Skip to content
2000
Volume 23, Issue 1
  • ISSN: 1570-159X
  • E-ISSN: 1875-6190

Abstract

Ischemic stroke is a significant cause of morbidity and mortality worldwide. Autophagy, a process of intracellular degradation, has been shown to play a crucial role in the pathogenesis of ischemic stroke. Long non-coding RNAs (lncRNAs) have emerged as essential regulators of autophagy in various diseases, including ischemic stroke. Recent studies have identified several lncRNAs that modulate autophagy in ischemic stroke, including MALAT1, MIAT, SNHG12, H19, AC136007. 2, C2dat2, MEG3, KCNQ1OT1, SNHG3, and RMRP. These lncRNAs regulate autophagy by interacting with key proteins involved in the autophagic process, such as Beclin-1, ATG7, and LC3. Understanding the role of lncRNAs in regulating autophagy in ischemic stroke may provide new insights into the pathogenesis of this disease and identify potential therapeutic targets for its treatment.

Loading

Article metrics loading...

/content/journals/cn/10.2174/1570159X22666240704123701
2024-07-04
2024-11-22
Loading full text...

Full text loading...

References

  1. DonkorE.S. Stroke in the century: A snapshot of the burden, epidemiology, and quality of life.Stroke Res. Treat.2018201811010.1155/2018/3238165 30598741
    [Google Scholar]
  2. O’SullivanT.L. FahimC. GagnonE. Asset literacy following stroke: implications for disaster resilience.Disaster Med. Public Health Prep.201812331232010.1017/dmp.2017.66 29039291
    [Google Scholar]
  3. SainiV. GuadaL. YavagalD.R. Global epidemiology of stroke and access to acute ischemic stroke interventions.Neurology20219720_Supplement_2S6S1610.1212/WNL.0000000000012781 34785599
    [Google Scholar]
  4. CouplandA.P. ThaparA. QureshiM.I. JenkinsH. DaviesA.H. The definition of stroke.J. R. Soc. Med.2017110191210.1177/0141076816680121 28084167
    [Google Scholar]
  5. YangD.B. ZhouJ. FengL. XuR. WangY.C. Value of superb micro-vascular imaging in predicting ischemic stroke in patients with carotid atherosclerotic plaques.World J. Clin. Cases20197783984810.12998/wjcc.v7.i7.839 31024955
    [Google Scholar]
  6. MosconiM.G. PaciaroniM. Treatments in ischemic stroke: Current and future.Eur. Neurol.202285534936610.1159/000525822 35917794
    [Google Scholar]
  7. ZhouX. ChenH. WangL. LenahanC. LianL. OuY. HeY. Mitochondrial dynamics: A potential therapeutic target for ischemic stroke.Front. Aging Neurosci.20211372142810.3389/fnagi.2021.721428 34557086
    [Google Scholar]
  8. ZhangQ. JiaM. WangY. WangQ. WuJ. Cell death mechanisms in cerebral ischemia-reperfusion injury.Neurochem. Res.202247123525354210.1007/s11064‑022‑03697‑8 35976487
    [Google Scholar]
  9. WangX. FangY. HuangQ. XuP. LenahanC. LuJ. ZhengJ. DongX. ShaoA. ZhangJ. An updated review of autophagy in ischemic stroke: From mechanisms to therapies.Exp. Neurol.202134011368410.1016/j.expneurol.2021.113684 33676918
    [Google Scholar]
  10. WangM. LeeH. ElkinK. BardhiR. GuanL. ChandraA. GengX. DingY. Detrimental and beneficial effect of autophagy and a potential therapeutic target after ischemic stroke. Evid.-.Based Complement. Altern. Med.20202020110
    [Google Scholar]
  11. GoradelN.H. MohammadiN. Haghi-AminjanH. FarhoodB. NegahdariB. SahebkarA. Regulation of tumor angiogenesis by microRNAs: State of the art.J. Cell. Physiol.201923421099111010.1002/jcp.27051 30070704
    [Google Scholar]
  12. Ruiz-OreraJ. MesseguerX. SubiranaJ.A. AlbaM.M. Long non-coding RNAs as a source of new peptides.eLife20143e0352310.7554/eLife.03523 25233276
    [Google Scholar]
  13. ChenJ. LiuP. DongX. JinJ. XuY. The role of lncRNAs in ischemic stroke.Neurochem. Int.202114710501910.1016/j.neuint.2021.105019 33905763
    [Google Scholar]
