Skip to content
2000
Volume 23, Issue 1
  • ISSN: 1570-159X
  • E-ISSN: 1875-6190

Abstract

Many features of major depressive disorder are mirrored in rodent models of psychological stress. These models have been used to examine the relationship between the activation of the hypothalamic-pituitary axis in response to stress, the development of oxidative stress and neuroinflammation, the dominance of cholinergic neurotransmission and the associated increase in REM sleep pressure. Rodent models have also provided valuable insights into the impairment of glycolysis and brain glucose utilization by the brain under stress, the resulting decrease in brain energy production and the reduction in glutamate/GABA-glutamine cycling. The rapidly acting antidepressants, scopolamine, ketamine and ECT, all raise extracellular glutamate and scopolamine and ketamine have specifically been shown to increase glutamate/GABA-glutamine cycling in men and rodents with corresponding short-term relief of depression. The nightly use of gammahydroxybutyrate (GHB) may achieve more permanent results and may even act prophylactically to prevent the development or recurrence of depression. GHB is a GABAB agonist and restores the normal balance between cholinergic and monoaminergic neurotransmission by inhibiting cholinergic neurotransmission. It relieves REM sleep pressure. GHB’s metabolism generates NADPH, a key antioxidant cofactor. Its metabolism also generates succinate, the tricarboxylic acid cycle intermediate, to provide energy to the cell and to synthesize glutamate. In both animals and man, GHB increases the level of brain glutamate.

Loading

Article metrics loading...

/content/journals/cn/10.2174/1570159X22666240815120244
2024-08-15
2024-11-22
Loading full text...

Full text loading...

References

  1. PappM. WillnerP. Models of affective illness: Chronic mild stress in the rat.Curr. Protoc.202333e71210.1002/cpz1.712 36892313
    [Google Scholar]
  2. SanacoraG. YanZ. PopoliM. The stressed synapse 2.0: Pathophysiological mechanisms in stress-related neuropsychiatric disorders.Nat. Rev. Neurosci.20222328610310.1038/s41583‑021‑00540‑x 34893785
    [Google Scholar]
  3. ZafirA. BanuN. Modulation of in vivo oxidative status by exogenous corticosterone and restraint stress in rats.Stress200912216717710.1080/10253890802234168 18850490
    [Google Scholar]
  4. JiangY. PengT. GaurU. SilvaM. LittleP. ChenZ. QiuW. ZhangY. ZhengW. Role of corticotropin releasing factor in the neuroimmune mechanisms of depression: Examination of current pharmaceutical and herbal therapies.Front. Cell. Neurosci.20191329010.3389/fncel.2019.00290 31312123
    [Google Scholar]
  5. HammackS.E. RicheyK.J. SchmidM.J. LoPrestiM.L. WatkinsL.R. MaierS.F. The role of corticotropin-releasing hormone in the dorsal raphe nucleus in mediating the behavioral consequences of uncontrollable stress.J. Neurosci.20022231020102610.1523/JNEUROSCI.22‑03‑01020.2002 11826130
    [Google Scholar]
  6. FernandezS.P. BroussotL. MartiF. ContesseT. MouskaX. ReillyS.M. MarieH. FaureP. BarikJ. Mesopontine cholinergic inputs to midbrain dopamine neurons drive stress-induced depressive-like behaviors.Nat. Commun.201891444910.1038/s41467‑018‑06809‑7 30361503
    [Google Scholar]
  7. KimuraM. CurziM.L. RomanowsiC.P. REM sleep alteration and depression.Arch. Ital. Biol.20141522-3111117 25828683
