Skip to content
2000
Volume 23, Issue 1
  • ISSN: 1570-159X
  • E-ISSN: 1875-6190

Abstract

Melamine, a heterocyclic nitrogen-rich triazine chemical compound, is widely used in various household products, including furniture, dinnerware, and kitchen appliances. The unauthorized addition of the mixture to various foodstuffs to misrepresent protein content resulted in catastrophic, frequently life-threatening health consequences for kids as well as canines and has garnered international attention. Numerous primary studies and evaluations have been focused on melamine toxicity's implications on kidney function. Despite the profusion of literature on melamine's nephrotoxicity, evidence regarding its toxicity to other organs remains scarce. A number of recent studies suggest melamine can disrupt central nervous system (CNS) function and bring about cognitive impairments, contradicting the commonly held belief that melamine's detrimental effects are limited to the urinary system. The accumulation of melamine in the body is linked to various adverse effects, including depression, impaired synaptic transmission, oxidative stress, and neurodegenerative diseases. Several mechanisms may lead to such complications. However, numerous safeguards against melamine accumulation have been identified. This review could shed light on the potential neurological effects and mechanisms underlying melamine toxicity. Afterward, we will dive into the body's possible protective mechanisms against melamine-induced toxicity.

Loading

Article metrics loading...

/content/journals/cn/10.2174/1570159X22666240320133241
2024-04-08
2024-11-22
Loading full text...

Full text loading...

References

  1. IbhazehieboK. KoibuchiN. Melamine: An Emerging Neurotoxicant?J. Med. Biomed. Res.20121112028
    [Google Scholar]
  2. AnL. LiZ. ZhangT. Reversible effects of vitamins C and E combination on oxidative stress-induced apoptosis in melamine-treated PC12 cells.Free Radic. Res.201448223925010.3109/10715762.2013.861598 24182201
    [Google Scholar]
  3. LuJ. XiaoJ. YangD.J. WangZ.T. JiangD.G. FangC.R. YangJ. Study on migration of melamine from food packaging materials on markets.Biomed. Environ. Sci.200922210410810.1016/S0895‑3988(09)60030‑1 19618686
    [Google Scholar]
  4. HiltsC. PelletierL. Eds.; Background paper on occurrence of melamine in foods and feed. World Health Organization: Meeting on toxicological and health aspects of melamine and cyanuric acid.Citeseer2009
    [Google Scholar]
  5. BoldenA.L. RochesterJ.R. KwiatkowskiC.F. Melamine, beyond the kidney: A ubiquitous endocrine disruptor and neurotoxicant?Toxicol. Lett.201728018118910.1016/j.toxlet.2017.07.893 28751210
    [Google Scholar]
  6. AnL. SunW. Prenatal melamine exposure impairs spatial cognition and hippocampal synaptic plasticity by presynaptic and postsynaptic inhibition of glutamatergic transmission in adolescent offspring.Toxicol. Lett.2017269556410.1016/j.toxlet.2017.02.005 28185983
    [Google Scholar]
  7. ShellaiahM. SunK. Review on nanomaterial-based melamine detection.Chemosensors (Basel)201971910.3390/chemosensors7010009
    [Google Scholar]
  8. YalçinS.S. GüneşB. YalçinS. Presence of melamine in human milk and the evaluation of the effects on mother-infant pairs in a cohort study.Hum. Exp. Toxicol.202039562463310.1177/0960327119898748 31928232
    [Google Scholar]