  14. LiX. HeS. MaB. Autophagy and autophagy-related proteins in cancer.Mol. Cancer20201911210.1186/s12943‑020‑1138‑4 31969156
    [Google Scholar]
  15. InokiK. mTOR signaling in autophagy regulation in the kidney.Semin. Nephrol.201434128
    [Google Scholar]
  16. TsangC.K. QiH. LiuL.F. ZhengX.F.S. Targeting mammalian target of rapamycin (mTOR) for health and diseases.Drug Discov. Today2007123-411212410.1016/j.drudis.2006.12.008 17275731
    [Google Scholar]
  17. LiuL. YanL. LiaoN. WuW.Q. ShiJ.L. A review of ULK1-mediated autophagy in drug resistance of cancer.Cancers202012235210.3390/cancers12020352 32033142
    [Google Scholar]
  18. SchlütermannD. Autophagy: Molecular insights into its role and therapeutic potential in bladder cancer and neurodegeneration2021Available from: https://docserv.uni-duesseldorf.de/servlets/DerivateServlet/Derivate-59748/Dissertation%20David%20Schl% C3%BCtermann%20Archiv1b.pdf
    [Google Scholar]
  19. MizushimaN. The ATG conjugation systems in autophagy.Curr. Opin. Cell Biol.20206311010.1016/j.ceb.2019.12.001 31901645
    [Google Scholar]
  20. PanzittK. FickertP. WagnerM. Regulation of autophagy by bile acids and in cholestasis - CholestoPHAGY or CholeSTOPagy.Biochim. Biophys. Acta Mol. Basis Dis.20211867216601710.1016/j.bbadis.2020.166017 33242590
    [Google Scholar]
  21. GudenasB.L. WangJ. KuangS. WeiA. CogillS.B. WangL. Genomic data mining for functional annotation of human long noncoding RNAs.J. Zhejiang Univ. Sci. B201920647648710.1631/jzus.B1900162 31090273
    [Google Scholar]
  22. StatelloL. GuoC.J. ChenL.L. HuarteM. Gene regulation by long non-coding RNAs and its biological functions.Nat. Rev. Mol. Cell Biol.20212229611810.1038/s41580‑020‑00315‑9 33353982
    [Google Scholar]
  23. Luzón-ToroB. FernándezR.M. Martos-MartínezJ.M. Rubio-Manzanares-DoradoM. AntiñoloG. BorregoS. LncRNA LUCAT1 as a novel prognostic biomarker for patients with papillary thyroid cancer.Sci. Rep.2019911437410.1038/s41598‑019‑50913‑7 31591432
    [Google Scholar]
  24. DerrienT. JohnsonR. BussottiG. TanzerA. DjebaliS. TilgnerH. GuernecG. MartinD. MerkelA. KnowlesD.G. LagardeJ. VeeravalliL. RuanX. RuanY. LassmannT. CarninciP. BrownJ.B. LipovichL. GonzalezJ.M. ThomasM. DavisC.A. ShiekhattarR. GingerasT.R. HubbardT.J. NotredameC. HarrowJ. GuigóR. The GENCODE v7 catalog of human long noncoding RNAs: Analysis of their gene structure, evolution, and expression.Genome Res.20122291775178910.1101/gr.132159.111 22955988
    [Google Scholar]
  25. MattickJ.S. AmaralP.P. CarninciP. CarpenterS. ChangH.Y. ChenL.L. ChenR. DeanC. DingerM.E. FitzgeraldK.A. GingerasT.R. GuttmanM. HiroseT. HuarteM. JohnsonR. KanduriC. KapranovP. LawrenceJ.B. LeeJ.T. MendellJ.T. MercerT.R. MooreK.J. NakagawaS. RinnJ.L. SpectorD.L. UlitskyI. WanY. WiluszJ.E. WuM. Long non-coding RNAs: Definitions, functions, challenges and recommendations.Nat. Rev. Mol. Cell Biol.202324643044710.1038/s41580‑022‑00566‑8 36596869
    [Google Scholar]
  26. FangY. FullwoodM.J. Roles, functions, and mechanisms of long non-coding RNAs in cancer.Genomics Proteomics Bioinformatics2016141425410.1016/j.gpb.2015.09.006 26883671
    [Google Scholar]
  27. LucinK.M. O’BrienC.E. BieriG. CzirrE. MosherK.I. AbbeyR.J. MastroeniD.F. RogersJ. SpencerB. MasliahE. Wyss-CorayT. Microglial beclin 1 regulates retromer trafficking and phagocytosis and is impaired in Alzheimer’s disease.Neuron201379587388610.1016/j.neuron.2013.06.046 24012002
    [Google Scholar]
  28. EstevesA.R. FilipeF. MagalhãesJ.D. SilvaD.F. CardosoS.M. The role of Beclin-1 acetylation on autophagic flux in Alzheimer’s disease.Mol. Neurobiol.20195685654567010.1007/s12035‑019‑1483‑8 30661206
    [Google Scholar]