    [Google Scholar]
  8. NolletM. HicksH. McCarthyA.P. WuH. LevetM.C.S. LaingE.E. MalkiK. LawlessN. WaffordK.A. DijkD.J. SommererW.R. REM sleep’s unique associations with corticosterone regulation, apoptotic pathways, and behavior in chronic stress in mice.Proc. Natl. Acad. Sci.201911672733274210.1073/pnas.1816456116 30683720
    [Google Scholar]
  9. BagleyJ. MoghaddamB. HavenW. Temporal dynamics of glutamate efflux in the prefrontal cortex and in the hippocampus following repeated stress: effects of pretreatment with saline or diazepam.Neuroscience1997771657310.1016/S0306‑4522(96)00435‑6 9044375
    [Google Scholar]
  10. Magarin˜osA.M. McEwenB.S. Stress-induced atrophy of apical dendrites of hippocampal CA3c neurons: Involvement of glucocorticoid secretion and excitatory amino acid receptors.Neuroscience1995691899810.1016/0306‑4522(95)00259‑L 8637636
    [Google Scholar]
  11. PopoliM. YanZ. McEwenB.S. SanacoraG. The stressed synapse: The impact of stress and glucocorticoids on glutamate transmission.Nat. Rev. Neurosci.2012131223710.1038/nrn3138 22127301
    [Google Scholar]
  12. VeneroC. BorrellJ. Rapid glucocorticoid effects on excitatory amino acid levels in the hippocampus: A microdialysis study in freely moving rats.Eur. J. Neurosci.19991172465247310.1046/j.1460‑9568.1999.00668.x 10383636
    [Google Scholar]
  13. YuenE.Y. LiuW. KaratsoreosI.N. RenY. FengJ. McEwenB.S. YanZ. Mechanisms for acute stress-induced enhancement of glutamatergic transmission and working memory.Mol. Psychiatry201116215617010.1038/mp.2010.50 20458323
    [Google Scholar]
  14. YuenE.Y. WeiJ. LiuW. ZhongP. LiX. YanZ. Repeated stress causes cognitive impairment by suppressing glutamate receptor expression and function in prefrontal cortex.Neuron201273596297710.1016/j.neuron.2011.12.033 22405206
    [Google Scholar]
  15. NavaN. TreccaniG. AlabsiA. Kaastrup MuellerH. ElfvingB. PopoliM. WegenerG. NyengaardJ.R. Temporal dynamics of acute stress-induced dendritic remodeling in medial prefrontal cortex and the protective effect of desipramine.Cereb. Cortex2017271694705 26523035
    [Google Scholar]
  16. McEwenB.S. NascaC. GrayJ.D. Stress effects on neuronal structure: Hippocampus, amygdala, and prefrontal cortex.Neuropsychopharmacology201641132310.1038/npp.2015.171 26076834
    [Google Scholar]
  17. RadleyJ.J. RocherA.B. RodriguezA. EhlenbergerD.B. DammannM. McEwenB.S. MorrisonJ.H. WearneS.L. HofP.R. Repeated stress alters dendritic spine morphology in the rat medial prefrontal cortex.J. Comp. Neurol.200850711141115010.1002/cne.21588 18157834
    [Google Scholar]
  18. HarrisJ.J. JolivetR. AttwellD. Synaptic energy use and supply.Neuron201275576277710.1016/j.neuron.2012.08.019 22958818
    [Google Scholar]
  19. TorneseP. SalaN. BoniniD. BonifacinoT. La ViaL. MilaneseM. TreccaniG. SeguiniM. IeraciA. MingardiJ. NyengaardJ.R. CalzaS. BonannoG. WegenerG. BarbonA. PopoliM. MusazziL. Chronic mild stress induces anhedonic behavior and changes in glutamate release, BDNF trafficking and dendrite morphology only in stress vulnerable rats. The rapid restorative action of ketamine.Neurobiol. Stress20191010016010.1016/j.ynstr.2019.100160 31193464
    [Google Scholar]