  9. AnL. ZhangT. Comparison impairments of spatial cognition and hippocampal synaptic plasticity between prenatal and postnatal melamine exposure in male adult rats.Neurotox. Res.201629221822910.1007/s12640‑015‑9578‑0 26607910
    [Google Scholar]
  10. YangJ. AnL. YaoY. YangZ. ZhangT. Melamine impairs spatial cognition and hippocampal synaptic plasticity by presynaptic inhibition of glutamatergic transmission in infant rats.Toxicology20112892-316717410.1016/j.tox.2011.08.011 21867740
    [Google Scholar]
  11. WuY.T. HuangC.M. LinC.C. HoW.A. LinL.C. ChiuT.F. TarngD.C. LinC.H. TsaiT.H. Determination of melamine in rat plasma, liver, kidney, spleen, bladder and brain by liquid chromatography-tandem mass spectrometry.J. Chromatogr. A20091216447595760110.1016/j.chroma.2009.05.027 19493536
    [Google Scholar]
  12. HanY. LiuS. ZhangT. YangZ. Induction of apoptosis by melamine in differentiated PC12 cells.Cell. Mol. Neurobiol.2011311657110.1007/s10571‑010‑9554‑4 20706782
    [Google Scholar]
  13. HauA.K. KwanT.H. LiP.K. Melamine toxicity and the kidney.J. Am. Soc. Nephrol.200920224525010.1681/ASN.2008101065 19193777
    [Google Scholar]
  14. YanWang Fei Liu; Yuejiao Wei; Daicheng Liu, The effect of exogenous melamine on rat hippocampal neurons.Toxicol. Ind. Health201127657157610.1177/0748233710395347 21402658
    [Google Scholar]
  15. YangY. XiongG.J. YuD.F. CaoJ. WangL.P. XuL. MaoR.R. Acute low-dose melamine affects hippocampal synaptic plasticity and behavior in rats.Toxicol. Lett.20122141636810.1016/j.toxlet.2012.08.010 22922007
    [Google Scholar]
  16. AnL. LiZ. YangZ. ZhangT. Melamine induced cognitive impairment associated with oxidative damage in rat’s hippocampus.Pharmacol. Biochem. Behav.2012102219620210.1016/j.pbb.2012.04.009 22564861
    [Google Scholar]
  17. AnL. LiJ. LuoL. HuangP. LiuP. TangC. SunW. Prenatal melamine exposure impairs cognitive flexibility and hippocampal synaptic plasticity in adolescent and adult female rats.Pharmacol. Biochem. Behav.201918617279110.1016/j.pbb.2019.172791 31518600
    [Google Scholar]
  18. DobsonR.L.M. MotlaghS. QuijanoM. CambronR.T. BakerT.R. PullenA.M. ReggB.T. Bigalow-KernA.S. VennardT. FixA. ReimschuesselR. OvermannG. ShanY. DastonG.P. Identification and characterization of toxicity of contaminants in pet food leading to an outbreak of renal toxicity in cats and dogs.Toxicol. Sci.2008106125126210.1093/toxsci/kfn160 18689873
    [Google Scholar]
  19. WeiY. LiuD. Review of melamine scandal: still a long way ahead.Toxicol. Ind. Health201228757958210.1177/0748233711416950 21986885
    [Google Scholar]
  20. AnL. LiZ. YangZ. ZhangT. Cognitive deficits induced by melamine in rats.Toxicol. Lett.2011206327628010.1016/j.toxlet.2011.08.009 21888959
    [Google Scholar]
  21. HuP. WangJ. ZhangM. HuB. LuL. ZhangC-R. DuP-F. Liver involvement in melamine-associated nephrolithiasis.Arch. Iran Med.2012154247248 22424045
    [Google Scholar]
  22. WenJ.G. ChangQ.L. LouA.F. LiZ.Z. LuS. WangY. WangY.L. HuJ.H. MaoS.P. ZhangY. XueR. RenC. XingL. ZhangG.X. ZhangS. DjurhuusJ.C. FrøkiaerJ. Melamine-related urinary stones in 195 infants and young children: clinical features within 2 years of follow-up.Urol. Int.201187442943310.1159/000330795 22057293
    [Google Scholar]