  29. LonskayaI. HebronM.L. DesforgesN.M. FranjieA. MoussaC.E.H. Tyrosine kinase inhibition increases functional parkin‐ B eclin‐1 interaction and enhances amyloid clearance and cognitive performance.EMBO Mol. Med.2013581247126210.1002/emmm.201302771 23737459
    [Google Scholar]
  30. GoenawanH. KiasatiS. SylvianaN. MegantaraI. LesmanaR. Exercise-induced autophagy ameliorates motor symptoms progressivity in parkinson’s disease through alpha-synuclein degradation: A review.Neuropsychiatr. Dis. Treat.2023191253126210.2147/NDT.S401416 37255530
    [Google Scholar]
  31. RobertsT.C. MorrisK.V. WoodM.J.A. The role of long non-coding RNAs in neurodevelopment, brain function and neurological disease.Philos. Trans. R. Soc. Lond. B Biol. Sci.201436916522013050710.1098/rstb.2013.0507 25135968
    [Google Scholar]
  32. BriggsJ.A. WolvetangE.J. MattickJ.S. RinnJ.L. BarryG. Mechanisms of long non-coding RNAs in mammalian nervous system development, plasticity, disease, and evolution.Neuron201588586187710.1016/j.neuron.2015.09.045 26637795
    [Google Scholar]
  33. PengJ. WuY. TianX. PangJ. KuaiL. CaoF. QinX. ZhongJ. LiX. LiY. SunX. ChenL. JiangY. High-throughput sequencing and co-expression network analysis of lncRNAs and mRNAs in early brain injury following experimental subarachnoid haemorrhage.Sci. Rep.2017714657710.1038/srep46577 28417961
    [Google Scholar]
  34. WangX. ZhangM. LiuH. LncRNA17A regulates autophagy and apoptosis of SH-SY5Y cell line as an in vitro model for Alzheimer’s disease.Biosci. Biotechnol. Biochem.201983460962110.1080/09168451.2018.1562874 30652945
    [Google Scholar]
  35. JiaY.-M. ZhuC.-F. SheZ.-Y. WuM.-M. WuY.-Y. ZhouB.-Y. ZhangN. Effects on autophagy of moxibustion at governor vessel acupoints in app/ps1double-transgenic alzheimer’s disease mice through the lncRNA Six3os1/miR-511-3p/AKT3 molecular axis.Evid.-Based Complement. Altern. Med., 20222022
    [Google Scholar]
  36. ZhouY. GeY. LiuQ. LiY.X. ChaoX. GuanJ.J. DiwuY.C. ZhangQ. LncRNA BACE1-AS promotes autophagy-mediated neuronal damage through the miR-214-3p/ATG5 signalling axis in Alzheimer’s disease.Neuroscience2021455526410.1016/j.neuroscience.2020.10.028 33197504
    [Google Scholar]
  37. TangZ.B. ChenH.P. ZhongD. SongJ.H. CaoJ.W. ZhaoM.Q. HanB.C. DuanQ. ShengX.M. YaoJ.L. LiG.Z. LncRNA RMRP accelerates autophagy-mediated neurons apoptosis through miR-3142/TRIB3 signaling axis in alzheimer’s disease.Brain Res.2022178514788410.1016/j.brainres.2022.147884 35304105
    [Google Scholar]
  38. QianC. YeY. MaoH. YaoL. SunX. WangB. ZhangH. XieL. ZhangH. ZhangY. ZhangS. HeX. Downregulated lncRNA-SNHG1 enhances autophagy and prevents cell death through the miR-221/222/p27/mTOR pathway in Parkinson’s disease.Exp. Cell Res.2019384111161410.1016/j.yexcr.2019.111614 31499060
    [Google Scholar]
  39. FanY. ZhaoX. LuK. ChengG. LncRNA BDNF-AS promotes autophagy and apoptosis in MPTP-induced Parkinson’s disease via ablating microRNA-125b-5p.Brain Res. Bull.202015711912710.1016/j.brainresbull.2020.02.003 32057951
    [Google Scholar]
  40. DongL. ZhengY. GaoL. LuoX. lncRNA NEAT1 prompts autophagy and apoptosis in MPTP-induced Parkinson’s disease by impairing miR-374c-5p.Acta Biochim. Biophys. Sin.202153787088210.1093/abbs/gmab055 33984130
    [Google Scholar]
  41. JiaL. SongY. MuL. LiQ. TangJ. YangZ. MengW. Long noncoding RNA TPT1‐AS1 downregulates the microRNA‐770‐5p expression to inhibit glioma cell autophagy and promote proliferation through STMN1 upregulation.J. Cell. Physiol.202023543679368910.1002/jcp.29262 31637705
    [Google Scholar]
  42. FuZ. LuoW. WangJ. PengT. SunG. ShiJ. LiZ. ZhangB. Malat1 activates autophagy and promotes cell proliferation by sponging miR-101 and upregulating STMN1, RAB5A and ATG4D expression in glioma.Biochem. Biophys. Res. Commun.2017492348048610.1016/j.bbrc.2017.08.070 28834690