  20. MishraP.K. AdusumilliM. DeolalP. MasonG.F. KumarA. PatelA.B. Impaired neuronal and astroglial metabolic activity in chronic unpredictable mild stress model of depression: Reversal of behavioral and metabolic deficit with lanicemine.Neurochem. Int.202013710475010.1016/j.neuint.2020.104750 32360130
    [Google Scholar]
  21. AndersenJ.V. SchousboeA. Glial glutamine homeostasis in health and disease.Neurochem. Res.20234841100112810.1007/s11064‑022‑03771‑1 36322369
    [Google Scholar]
  22. AndersenJ.V. SchousboeA. Milestone review: Metabolic dynamics of glutamate and GABA mediated neurotransmission — The essential roles of astrocytes.J. Neurochem.2023166210913710.1111/jnc.15811 36919769
    [Google Scholar]
  23. HyderF. PatelA.B. GjeddeA. RothmanD.L. BeharK.L. ShulmanR.G. Neuronal-glial glucose oxidation and glutamatergic-GABAergic function.J. Cereb. Blood Flow Metab.200626786587710.1038/sj.jcbfm.9600263 16407855
    [Google Scholar]
  24. RothmanD.L. BeharK.L. DienelG.A. Mechanistic stoichiometric relationship between the rates of neurotransmission and neuronal glucose oxidation: Reevaluation of and alternatives to the pseudo‐malate‐aspartate shuttle model.J. Neurochem.2024168555559110.1111/jnc.15619 36089566
    [Google Scholar]
  25. HertzL. ChenY. Integration between glycolysis and glutamate-glutamine cycle flux may explain preferential glycolytic increase during brain activation, requiring glutamate.Front. Integr. Nuerosci.2017111810.3389/fnint.2017.00018 28890689
    [Google Scholar]
  26. SarawagiA. SoniN.D. PatelA.B. Glutamate and GABA homeostasis and neurometabolism in major depressive disorder.Front. Psychiatry20211263786310.3389/fpsyt.2021.637863 33986699
    [Google Scholar]
  27. VeeraiahP. NoronhaJ.M. MaitraS. BaggaP. KhandelwalN. ChakravartyS. KumarA. PatelA.B. Dysfunctional glutamatergic and γ-aminobutyric acidergic activities in prefrontal cortex of mice in social defeat model of depression.Biol. Psychiatry201476323123810.1016/j.biopsych.2013.09.024 24239130
    [Google Scholar]
  28. SeoJ.S. ParkJ.Y. ChoiJ. KimT.K. ShinJ.H. LeeJ.K. HanP.L. NADPH oxidase mediates depressive behavior induced by chronic stress in mice.J. Neurosci.201232289690969910.1523/JNEUROSCI.0794‑12.2012 22787054
    [Google Scholar]
  29. AnwarM.M. Oxidative STRESS‐A direct bridge to central nervous system homeostatic dysfunction and Alzheimer’s disease.Cell Biochem. Funct.2022401172710.1002/cbf.3673 34716723
    [Google Scholar]
  30. FleshnerM. CraneC.R. Exosomes, DAMPs and miRNA: Features of stress physiology and immune homeostasis.Trends Immunol.2017381076877610.1016/j.it.2017.08.002 28838855
    [Google Scholar]
  31. JembrekJ.M. OršolićN. KarlovićD. PeitlV. Flavonols in action: Targeting oxidative stress and neuroinflammation in major depressive disorder.Int. J. Mol. Sci.2023248688810.3390/ijms24086888 37108052
    [Google Scholar]
  32. AfridiR. SukK. Neuroinflammatory basis of depression: Learning from experimental models.Front. Cell. Neurosci.20211569106710.3389/fncel.2021.691067 34276311
    [Google Scholar]
  33. LingappanK.N.f. NF-kB in oxidative stress.Clin. Opin. Toxicol201878186
    [Google Scholar]
  34. ButterfieldD.A. HalliwellB. Oxidative stress, dysfunctional glucose metabolism and Alzheimer disease.Nat. Rev. Neurosci.201920314816010.1038/s41583‑019‑0132‑6 30737462
    [Google Scholar]
  35. HildebrandtT. KnuestingJ. BerndtC. MorganB. ScheibeR. Cytosolic thiol switches regulating basic cellular functions: GAPDH as an information hub?Biol. Chem.2015396552353710.1515/hsz‑2014‑0295 25581756