  23. JiaL. ShenY. WangX. HeL. XinY. HuY. Ultrasonographic diagnosis of urinary calculus caused by melamine in children.Chin. Med. J. (Engl.)2009122325225610.3760/cma.j.issn.0366‑6999.2009.03.003 19236799
    [Google Scholar]
  24. KamedulskiP. LukaszewiczJ.P. WitczakL. SzroederP. ZiolkowskiP. The importance of structural factors for the electrochemical performance of graphene/carbon nanotube/melamine powders towards the catalytic activity of oxygen reduction reaction.Materials (Basel)2021149244810.3390/ma14092448 34065055
    [Google Scholar]
  25. WuY.T. HuangC.M. LinC.C. HoW.A. LinL.C. ChiuT.F. TarngD.C. LinC.H. TsaiT.H. Oral bioavailability, urinary excretion and organ distribution of melamine in Sprague-Dawley rats by high-performance liquid chromatography with tandem mass spectrometry.J. Agric. Food Chem.201058110811110.1021/jf902872j 20014856
    [Google Scholar]
  26. El-HassarL. MilhM. WendlingF. FerrandN. EsclapezM. BernardC. Cell domain‐dependent changes in the glutamatergic and GABAergic drives during epileptogenesis in the rat CA1 region.J. Physiol.2007578119321110.1113/jphysiol.2006.119297 17008374
    [Google Scholar]
  27. TayemY.I. VeeramuthuS.V. RashidA.N. SequeiraR.P. FadelR.A. Effect of melamine administration during pregnancy on foetal bone ossification.Ital. J. Anat. Embryol.20191243467474
    [Google Scholar]
  28. OlsenR.K. MosesS.N. RiggsL. RyanJ.D. The hippocampus supports multiple cognitive processes through relational binding and comparison.Front. Hum. Neurosci.2012614610.3389/fnhum.2012.00146 22661938
    [Google Scholar]
  29. ToddA.C. HardinghamG.E. The regulation of astrocytic glutamate transporters in health and neurodegenerative diseases.Int. J. Mol. Sci.20202124960710.3390/ijms21249607 33348528
    [Google Scholar]
  30. AnL. SunW. Acute melamine affects spatial memory consolidation via inhibiting hippocampal NMDAR-dependent LTD in rats.Toxicol. Sci.2018163238539610.1093/toxsci/kfx039 28206646
    [Google Scholar]
  31. AnL. YangZ. ZhangT. Melamine induced spatial cognitive deficits associated with impairments of hippocampal long-term depression and cholinergic system in Wistar rats.Neurobiol. Learn. Mem.2013100182410.1016/j.nlm.2012.12.003 23231966
    [Google Scholar]
  32. ZengH. ChattarjiS. BarbarosieM. Rondi-ReigL. PhilpotB.D. MiyakawaT. BearM.F. TonegawaS. Forebrain-specific calcineurin knockout selectively impairs bidirectional synaptic plasticity and working/episodic-like memory.Cell2001107561762910.1016/S0092‑8674(01)00585‑2 11733061
    [Google Scholar]
  33. XuX. AnL. MiX. ZhangT. Impairment of cognitive function and synaptic plasticity associated with alteration of information flow in theta and gamma oscillations in melamine-treated rats.PLoS One2013810e7779610.1371/journal.pone.0077796 24204970
    [Google Scholar]
  34. ColginL.L. DenningerT. FyhnM. HaftingT. BonnevieT. JensenO. MoserM.B. MoserE.I. Frequency of gamma oscillations routes flow of information in the hippocampus.Nature2009462727135335710.1038/nature08573 19924214
    [Google Scholar]
  35. ColginL.L. Slow gamma takes the reins in replay.Neuron201275454955010.1016/j.neuron.2012.08.006 22920247
    [Google Scholar]
  36. AnL. ZhangT. Prenatal melamine exposure induces impairments of spatial cognition and hippocampal synaptic plasticity in male adolescent rats.Reprod. Toxicol.201449788510.1016/j.reprotox.2014.07.081 25111974
    [Google Scholar]