    [Google Scholar]
  43. JiangC. ShenF. DuJ. FangX. LiX. SuJ. WangX. HuangX. LiuZ. Upregulation of CASC2 sensitized glioma to temozolomide cytotoxicity through autophagy inhibition by sponging miR-193a-5p and regulating mTOR expression.Biomed. Pharmacother.20189784485010.1016/j.biopha.2017.10.146 29136760
    [Google Scholar]
  44. SalahS.M.M. MatboliM. NasserH.E.T. AbdelnaiemI.A. ShafeiA.E.; EL-Asmer, M.F. Dysregulation in the expression of (lncRNA-TSIX, TP53INP2 mRNA, miRNA-1283) in spinal cord injury.Genomics202011253315332110.1016/j.ygeno.2020.06.018 32535070
    [Google Scholar]
  45. RodrigoR. Fernández-GajardoR. GutiérrezR. MatamalaJ. CarrascoR. Miranda-MerchakA. FeuerhakeW. Oxidative stress and pathophysiology of ischemic stroke: Novel therapeutic opportunities.CNS Neurol. Disord. Drug Targets201312569871410.2174/1871527311312050015 23469845
    [Google Scholar]
  46. WangC. WanH. WangQ. SunH. SunY. WangK. ZhangC. Safflor yellow B attenuates ischemic brain injury via downregulation of long noncoding AK046177 and inhibition of MicroRNA-134 expression in rats.Oxid. Med. Cell. Longev.2020202012010.1155/2020/4586839 32566081
    [Google Scholar]
  47. CalabreseV. CorneliusC. Dinkova-KostovaA.T. CalabreseE.J. MattsonM.P. Cellular stress responses, the hormesis paradigm, and vitagenes: Novel targets for therapeutic intervention in neurodegenerative disorders.Antioxid. Redox Signal.201013111763181110.1089/ars.2009.3074 20446769
    [Google Scholar]
  48. CalabreseV. MancusoC. CalvaniM. RizzarelliE. ButterfieldD.A. Giuffrida StellaA.M. Nitric oxide in the central nervous system: Neuroprotection versus neurotoxicity.Nat. Rev. Neurosci.200781076677510.1038/nrn2214 17882254
    [Google Scholar]
  49. CalabreseV. GiordanoJ. SignorileA. Laura OntarioM. CastorinaS. De PasqualeC. EckertG. CalabreseE.J. Major pathogenic mechanisms in vascular dementia: Roles of cellular stress response and hormesis in neuroprotection.J. Neurosci. Res.201694121588160310.1002/jnr.23925 27662637
    [Google Scholar]
  50. Concetta ScutoM. MancusoC. TomaselloB. Laura OntarioM. CavallaroA. FrascaF. MaiolinoL. Trovato SalinaroA. CalabreseE.J. CalabreseV. Curcumin, hormesis and the nervous system.Nutrients20191110241710.3390/nu11102417 31658697
    [Google Scholar]
  51. ChenF. ZhangL. WangE. ZhangC. LiX. LncRNA GAS5 regulates ischemic stroke as a competing endogenous RNA for miR-137 to regulate the Notch1 signaling pathway.Biochem. Biophys. Res. Commun.2018496118419010.1016/j.bbrc.2018.01.022 29307821
    [Google Scholar]
  52. ChenS. WangM. YangH. MaoL. HeQ. JinH. YeZ. LuoX. XiaY. HuB. LncRNA TUG1 sponges microRNA-9 to promote neurons apoptosis by up-regulated Bcl2l11 under ischemia.Biochem. Biophys. Res. Commun.2017485116717310.1016/j.bbrc.2017.02.043 28202414
    [Google Scholar]
  53. ChenZ. FanT. ZhaoX. ZhangZ. Depleting SOX2 improves ischemic stroke via lncRNA PVT1/microRNA-24-3p/STAT3 axis.Mol. Med.202127110710.1186/s10020‑021‑00346‑8 34521353
    [Google Scholar]
  54. LiJ. WangN. NieH. WangS. JiangT. MaX. LiuW. TianK. Long non-coding RNA RMST worsens ischemic stroke via MicroRNA-221-3p/PIK3R1/TGF-β Signaling pathway.Mol. Neurobiol.20225952808282110.1007/s12035‑021‑02632‑2 35217983
    [Google Scholar]
  55. ZhangS. ZhangY. WangN. WangY. NieH. ZhangY. HanH. WangS. LiuW. BoC. Long non-coding RNA MIAT impairs neurological function in ischemic stroke via up-regulating microRNA-874-3p-targeted IL1B.Brain Res. Bull.2021175818910.1016/j.brainresbull.2021.07.005 34265390
    [Google Scholar]