    [Google Scholar]
  36. ZilberterY. ZilberterM. The vicious circle of hypometabolism in neurodegenerative diseases: Ways and mechanisms of metabolic correction.J. Neurosci. Res.201795112217223510.1002/jnr.24064 28463438
    [Google Scholar]
  37. ArzolaE. XiongW.C. MeiL. Stress reduces extracellular ATP in the prefrontal cortex and activates the prefrontal cortex–lateral habenula pathway for depressive-like behavior.Biol. Psychiatry202292317217410.1016/j.biopsych.2022.05.016 35835503
    [Google Scholar]
  38. HertzL. RothmanD.L. Glucose, lactate, β -hydroxybutyrate, acetate, GABA, and succinate as substrates for synthesis of glutamate and GABA in the glutamine – glutamate/GABA cycle.Adv. Neurobiol.20161394210.1007/978‑3‑319‑45096‑4_2
    [Google Scholar]
  39. Caldecott-HazardS. MazziottaJ. PhelpsM. Cerebral correlates of depressed behavior in rats, visualized using 14C- 2-deoxyglucose autoradiography.J. Neurosci.1988861951196110.1523/JNEUROSCI.08‑06‑01951.1988 3385484
    [Google Scholar]
  40. CarlsonP.J. DiazgranadosN. NugentA.C. IbrahimL. LuckenbaughD.A. BrutscheN. HerscovitchP. ManjiH.K. JrC.A.Z. DrevetsW.C. Neural correlates of rapid antidepressant response tomography study.Biol. Psychiatry2013731213122110.1016/j.biopsych.2013.02.008 23540908
    [Google Scholar]
  41. GoldP.W. KadriuB. A major role for the lateral habenula in depressive illness: Physiologic and molecular mechanisms.Front. Psychiatry20191032010.3389/fpsyt.2019.00320 31231247
    [Google Scholar]
  42. SartoriusA. KieningK.L. KirschP. von GallC.C. HaberkornU. UnterbergA.W. HennF.A. LindenbergM.A. Remission of major depression under deep brain stimulation of the lateral habenula in a therapy-refractory patient.Biol. Psychiatry2010672e9e1110.1016/j.biopsych.2009.08.027 19846068
    [Google Scholar]
  43. WebsterJ.F. VromanR. BaluevaK. WulffP. SakataS. WoznyC. Disentangling neuronal inhibition and inhibitory pathways in the lateral habenula.Sci. Rep.2020101849010.1038/s41598‑020‑65349‑7 32444785
    [Google Scholar]
  44. WebsterJ.F. LeccaS. WoznyC. Inhibition within the lateral habenula—implications for affective disorders.Front. Behav. Neurosci.20211578601110.3389/fnbeh.2021.786011 34899206
    [Google Scholar]
  45. DulawaS.C. JanowskyD.S. Cholinergic regulation of mood: From basic and clinical studies to emerging therapeutics.Mol. Psychiatry201924569470910.1038/s41380‑018‑0219‑x 30120418
    [Google Scholar]
  46. LiZ.L. WangY. ZouH.W. JingX.Y. LiuY.J. LiL.F. GABA(B) receptors within the lateral habenula modulate stress resilience and vulnerability in mice.Physiol. Behav.202123011331110.1016/j.physbeh.2021.113311 33412189
    [Google Scholar]
  47. KawabataK. KawaiY. TeraoJ. Suppressive effect of quercetin on acute stress-induced hypothalamic-pituitary-adrenal axis response in Wistar rats.J. Nutr. Biochem.201021537438010.1016/j.jnutbio.2009.01.008 19423323
    [Google Scholar]
  48. BhutadaP. MundhadaY. BansodK. UbgadeA. QuaziM. UmatheS. MundhadaD. Reversal by quercetin of corticotrophin releasing factor induced anxiety- and depression-like effect in mice.Prog. Neuropsychopharmacol. Biol. Psychiatry201034695596010.1016/j.pnpbp.2010.04.025 20447436
    [Google Scholar]