  37. SunW. WuY. TangD. LiX. AnL. Melamine disrupts spatial reversal learning and learning strategy via inhibiting hippocampal BDNF-mediated neural activity.PLoS One2021161e024532610.1371/journal.pone.0245326 33428671
    [Google Scholar]
  38. Rosas-VidalL.E. Do-MonteF.H. Sotres-BayonF. QuirkG.J. Hippocampal-prefrontal BDNF and memory for fear extinction.Neuropsychopharmacology20143992161216910.1038/npp.2014.64 24625752
    [Google Scholar]
  39. YuS.P. CanzonieroL.M.T. ChoiD.W. Ion homeostasis and apoptosis.Curr. Opin. Cell Biol.200113440541110.1016/S0955‑0674(00)00228‑3 11454444
    [Google Scholar]
  40. YangJ.J. TianY.T. YangZ. ZhangT. Effect of melamine on potassium currents in rat hippocampal CA1 neurons.Toxicol. In Vitro201024239740310.1016/j.tiv.2009.10.019 19895883
    [Google Scholar]
  41. SchröderW. HinterkeuserS. SeifertG. SchrammJ. JabsR. WilkinG.P. SteinhäuserC. Functional and molecular properties of human astrocytes in acute hippocampal slices obtained from patients with temporal lobe epilepsy.Epilepsia200041s6Suppl. 6S181S18410.1111/j.1528‑1157.2000.tb01578.x 10999541
    [Google Scholar]
  42. YangJ.J. YangZ. ZhangT. Action potential changes associated with impairment of functional properties of sodium channels in hippocampal neurons induced by melamine.Toxicol. Lett.2010198217117610.1016/j.toxlet.2010.06.013 20599599
    [Google Scholar]
  43. MastR.W. JeffcoatA.R. SadlerB.M. KraskaR.C. FriedmanM.A. Metabolism, disposition and excretion of [14C]melamine in male Fischer 344 rats.Food Chem. Toxicol.198321680781010.1016/0278‑6915(83)90216‑8 6686586
    [Google Scholar]
  44. ErisginZ. Melamine exposure from the weaning period causes apoptosis, inflammation, and damage to the blood-brain barrier.J. Chem. Neuroanat.202111310193910.1016/j.jchemneu.2021.101939 33639231
    [Google Scholar]
  45. GuoC. HeZ. WenL. ZhuL. LuY. DengS. YangY. WeiQ. YuanH. Cytoprotective effect of trolox against oxidative damage and apoptosis in the NRK‐52e cells induced by melamine.Cell Biol. Int.201236218318810.1042/CBI20110036 21939437
    [Google Scholar]
  46. WilcoxC.S. Oxidative stress and nitric oxide deficiency in the kidney: a critical link to hypertension?Am. J. Physiol. Regul. Integr. Comp. Physiol.20052894R913R93510.1152/ajpregu.00250.2005 16183628
    [Google Scholar]
  47. AnL. FuJ. ZhangT. Reversible effects of vitamins C and E combination on cognitive deficits and oxidative stress in the hippocampus of melamine-exposed rats.Pharmacol. Biochem. Behav.201513215215910.1016/j.pbb.2015.03.009 25802127
    [Google Scholar]
  48. FuJ. WangH. GaoJ. YuM. WangR. YangZ. ZhangT. Rapamycin Effectively Impedes Melamine-Induced Impairments of Cognition and Synaptic Plasticity in Wistar Rats.Mol. Neurobiol.201754281983210.1007/s12035‑016‑9687‑7 26768596
    [Google Scholar]
  49. GuoC. YuanH. HeZ. Melamine causes apoptosis of rat kidney epithelial cell line (NRK‐52e cells) via excessive intracellular ROS (reactive oxygen species) and the activation of p38 MAPK pathway.Cell Biol. Int.201236438338910.1042/CBI20110504 22150157
    [Google Scholar]
  50. KuoF.C. TsengY.T. WuS.R. WuM.T. LoY.C. Melamine activates NFκB/COX-2/PGE2 pathway and increases NADPH oxidase–dependent ROS production in macrophages and human embryonic kidney cells.Toxicol. In Vitro20132761603161110.1016/j.tiv.2013.04.011 23643631
    [Google Scholar]