  56. GuoT. LiuY. RenX. WangW. LiuH. Promoting role of long non-coding RNA small nucleolar RNA host gene 15 (SNHG15) in neuronal injury following ischemic stroke via the MicroRNA-18a/CXC chemokine ligand 13 (CXCL13)/ERK/MEK Axis, Med.Med. Sci. Monit.202026e923610e92361110.12659/MSM.923610 32862188
    [Google Scholar]
  57. ZhangX.Q. SongL.H. FengS.J. DaiX.M. LncRNA FGD5-AS1 acts as a competing endogenous RNA for miRNA-223 to lessen oxygen-glucose deprivation and simulated reperfusion (OGD/R)-induced neurons injury.Folia Neuropathol.201957435736510.5114/fn.2019.91194 32337949
    [Google Scholar]
  58. GaoQ. WangY. LncRNA FTX regulates angiogenesis through miR-342-3p/SPI1 axis in stroke.Neuropsychiatr. Dis. Treat.2021173617362510.2147/NDT.S337774 34924755
    [Google Scholar]
  59. SuiS. SunL. ZhangW. LiJ. HanJ. ZhengJ. XinH. LncRNA MEG8 attenuates cerebral ischemia after ischemic stroke through targeting miR-130a-5p/VEGFA signaling.Cell. Mol. Neurobiol.20214161311132410.1007/s10571‑020‑00904‑4 32627090
    [Google Scholar]
  60. ZhaoM. WangJ. XiX. TanN. ZhangL. SNHG12 promotes angiogenesis following ischemic stroke via regulating miR-150/] VEGF pathway.Neuroscience201839023124010.1016/j.neuroscience.2018.08.029 30193860
    [Google Scholar]
  61. YuZ. ZhuM. ShuD. ZhangR. XiangZ. JiangA. LiuS. ZhangC. YuanQ. HuX. LncRNA PEG11as aggravates cerebral ischemia/reperfusion injury after ischemic stroke through miR-342-5p/PFN1 axis.Life Sci.202331312127610.1016/j.lfs.2022.121276 36496032
    [Google Scholar]
  62. DengL. JiangJ. ChenS. LinX. ZuoT. HuQ. WuY. FanX. DongZ. Long non-coding RNA ANRIL downregulation alleviates neuroinflammation in an ischemia stroke model via modulation of the miR-671-5p/NF-κB pathway.Neurochem. Res.20224772002201510.1007/s11064‑022‑03585‑1 35359242
    [Google Scholar]
  63. ZhangX. HamblinM.H. YinK.J. The long noncoding RNA Malat1: Its physiological and pathophysiological functions.RNA Biol.201714121705171410.1080/15476286.2017.1358347 28837398
    [Google Scholar]
  64. LiL. XuY. ZhaoM. GaoZ. Neuro-protective roles of long non-coding RNA MALAT1 in Alzheimer’s disease with the involvement of the microRNA-30b/CNR1 network and the following PI3K/AKT activation.Exp. Mol. Pathol.202011710454510.1016/j.yexmp.2020.104545 32976819
    [Google Scholar]
  65. LiZ. LiJ. TangN. Long noncoding RNA Malat1 is a potent autophagy inducer protecting brain microvascular endothelial cells against oxygen-glucose deprivation/reoxygenation-induced injury by sponging miR-26b and upregulating ULK2 expression.Neuroscience201735411010.1016/j.neuroscience.2017.04.017 28433650
    [Google Scholar]
  66. WangS. HanX. MaoZ. XinY. MaharjanS. ZhangB. MALAT1 lncRNA induces autophagy and protects brain microvascular endothelial cells against oxygen–glucose deprivation by binding to miR-200c-3p and upregulating SIRT1 expression.Neuroscience201939711612610.1016/j.neuroscience.2018.11.024 30496821
    [Google Scholar]
  67. YangY. DuanW. LiY. YanJ. YiW. LiangZ. WangN. YiD. JinZ. New role of silent information regulator 1 in cerebral ischemia.Neurobiol. Aging201334122879288810.1016/j.neurobiolaging.2013.06.008 23855981
    [Google Scholar]
  68. QiuR. LiW. LiuY. MicroRNA-204 protects H9C2 cells against hypoxia/reoxygenation-induced injury through regulating SIRT1-mediated autophagy.Biomed. Pharmacother.2018100151910.1016/j.biopha.2018.01.165 29421577
    [Google Scholar]
  69. GuoD. MaJ. YanL. LiT. LiZ. HanX. ShuiS. Down-regulation of Lncrna MALAT1 attenuates neuronal cell death through suppressing Beclin1-dependent autophagy by regulating Mir-30a in cerebral ischemic stroke.Cell. Physiol. Biochem.201743118219410.1159/000480337 28854438
    [Google Scholar]