  49. KhanK. NajmiA.K. AkhtarM. A natural phenolic compound quercetin showed the usefulness by targeting inflammation, oxidative stress markers in one of the animal models of depression.Drug Res.20196939240010.1055/a‑0748‑5518 30296804
    [Google Scholar]
  50. MehtaV. ParasharA. UdayabanuM. Quercetin prevents chronic unpredictable stress induced behavioral dysfunction in mice by alleviating hippocampal oxidative and inflammatory stress.Physiol. Behav.20171716978
    [Google Scholar]
  51. FanC. SongQ. WangP. LiY. YangM. LiuB. YuS.Y. Curcumin protects against chronic stress-induced dysregulation of neuroplasticity and depression-like behaviors via suppressing IL-1β pathway in rats.Neuroscience20183929210610.1016/j.neuroscience.2018.09.028 30268781
    [Google Scholar]
  52. BarbieriS.S. SandriniL. MusazziL. PopoliM. IeraciA. Apocynin prevents anxiety-like behavior and histone deacetylases overexpression induced by sub-chronic stress in mice.Biomolecules202111688510.3390/biom11060885 34203655
    [Google Scholar]
  53. LvH. ZhuC. WuR. NiH. LianJ. XuY. XiaY. ShiG. LiZ. CaldwellR.B. CaldwellR.W. YaoL. ChenY. Chronic mild stress induced anxiety-like behaviors can Be attenuated by inhibition of NOX2-derived oxidative stress.J. Psychiatr. Res.2019114556610.1016/j.jpsychires.2019.04.008 31039481
    [Google Scholar]
  54. PereiraG.C. PitonE. dos SantosB.M. da SilvaR.M. de AlmeidaA.S. DalenogareD.P. SchiefelbeinN.S. FialhoM.F.P. MorescoR.N. dos SantosG.T. MarchesanS. BochiG.V. Apocynin as an antidepressant agent: In vivo behavior and oxidative parameters modulation.Behav. Brain Res.202038811264310.1016/j.bbr.2020.112643 32339552
    [Google Scholar]
  55. KennedyS.H. EvansK.R. KrügerS. MaybergH.S. MeyerJ.H. McCannS. ArifuzzmanA.I. HouleS. VaccarinoF.J. Changes in regional brain glucose metabolism measured with positron emission tomography after paroxetine treatment of major depression.Am. J. Psychiatry2001158689990510.1176/appi.ajp.158.6.899 11384897
    [Google Scholar]
  56. MaybergH.S. Limbic-cortical dysregulation: A proposed model of depression.J. Neuropsychiatry Clin. Neurosci.19979347148110.1176/jnp.9.3.471 9276848
    [Google Scholar]
  57. HöflichA. BaldingerP. SavliM. LanzenbergerR. KasperS. Imaging treatment effects in depression.Rev. Neurosci.201223322725210.1515/revneuro‑2012‑0038 22752781
    [Google Scholar]
  58. LiC.T. SuT.P. WangS.J. TuP.C. HsiehJ.C. Prefrontal glucose metabolism in medication-resistant major depression.Br. J. Psychiatry2015206431632310.1192/bjp.bp.113.140434 25657357
    [Google Scholar]
  59. SoueryD. AmsterdamJ. de MontignyC. LecrubierY. MontgomeryS. LippO. RacagniG. ZoharJ. MendlewiczJ. Treatment resistant depression: Methodological overview and operational criteria.Eur. Neuropsychopharmacol.199991-2839110.1016/S0924‑977X(98)00004‑2 10082232
    [Google Scholar]
  60. CarrollB.J. CurtisG.C. MendelsJ. Cerebrospinal fluid and plasma free cortisol concentrations in depression.Psychol. Med.19766223524410.1017/S0033291700013775 1005564
    [Google Scholar]
  61. ZunszainP.A. AnackerC. CattaneoA. CarvalhoL.A. ParianteC.M. Glucocorticoids, cytokines and brain abnormalities in depression.Prog. Neuropsychopharmacol. Biol. Psychiatry201135372272910.1016/j.pnpbp.2010.04.011 20406665
    [Google Scholar]
  62. JeonS.W. KimY.K. Neuroinflammation and cytokine abnormality in major depression: Cause or consequence in that illness?World J. Psychiatry20166328329310.5498/wjp.v6.i3.283 27679767
