloid-derived suppressor cells limit the inflammation by promoting T lymphocyte apoptosis in the spinal cord of a murine model of multiple sclerosis.Brain Pathol.201121667869110.1111/j.1750‑3639.2011.00495.x 21507122
    [Google Scholar]
  55. WangJ.L. LiB. TanG.J. GaiX.L. XingJ.N. WangJ.Q. QuanM.Y. ZhangN. GuoL. NAD+ attenuates experimental autoimmune encephalomyelitis through induction of CD11b+ gr-1+ myeloid-derived suppressor cells.Biosci. Rep.2020404BSR2020035310.1042/BSR20200353 32301489
    [Google Scholar]
  56. ZhuB. BandoY. XiaoS. YangK. AndersonA.C. KuchrooV.K. KhouryS.J. CD11b+Ly-6C(hi) suppressive monocytes in experimental autoimmune encephalomyelitis.J. Immunol.200717985228523710.4049/jimmunol.179.8.5228 17911608
    [Google Scholar]
  57. ZhuB. KennedyJ.K. WangY. Sandoval-GarciaC. CaoL. Xiao, S Plasticity of Ly-6C(hi) myeloid cells in T cell regulation.J. Immunol. (Baltimore, Md)2011187524182432
    [Google Scholar]
  58. OrtegaM.C. Lebrón-GalánR. Machín-DíazI. NaughtonM. Pérez-MolinaI. García-ArochaJ. Garcia-DominguezJ.M. Goicoechea-BriceñoH. Vila-del SolV. Quintanero-CaseroV. García-MonteroR. GalánV. CalahorraL. Camacho-ToledanoC. Martínez-GinésM.L. FitzgeraldD.C. ClementeD. Central and peripheral myeloid-derived suppressor cell-like cells are closely related to the clinical severity of multiple sclerosis.Acta Neuropathol.2023146226328210.1007/s00401‑023‑02593‑x 37243699
    [Google Scholar]
  59. GlennJ.D. LiuC. WhartenbyK.A. Frontline science: Induction of experimental autoimmune encephalomyelitis mobilizes Th17-promoting myeloid derived suppressor cells to the lung.J. Leukoc. Biol.2019105582984110.1002/JLB.4HI0818‑335R 30762897
    [Google Scholar]
  60. VijithaN. EngelD.R. Remote control of Th17 responses: The lung-CNS axis during EAE.J. Leukoc. Biol.2019105582782810.1002/JLB.1CE0219‑072R 30958568
    [Google Scholar]
  61. YiH. GuoC. YuX. ZuoD. WangX.Y. Mouse CD11b+Gr-1+ myeloid cells can promote Th17 cell differentiation and experimental autoimmune encephalomyelitis.J. Immunol. (Baltimore, Md)2012189942954304
    [Google Scholar]
  62. RadojevićD. BekićM. Gruden-MovsesijanA. IlićN. DinićM. BisenićA. GolićN. VučevićD. ĐokićJ. TomićS. Myeloid-derived suppressor cells prevent disruption of the gut barrier, preserve microbiota composition, and potentiate immunoregulatory pathways in a rat model of experimental autoimmune encephalomyelitis.Gut Microbes2022141212745510.1080/19490976.2022.2127455 36184742
    [Google Scholar]
  63. ParekhV.V. WuL. Olivares-VillagómezD. WilsonK.T. Van Kaer, L Activated invariant NKT cells control central nervous system autoimmunity in a mechanism that involves myeloid-derived suppressor cells.J. Immunol.201319051948196010.4049/jimmunol.1201718
    [Google Scholar]
  64. AlabanzaL.M. EsmonN.L. EsmonC.T. BynoeM.S. Inhibition of endogenous activated protein C attenuates experimental autoimmune encephalomyelitis by inducing myeloid-derived suppressor cells.J. Immunol.201319173764377710.4049/jimmunol.1202556
    [Google Scholar]
  65. Moliné-VelázquezV. OrtegaM.C. Vila del SolV. Melero-JerezC. de CastroF. ClementeD. The synthetic retinoid Am80 delays recovery in a model of multiple sclerosis by modulating myeloid-derived suppressor cell fate and viability.Neurobiol. Dis.20146714916410.1016/j.nbd.2014.03.017 24709559
    [Google Scholar]
  66. KingI.L. DickendesherT.L. SegalB.M. Circulating Ly-6C+ myeloid precursors migrate to the CNS and play a pathogenic role during autoimmune demyelinating disease.Blood2009113143190319710.1182/blood‑2008‑07‑168575 19196868
    [Google Scholar]