  70. TanJ. LiuS. JiangQ. YuT. HuangK. LncRNA-MIAT increased in patients with coronary atherosclerotic heart disease.Cardiol. Res. Pract.201920191510.1155/2019/6280194 31143478
    [Google Scholar]
  71. ShenY. CuiX. HuY. ZhangZ. ZhangZ. LncRNA-MIAT regulates the growth of SHSY5Y cells by regulating the miR-34-5p-SYT1 axis and exerts a neuroprotective effect in a mouse model of Parkinson’s disease.Am. J. Transl. Res.2021139999310013 34650678
    [Google Scholar]
  72. ZhuM. LiN. LuoP. JingW. WenX. LiangC. TuJ. Peripheral blood leukocyte expression of lncRNA MIAT and its diagnostic and prognostic value in ischemic stroke.J. Stroke Cerebrovasc. Dis.201827232633710.1016/j.jstrokecerebrovasdis.2017.09.009 29030044
    [Google Scholar]
  73. GuoX. WangY. ZhengD. ChengX. SunY. LncRNA-MIAT promotes neural cell autophagy and apoptosis in ischemic stroke by up-regulating REDD1.Brain Res.2021176314743610.1016/j.brainres.2021.147436 33745924
    [Google Scholar]
  74. Alvarez-GarciaO. MatsuzakiT. OlmerM. PlateL. KellyJ.W. LotzM.K. Regulated in development and DNA damage response 1 deficiency impairs autophagy and mitochondrial biogenesis in articular cartilage and increases the severity of experimental osteoarthritis.Arthritis Rheumatol.20176971418142810.1002/art.40104 28334504
    [Google Scholar]
  75. TamangS. AcharyaV. RoyD. SharmaR. AryaaA. SharmaU. KhandelwalA. PrakashH. VasquezK.M. JainA. SNHG12: An LncRNA as a potential therapeutic target and biomarker for human cancer.Front. Oncol.2019990110.3389/fonc.2019.00901 31620362
    [Google Scholar]
  76. ChengY. JiangY. SunY. JiangH. The role of long non-coding RNA SNHG12 in neuroprotection following cerebral ischemic injury.Neuroreport2019301494595210.1097/WNR.0000000000001308 31469718
    [Google Scholar]
  77. CaiY. LongF-Q. SuQ-J. ZhouJ-X. WangD-S. LiP-X. ZengC-S. LncRNA SNHG12 ameliorates brain microvascular endothelial cell injury by targeting miR-199a.Neural Regen. Res.201813111919192610.4103/1673‑5374.238717 30233065
    [Google Scholar]
  78. YaoX. YaoR. HuangF. YiJ. LncRNA SNHG12 as a potent autophagy inducer exerts neuroprotective effects against cerebral ischemia/reperfusion injury.Biochem. Biophys. Res. Commun.2019514249049610.1016/j.bbrc.2019.04.158 31056262
    [Google Scholar]
  79. LiY. GuoS. LiuW. JinT. LiX. HeX. ZhangX. SuH. ZhangN. DuanC. Silencing of SNHG12 enhanced the effectiveness of MSCs in alleviating ischemia/reperfusion injuries via the PI3K/AKT/mTOR signaling pathway.Front. Neurosci.20191364510.3389/fnins.2019.00645 31293373
    [Google Scholar]
  80. GaboryA. RipocheM.A. YoshimizuT. DandoloL. The H19 gene: Regulation and function of a non-coding RNA.Cytogenet. Genome Res.20061131-418819310.1159/000090831 16575179
    [Google Scholar]
  81. WangJ. ZhaoH. FanZ. LiG. MaQ. TaoZ. WangR. FengJ. LuoY. Long noncoding RNA H19 promotes neuroinflammation in ischemic stroke by driving histone deacetylase 1-dependent M1 microglial polarization.Stroke20174882211222110.1161/STROKEAHA.117.017387 28630232
    [Google Scholar]
  82. LiG. MaX. ZhaoH. FanJ. LiuT. LuoY. GuoY. Long non‐coding RNA H19 promotes leukocyte inflammation in ischemic stroke by targeting the miR‐29b/C1QTNF6 axis.CNS Neurosci. Ther.202228695396310.1111/cns.13829 35322553
    [Google Scholar]
  83. RezaeiM. MokhtariM.J. BayatM. SafariA. DianatpuorM. TabriziR. AsadabadiT. Borhani-HaghighiA. Long non-coding RNA H19 expression and functional polymorphism rs217727 are linked to increased ischemic stroke risk.BMC Neurol.20212115410.1186/s12883‑021‑02081‑3 33541284
    [Google Scholar]
  84. WangJ. CaoB. HanD. SunM. FengJ. Long non-coding RNA H19 induces cerebral ischemia reperfusion injury via activation of autophagy.Aging Dis.201781718410.14336/AD.2016.0530 28203482