    [Google Scholar]
  63. PerrinA.J. HorowitzM.A. RoelofsJ. ZunszainP.A. ParianteC.M. Glucocorticoid resistance: Is it a requisite for increased cytokine production in depression? a systematic review and meta-analysis.Front. Psychiatry20191042310.3389/fpsyt.2019.00423 31316402
    [Google Scholar]
  64. ArboreliusL. OwensM.J. PlotskyP.M. NemeroffC.B. The role of corticotropin-releasing factor in depression and anxiety disorders.J. Endocrinol.1999160111210.1677/joe.0.1600001 9854171
    [Google Scholar]
  65. DesvignesC. RouquierL. SouilhacJ. MonsG. RodierD. SoubriéP. SteinbergR. Control by tachykinin NK2 receptors of CRF1 receptor-mediated activation of hippocampal acetylcholine release in the rat and guinea-pig.Neuropeptides2003372899710.1016/S0143‑4179(03)00019‑2 12747940
    [Google Scholar]
  66. ReulJ.M.H.M. HolsboerF. On the role of corticotropin-releasing hormone receptors in anxiety and depression.Dialogues Clin. Neurosci.200241314610.31887/DCNS.2002.4.1/jreul 22033745
    [Google Scholar]
  67. WatersR.P. RivalanM. BangasserD.A. DeussingJ.M. IsingM. WoodS.K. HolsboerF. SummersC.H. Evidence for the role of corticotropin-releasing factor in major depressive disorder.Neurosci. Biobehav. Rev.201558637810.1016/j.neubiorev.2015.07.011 26271720
    [Google Scholar]
  68. FriesE. HesseJ. HellhammerJ. HellhammerD.H. A new view on hypocortisolism.Psychoneuroendocrinology200530101010101610.1016/j.psyneuen.2005.04.006 15950390
    [Google Scholar]
  69. BlackC.N. BotM. SchefferP.G. CuijpersP. PenninxB.W.J.H. Is depression associated with increased oxidative stress? A systematic review and meta-analysis.Psychoneuroendocrinology20155116417510.1016/j.psyneuen.2014.09.025 25462890
    [Google Scholar]
  70. MichelT.M. FrangouS. ThiemeyerD. CamaraS. JecelJ. NaraK. BrunklausA. ZoechlingR. RiedererP. Evidence for oxidative stress in the frontal cortex in patients with recurrent depressive disorder—a postmortem study.Psychiatry Res.20071511-214515010.1016/j.psychres.2006.04.013 17296234
    [Google Scholar]
  71. TeyssierJ.R. RagotS. Chauvet-GélinierJ.C. TrojakB. BoninB. Expression of oxidative stress-response genes is not activated in the prefrontal cortex of patients with depressive disorder.Psychiatry Res.20111862-324424710.1016/j.psychres.2010.07.030 20800905
    [Google Scholar]
  72. SchiavoneS. NeriM. MhillajE. MorgeseM.G. CantatoreS. BoveM. RiezzoI. TucciP. PomaraC. TurillazziE. CuomoV. TrabaceL. The NADPH oxidase NOX2 as a novel biomarker for suicidality: Evidence from human post mortem brain samples.Transl. Psychiatry201665e81310.1038/tp.2016.76 27187235
    [Google Scholar]
  73. EnacheD. ParianteC.M. MondelliV. Markers of central inflammation in major depressive disorder: A systematic review and meta-analysis of studies examining cerebrospinal fluid, positron emission tomography and post-mortem brain tissue.Brain Behav. Immun.201981244010.1016/j.bbi.2019.06.015 31195092
    [Google Scholar]
  74. EllisJ.S. ZarateC.A.Jr LuckenbaughD.A. FureyM.L. Antidepressant treatment history as a predictor of response to scopolamine: Clinical implications.J. Affect. Disord.2014162394210.1016/j.jad.2014.03.010 24767003
    [Google Scholar]
  75. FureyM.L. DrevetsW.C. Antidepressant efficacy of the antimuscarinic drug scopolamine: A randomized, placebo-controlled clinical trial.Arch. Gen. Psychiatry200663101121112910.1001/archpsyc.63.10.1121 17015814