  51. LeemanJ.R. GilmoreT.D. Alternative splicing in the NF-κB signaling pathway.Gene200842329710710.1016/j.gene.2008.07.015 18718859
    [Google Scholar]
  52. CalabreseV. CorneliusC. Dinkova-KostovaA.T. CalabreseE.J. Vitagenes, cellular stress response, and acetylcarnitine: Relevance to hormesis.Biofactors200935214616010.1002/biof.22 19449442
    [Google Scholar]
  53. CalabreseV. CorneliusC. Dinkova-KostovaA.T. CalabreseE.J. MattsonM.P. Cellular stress responses, the hormesis paradigm, and vitagenes: novel targets for therapeutic intervention in neurodegenerative disorders.Antioxid. Redox Signal.201013111763181110.1089/ars.2009.3074 20446769
    [Google Scholar]
  54. AzadN. IyerA. VallyathanV. WangL. CastranovaV. StehlikC. RojanasakulY. Role of oxidative/nitrosative stress‐mediated Bcl‐2 regulation in apoptosis and malignant transformation.Ann. N. Y. Acad. Sci.2010120311610.1111/j.1749‑6632.2010.05608.x 20716276
    [Google Scholar]
  55. ContestabileA. CianiE. Role of nitric oxide in the regulation of neuronal proliferation, survival and differentiation.Neurochem. Int.200445690391410.1016/j.neuint.2004.03.021 15312985
    [Google Scholar]
  56. MungrueI.N. BredtD.S. nNOS at a glance: implications for brain and brawn.J. Cell Sci.2004117132627262910.1242/jcs.01187 15169833
    [Google Scholar]
  57. ChoiY.B. TennetiL. LeD.A. OrtizJ. BaiG. ChenH.S.V. LiptonS.A. Molecular basis of NMDA receptor-coupled ion channel modulation by S-nitrosylation.Nat. Neurosci.200031152110.1038/71090 10607390
    [Google Scholar]
  58. ZhouP. QianL. IadecolaC. Nitric oxide inhibits caspase activation and apoptotic morphology but does not rescue neuronal death.J. Cereb. Blood Flow Metab.200525334835710.1038/sj.jcbfm.9600036 15660100
    [Google Scholar]
  59. MancusoC. BonsignoreA. Di StasioE. MordenteA. MotterliniR. Bilirubin and S-nitrosothiols interaction: evidence for a possible role of bilirubin as a scavenger of nitric oxide.Biochem. Pharmacol.200366122355236310.1016/j.bcp.2003.08.022 14637193
    [Google Scholar]
  60. CalabreseV. ButterfieldD.A. ScapagniniG. StellaA.M.G. MainesM.D. Redox regulation of heat shock protein expression by signaling involving nitric oxide and carbon monoxide: relevance to brain aging, neurodegenerative disorders, and longevity.Antioxid. Redox Signal.200683-444447710.1089/ars.2006.8.444 16677090
    [Google Scholar]
  61. CalabreseV. MancusoC. CalvaniM. RizzarelliE. ButterfieldD.A. Giuffrida StellaA.M. Nitric oxide in the central nervous system: neuroprotection versus neurotoxicity.Nat. Rev. Neurosci.200781076677510.1038/nrn2214 17882254
    [Google Scholar]
  62. ChuC.Y. ChuK.O. ChanJ.Y.W. LiuX.Z. HoC.S. WongC.K. LauC.M. TingT.L. FokT.F. FungK.P. WangC.C. Distribution of melamine in rat foetuses and neonates.Toxicol. Lett.2010199339840210.1016/j.toxlet.2010.10.004 20934493
    [Google Scholar]
  63. JingbinW. NdongM. KaiH. MatsunoK. KayamaF. Placental transfer of melamine and its effects on rat dams and fetuses.Food Chem. Toxicol.20104871791179510.1016/j.fct.2010.03.043 20362637
    [Google Scholar]
  64. SunW. LiuP. TangC. AnL. Melamine disrupts acetylcholine-mediated neural information flow in the hippocampal CA3–CA1 pathway.Front. Behav. Neurosci.20211559490710.3389/fnbeh.2021.594907 33679339
    [Google Scholar]
  65. AnL. ZhangT. Vitamins C and E reverse melamine-induced deficits in spatial cognition and hippocampal synaptic plasticity in rats.Neurotoxicology20144413213910.1016/j.neuro.2014.06.009 24960222