    [Google Scholar]
  85. HanW. FuX. XieJ. MengZ. GuY. WangX. LiL. PanH. HuangW. miR-26a enhances autophagy to protect against ethanol-induced acute liver injury.J. Mol. Med.20159391045105510.1007/s00109‑015‑1282‑2 25877859
    [Google Scholar]
  86. LiS. ZhengH. ChenL. XuC. QuX. QinZ. GaoJ. LiJ. LiuJ. Expression profile and potential functions of circulating long noncoding RNAs in acute ischemic stroke in the southern Chinese Han population.Front. Mol. Neurosci.20191229010.3389/fnmol.2019.00290 31849604
    [Google Scholar]
  87. LiuN. PengA. SunH. ZhuangY. YuM. WangQ. WangJ. LncRNA AC136007.2 alleviates cerebral ischemic-reperfusion injury by suppressing autophagy.Aging20211315195871959710.18632/aging.203369 34419936
    [Google Scholar]
  88. ZhangX. ConnellyJ. LevitanE.S. SunD. WangJ.Q. Calcium/calmodulin–dependent protein kinase II in cerebrovascular diseases.Transl. Stroke Res.202112451352910.1007/s12975‑021‑00901‑9 33713030
    [Google Scholar]
  89. YeJ. DasS. RoyA. WeiW. HuangH. Lorenz-GuertinJ.M. XuQ. JacobT.C. WangB. SunD. WangQ.J. Ischemic injury-induced CaMKIIδ and CaMKIIγ confer neuroprotection through the NF-κB signaling pathway.Mol. Neurobiol.20195632123213610.1007/s12035‑018‑1198‑2 29992531
    [Google Scholar]
  90. XuQ. GuohuiM. LiD. BaiF. FangJ. ZhangG. XingY. ZhouJ. GuoY. KanY. lncRNA C2dat2 facilitates autophagy and apoptosis via the miR-30d-5p/DDIT4/mTOR axis in cerebral ischemia-reperfusion injury.Aging2021138113151133510.18632/aging.202824 33833132
    [Google Scholar]
  91. ZhangY. LiuL. HouX. ZhangZ. ZhouX. GaoW. Role of autophagy mediated by AMPK/DDiT4/mTOR Axis in HT22 cells under oxygen and glucose deprivation/reoxygenation.ACS Omega20238109221922910.1021/acsomega.2c07280 36936290
    [Google Scholar]
  92. ZhouY. ZhangX. KlibanskiA. MEG3 noncoding RNA: A tumor suppressor.J. Mol. Endocrinol.2012483R45R5310.1530/JME‑12‑0008 22393162
    [Google Scholar]
  93. ZhaoF. XingY. JiangP. HuL. DengS. LncRNA MEG3 inhibits the proliferation of neural stem cells after ischemic stroke via the miR-493-5P/MIF axis.Biochem. Biophys. Res. Commun.202156818619210.1016/j.bbrc.2021.06.033 34273844
    [Google Scholar]
  94. WangM. ChenW. GengY. XuC. TaoX. ZhangY. Long non-coding RNA MEG3 promotes apoptosis of vascular cells and is associated with poor prognosis in ischemic stroke.J. Atheroscler. Thromb.202027771872610.5551/jat.50674 31656272
    [Google Scholar]
  95. XiangY. ZhangY. XiaY. ZhaoH. LiuA. ChenY. LncRNA MEG3 targeting miR-424-5p via MAPK signaling pathway mediates neuronal apoptosis in ischemic stroke.Aging20201243156317410.18632/aging.102790 32065781
    [Google Scholar]
  96. LuoH.C. YiT.Z. HuangF.G. WeiY. LuoX.P. LuoQ.S. Role of long noncoding RNA MEG3/miR-378/GRB2 axis in neuronal autophagy and neurological functional impairment in ischemic stroke.J. Biol. Chem.202029541141251413910.1074/jbc.RA119.010946 32605923
    [Google Scholar]
  97. LiT.H. SunH.W. SongL.J. YangB. ZhangP. YanD.M. LiuX.Z. LuoY.R. Long non-coding RNA MEG3 regulates autophagy after cerebral ischemia/reperfusion injury.Neural Regen. Res.202217482483110.4103/1673‑5374.322466 34472482
    [Google Scholar]
  98. CagleP. QiQ. NitureS. KumarD. KCNQ1OT1: An oncogenic long noncoding RNA.Biomolecules20211111160210.3390/biom11111602 34827600
    [Google Scholar]
  99. SongA. YangY. HeH. SunJ. ChangQ. XueQ. Inhibition of long non-coding RNA KCNQ1OT1 attenuates neuroinflammation and neuronal apoptosis through regulating NLRP3 expression via sponging miR-30e-3p.J. Inflamm. Res.2021141731174210.2147/JIR.S291274 33981152
    [Google Scholar]