    [Google Scholar]
  76. PilcA. MachaczkaA. KawalecP. SmithJ.L. WitkinJ.M. Where do we go next in antidepressant drug discovery? A new generation of antidepressants: A pivotal role of AMPA receptor potentiation and mGlu2/3 receptor antagonism.Expert Opin. Drug Discov.202217101131114610.1080/17460441.2022.2111415 35934973
    [Google Scholar]
  77. WohlebE.S. WuM. GerhardD.M. TaylorS.R. PicciottoM.R. AlrejaM. DumanR.S. GABA interneurons mediate the rapid antidepressant-like effects of scopolamine.J. Clin. Invest.201612672482249410.1172/JCI85033 27270172
    [Google Scholar]
  78. VoletiB. NavarriaA. LiuR.J. BanasrM. LiN. TerwilligerR. SanacoraG. EidT. AghajanianG. DumanR.S. Scopolamine rapidly increases mammalian target of rapamycin complex 1 signaling, synaptogenesis, and antidepressant behavioral responses.Biol. Psychiatry2013741074274910.1016/j.biopsych.2013.04.025 23751205
    [Google Scholar]
  79. KrystalJ.H. KavalaliE.T. MonteggiaL.M. Ketamine and rapid antidepressant action: New treatments and novel synaptic signaling mechanisms.Neuropsychopharmacology2024491415010.1038/s41386‑023‑01629‑w 37488280
    [Google Scholar]
  80. ZarateC.A.Jr SinghJ.B. CarlsonP.J. BrutscheN.E. AmeliR. LuckenbaughD.A. CharneyD.S. ManjiH.K. A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major depression.Arch. Gen. Psychiatry200663885686410.1001/archpsyc.63.8.856 16894061
    [Google Scholar]
  81. GerhardD.M. PothulaS. LiuR.J. WuM. LiX.Y. GirgentiM.J. TaylorS.R. DumanC.H. DelpireE. PicciottoM. WohlebE.S. DumanR.S. GABA interneurons are the cellular trigger for ketamine’s rapid antidepressant actions.J. Clin. Invest.202013031336134910.1172/JCI130808 31743111
    [Google Scholar]
  82. KrystalJ.H. KayeA.P. JeffersonS. GirgentiM.J. WilkinsonS.T. SanacoraG. EsterlisI. Ketamine and the neurobiology of depression: Toward next-generation rapid-acting antidepressant treatments.Proc. Natl. Acad. Sci.202312049e230577212010.1073/pnas.2305772120 38011560
    [Google Scholar]
  83. LiN. LeeB. Liu, R mTOR-Dependent synapse formation.Science2010329959965
    [Google Scholar]
  84. MartinJ. Finsterwald, C Cooperation between BDNF and glutamate in the regulation of synaptic transmission and neuronal development.Commun. Integr. Biol.2011411416
    [Google Scholar]
  85. CastrénE. MonteggiaL.M. Brain-derived neurotrophic factor signaling in depression and antidepressant action.Biol. Psychiatry202190212813610.1016/j.biopsych.2021.05.008 34053675
    [Google Scholar]
  86. AbdallahC.G. De FeyterH.M. AverillL.A. JiangL. AverillC.L. ChowdhuryG.M.I. PurohitP. de GraafR.A. EsterlisI. JuchemC. PittmanB.P. KrystalJ.H. RothmanD.L. SanacoraG. MasonG.F. The effects of ketamine on prefrontal glutamate neurotransmission in healthy and depressed subjects.Neuropsychopharmacology201843102154216010.1038/s41386‑018‑0136‑3 29977074
    [Google Scholar]
  87. ChowdhuryG.M.I. ZhangJ. ThomasM. BanasrM. MaX. PittmanB. BristowL. SchaefferE. DumanR.S. RothmanD.L. BeharK.L. SanacoraG. Transiently increased glutamate cycling in rat PFC is associated with rapid onset of antidepressant-like effects.Mol. Psychiatry201722112012610.1038/mp.2016.34 27067013
    [Google Scholar]