  67. ZhangG. ZhuX. YangF. LiJ. LengX. MoC. LiL. WangY. Pseudolycorine chloride ameliorates Th17 cell-mediated central nervous system autoimmunity by restraining myeloid-derived suppressor cell expansion.Pharm. Biol.202260189990810.1080/13880209.2022.2063344 36082828
    [Google Scholar]
  68. CalahorraL. Camacho-ToledanoC. Serrano-RegalM.P. OrtegaM.C. ClementeD. Regulatory cells in multiple sclerosis: From blood to brain.Biomedicines202210233510.3390/biomedicines10020335 35203544
    [Google Scholar]
  69. HertzenbergD. Lehmann-HornK. KinzelS. HustererV. CravensP.D. KieseierB.C. HemmerB. BrückW. ZamvilS.S. StüveO. WeberM.S. Developmental maturation of innate immune cell function correlates with susceptibility to central nervous system autoimmunity.Eur. J. Immunol.20134382078208810.1002/eji.201343338 23637087
    [Google Scholar]
  70. Melero-JerezC. SuardíazM. Lebrón-GalánR. Marín-BañascoC. Oliver-MartosB. Machín-DíazI. FernándezÓ. de CastroF. ClementeD. The presence and suppressive activity of myeloid-derived suppressor cells are potentiated after interferon-β treatment in a murine model of multiple sclerosis.Neurobiol. Dis.2019127133110.1016/j.nbd.2019.02.014 30798007
    [Google Scholar]
  71. TanwarS. OguzC. MetidjiA. DahlstromE. BarbianK. KanakabandiK. SykoraL. ShevachE.M. Type I IFN signaling in T regulatory cells modulates chemokine production and myeloid derived suppressor cells trafficking during EAE.J. Autoimmun.202011510252510.1016/j.jaut.2020.102525 32709481
    [Google Scholar]
  72. van der TouwW. KangK. LuanY. MaG. MaiS. QinL. Glatiramer acetate enhances myeloid-derived suppressor cell function via recognition of paired Ig-like receptor B. J.Immunol. (Baltimore, Md)2018201617271734
    [Google Scholar]
  73. KnierB. HiltenspergerM. SieC. AlyL. LepennetierG. EngleitnerT. GargG. MuschaweckhA. MitsdörfferM. KoedelU. HöchstB. KnolleP. GunzerM. HemmerB. RadR. MerklerD. KornT. Myeloid-derived suppressor cells control B cell accumulation in the central nervous system during autoimmunity.Nat. Immunol.201819121341135110.1038/s41590‑018‑0237‑5 30374128
    [Google Scholar]
  74. Camacho-ToledanoC. Machín-DíazI. CalahorraL. Cabañas-CotillasM. OtaeguiD. Castillo-TriviñoT. VillarL.M. Costa-FrossardL. ComabellaM. MidagliaL. García-DomínguezJ.M. García-ArochaJ. OrtegaM.C. ClementeD. Peripheral myeloid-derived suppressor cells are good biomarkers of the efficacy of fingolimod in multiple sclerosis.J. Neuroinflammation202219127710.1186/s12974‑022‑02635‑3 36403026
    [Google Scholar]
  75. D’AmicoE. ZanghìA. ParrinelloN.L. RomanoA. PalumboG.A. ChisariC.G. ToscanoS. RaimondoF.D. ZappiaM. PattiF. Immunological subsets characterization in newly diagnosed relapsing-remitting multiple sclerosis.Front. Immunol.20221381913610.3389/fimmu.2022.819136 35273601
    [Google Scholar]
  76. IacobaeusE. DouagiI. JitschinR. Marcusson-StåhlM. AndrénA.T. GavinC. LefsihaneK. DaviesL.C. MougiakakosD. KadriN. Le BlancK. Phenotypic and functional alterations of myeloid‐derived suppressor cells during the disease course of multiple sclerosis.Immunol. Cell Biol.201896882083010.1111/imcb.12042 29569304
    [Google Scholar]
  77. CantoniC. CignarellaF. GhezziL. MikesellB. BollmanB. Berrien-ElliottM.M. IrelandA.R. FehnigerT.A. WuG.F. PiccioL. Mir-223 regulates the number and function of myeloid-derived suppressor cells in multiple sclerosis and experimental autoimmune encephalomyelitis.Acta Neuropathol.20171331617710.1007/s00401‑016‑1621‑6 27704281
    [Google Scholar]
/content/journals/cn/10.2174/1570159X22999240710142942
Loading
/content/journals/cn/10.2174/1570159X22999240710142942
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test