    [Google Scholar]
  66. ZhangH. WangH. XiaoX. ZhangT. Melamine alters glutamatergic synaptic transmission of CA3-CA1 synapses presynaptically through autophagy activation in the rat hippocampus.Neurotox. Res.201629113514210.1007/s12640‑015‑9570‑8 26530910
    [Google Scholar]
  67. SunW. LiX. TangD. WuY. AnL. Subacute melamine exposure disrupts task-based hippocampal information flow via inhibiting the subunits 2 and 3 of AMPA glutamate receptors expression.Hum. Exp. Toxicol.202140692893910.1177/0960327120975821 33243008
    [Google Scholar]
  68. CatterallW.A. Cellular and molecular biology of voltage-gated sodium channels.Physiol. Rev.1992724S15S4810.1152/physrev.1992.72.suppl_4.S15 1332090
    [Google Scholar]
  69. YaoH. ZhaoD. KhanS.H. YangL. Role of autophagy in prion protein-induced neurodegenerative diseases.Acta Biochim. Biophys. Sin. (Shanghai)201345649450210.1093/abbs/gmt022 23459558
    [Google Scholar]
  70. IheanachoS.C. IgberiC. Amadi-EkeA. ChinonyeremD. IheanachoA. AvwemoyaF. Biomarkers of neurotoxicity, oxidative stress, hepatotoxicity and lipid peroxidation in Clarias gariepinus exposed to melamine and polyvinyl chloride.Biomarkers202025760361010.1080/1354750X.2020.1821777 32962424
    [Google Scholar]
  71. WangH. GaoN. LiZ. YangZ. ZhangT. Autophagy alleviates melamine-induced cell death in PC12 cells via decreasing ROS level.Mol. Neurobiol.20165331718172910.1007/s12035‑014‑9073‑2 25724280
    [Google Scholar]
  72. CaccamoA. De PintoV. MessinaA. BrancaC. OddoS. Genetic reduction of mammalian target of rapamycin ameliorates Alzheimer’s disease-like cognitive and pathological deficits by restoring hippocampal gene expression signature.J. Neurosci.201434237988799810.1523/JNEUROSCI.0777‑14.2014 24899720
    [Google Scholar]
  73. XieZ. KlionskyD.J. Autophagosome formation: core machinery and adaptations.Nat. Cell Biol.20079101102110910.1038/ncb1007‑1102 17909521
    [Google Scholar]
  74. SinghR. XiangY. WangY. BaikatiK. CuervoA.M. LuuY.K. TangY. PessinJ.E. SchwartzG.J. CzajaM.J. Autophagy regulates adipose mass and differentiation in mice.J. Clin. Invest.2009119113329333910.1172/JCI39228 19855132
    [Google Scholar]
  75. UglandH. NaderiS. BrechA. CollasP. BlomhoffH.K. cAMP induces autophagy via a novel pathway involving ERK, cyclin E and Beclin 1.Autophagy20117101199121110.4161/auto.7.10.16649 21750416
    [Google Scholar]
  76. YuL. ChenY. ToozeS.A. Autophagy pathway: Cellular and molecular mechanisms.Autophagy201814220721510.1080/15548627.2017.1378838 28933638
    [Google Scholar]
  77. TanidaI. Tanida-MiyakeE. UenoT. KominamiE. The human homolog of Saccharomyces cerevisiae Apg7p is a Protein-activating enzyme for multiple substrates including human Apg12p, GATE-16, GABARAP, and MAP-LC3.J. Biol. Chem.200127631701170610.1074/jbc.C000752200 11096062
    [Google Scholar]
  78. MizushimaN. SugitaH. YoshimoriT. OhsumiY. A new protein conjugation system in human. The counterpart of the yeast Apg12p conjugation system essential for autophagy.J. Biol. Chem.199827351338893389210.1074/jbc.273.51.33889 9852036
    [Google Scholar]
/content/journals/cn/10.2174/1570159X22666240320133241
Loading
/content/journals/cn/10.2174/1570159X22666240320133241
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test