  100. RenY. GaoX.P. LiangH. ZhangH. HuC.Y. LncRNA KCNQ1OT1 contributes to oxygen-glucose-deprivation/] reoxygenation-induced injury via sponging miR-9 in cultured neurons to regulate MMP8.Exp. Mol. Pathol.202011210435610.1016/j.yexmp.2019.104356 31837324
    [Google Scholar]
  101. ZhaoY. ZhangQ. ZhangX. ZhangY. LuY. MaX. LiW. NiuX. ZhangG. ChangM. ShiW. TianY. The roles of MMP8/MMP10 polymorphisms in ischemic stroke susceptibility.Brain Behav.20221212e279710.1002/brb3.2797 36282475
    [Google Scholar]
  102. WangH.J. TangX.L. HuangG. LiY.B. PanR.H. ZhanJ. WuY.K. LiangJ.F. BaiX. CaiJ. Long non-coding KCNQ1OT1 promotes oxygen-glucose-deprivation/reoxygenation-induced neurons injury through regulating MIR-153-3p/FOXO3 axis.J. Stroke Cerebrovasc. Dis.2020291010512610.1016/j.jstrokecerebrovasdis.2020.105126 32912499
    [Google Scholar]
  103. YuS. YuM. HeX. WenL. BuZ. FengJ. KCNQ1OT1 promotes autophagy by regulating miR‐200a/FOXO3/ATG7 pathway in cerebral ischemic stroke.Aging Cell2019183e1294010.1111/acel.12940 30945454
    [Google Scholar]
  104. ChenL. LiuH. SunC. PeiJ. LiJ. LiY. WeiK. WangX. WangP. LiF. GaiS. ZhaoY. ZhengZ. A novel LncRNA SNHG3 promotes osteoblast differentiation through BMP2 upregulation in aortic valve calcification.JACC Basic Transl. Sci.20227989991410.1016/j.jacbts.2022.06.009 36317131
    [Google Scholar]
  105. YangQ. WuM.F. ZhuL.H. QiaoL.X. ZhaoR.B. XiaZ.K. Long non-coding RNA Snhg3 protects against hypoxia/ischemia-induced neonatal brain injury.Exp. Mol. Pathol.202011210434310.1016/j.yexmp.2019.104343 31751562
    [Google Scholar]
  106. HuangD. CaoY. ZuT. JuJ. Interference with long noncoding RNA SNHG3 alleviates cerebral ischemia-reperfusion injury by inhibiting microglial activation.J. Leukoc. Biol.2022111475976910.1002/JLB.1A0421‑190R 34411323
    [Google Scholar]
  107. LiaoY. ChengJ. KongX. LiS. LiX. ZhangM. ZhangH. YangT. DongY. LiJ. XuY. YuanZ. HDAC3 inhibition ameliorates ischemia/reperfusion-induced brain injury by regulating the microglial cGAS-STING pathway.Theranostics202010219644966210.7150/thno.47651 32863951
    [Google Scholar]
  108. SunX. WangL. HuangX. ZhouS. JiangT. Regulatory mechanism miR-302a-3p/E2F1/SNHG3 axis in nerve repair post cerebral ischemic stroke.Curr. Neurovasc. Res.2021185515524 34895123
    [Google Scholar]
  109. CaoY. PanL. ZhangX. GuoW. HuangD. LncRNA SNHG3 promotes autophagy-induced neuronal cell apoptosis by acting as a ceRNA for miR-485 to up-regulate ATG7 expression.Metab. Brain Dis.20203581361136910.1007/s11011‑020‑00607‑1 32860611
    [Google Scholar]
  110. HongfengZ. AndongJ. LiwenS. MingpingB. XiaoweiY. MingyongL. AiminY. lncRNA RMRP knockdown suppress hepatocellular carcinoma biological activities via regulation miRNA‐206/TACR1.J. Cell. Biochem.202012121690170210.1002/jcb.29404 31579977
    [Google Scholar]
  111. LiX. SuiY. Valproate improves middle cerebral artery occlusion-induced ischemic cerebral disorders in mice and oxygen-glucose deprivation-induced injuries in microglia by modulating RMRP/PI3K/Akt axis.Brain Res.2020174714703910.1016/j.brainres.2020.147039 32745656
    [Google Scholar]
  112. ZhouL. YuX. GuoY. LiuX. LncRNA RMRP knockdown promotes proliferation and migration of Schwann cells by mediating the miR-766-5p/CAND1 axis.Neurosci. Lett.202277013644010.1016/j.neulet.2021.136440 34974108
    [Google Scholar]
  113. ZhouZ. XuH. LiuB. DunL. LuC. CaiY. WangH. Suppression of lncRNA RMRP ameliorates oxygen-glucose deprivation/re-oxygenation-induced neural cells injury by inhibiting autophagy and PI3K/Akt/mTOR-mediated apoptosis.Biosci. Rep.2019396BSR2018136710.1042/BSR20181367 30926681
    [Google Scholar]
/content/journals/cn/10.2174/1570159X22666240704123701
Loading
/content/journals/cn/10.2174/1570159X22666240704123701
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test