  88. HolmesS.E. FinnemaS.J. NaganawaM. DellaGioiaN. HoldenD. FowlesK. DavisM. RopchanJ. EmoryP. YeY. NabulsiN. MatuskeyD. AngaritaG.A. PietrzakR.H. DumanR.S. SanacoraG. KrystalJ.H. CarsonR.E. EsterlisI. Imaging the effect of ketamine on synaptic density (SV2A) in the living brain.Mol. Psychiatry20222742273228110.1038/s41380‑022‑01465‑2 35165397
    [Google Scholar]
  89. ErchingerV.J. ErslandL. AuklandS.M. AbbottC.C. OltedalL. Magnetic resonance spectroscopy in depressed subjects treated with electroconvulsive therapy—A systematic review of literature.Front. Psychiatry20211260885710.3389/fpsyt.2021.608857 33841198
    [Google Scholar]
  90. SackeimH.A. DecinaP. ProhovnikI. MalitzS. ResorS.R. Anticonvulsant and antidepressant properties of electroconvulsive therapy: A proposed mechanism of action.Biol. Psychiatry1983181113011310 6317065
    [Google Scholar]
  91. LloydG.K. Upregulation of gamma-aminobutyric acid (GABA) B binding sites in rat frontal cortex: A common action of repeated administration of different classes of antidepressants and electroshock.J. Pharmacol. Exp. Ther.19852351191199
    [Google Scholar]
  92. ErchingerV.J. MillerJ. JonesT. KesslerU. BustilloJ. HaavikJ. PetrilloJ. ZiomekG. HammarÅ. OedegaardK.J. CalhounV.D. McClintockS.M. ErslandL. OltedalL. AbbottC.C. Anterior cingulate gamma‐aminobutyric acid concentrations and electroconvulsive therapy.Brain Behav.20201011e0183310.1002/brb3.1833 32940003
    [Google Scholar]
  93. KnudsenM.K. NearJ. BlicherA.B. VidebechP. BlicherJ.U. Magnetic resonance (MR) spectroscopic measurement of γ-aminobutyric acid (GABA) in major depression before and after electroconvulsive therapy.Acta Neuropsychiatr.2019311172610.1017/neu.2018.22 30079857
    [Google Scholar]
  94. StanleyJ.A. In vivo magnetic resonance spectroscopy and its application to neuropsychiatric disorders.Can. J. Psychiatry200247431532610.1177/070674370204700402 12025430
    [Google Scholar]
  95. KaufmanE.E. Metabolism and distribution of γ -hydroxybutyrate in the brain.Gamma-Hydroxybutyrate1st ed.; CRC Press2002
    [Google Scholar]
  96. FerraroL. TanganelliS. O’ConnorW.T. FrancesconiW. LocheA. GessaG.L. AntonelliT. γ‐hydroxybutyrate modulation of glutamate levels in the hippocampus: An in vivo and in vitro study.J. Neurochem.200178592993910.1046/j.1471‑4159.2001.00530.x 11553667
    [Google Scholar]
  97. DornbiererD.A. ZölchN. BaurD.M. HockA. StuckyB. QuednowB.B. KraemerT. SeifritzE. BoschO.G. LandoltH.P. Nocturnal sodium oxybate increases the anterior cingulate cortex magnetic resonance glutamate signal upon awakening.J. Sleep Res.2023324e1386610.1111/jsr.13866 36869598
    [Google Scholar]
  98. BakerP.M. RaynorS.A. FrancisN.T. MizumoriS.J.Y. Lateral habenula integration of proactive and retroactive information mediates behavioral flexibility.Neuroscience2017345899810.1016/j.neuroscience.2016.02.010 26876779
    [Google Scholar]
  99. CrunelliV. LerescheN. Action of gamma-hydroxybutyrate on neuronal excitability and underlying membrane conductances.Gamma-hydroxybutyrate Mol Funct Clin AspTunnicliff, G.; Cash, C.D., Eds.; Taylor & Francis: Lonon New York200275110
    [Google Scholar]
  100. GaoY. ZhouJ.J. ZhuY. WangL. KostenT.A. ZhangX. LiD. Neuroadaptations of presynaptic and postsynaptic GABA B receptor function in the paraventricular nucleus in response to chronic unpredictable stress.Br. J. Pharmacol.201717429292940
    [Google Scholar]
  101. DornbiererD.A. BoxlerM. VoegelC.D. StuckyB. SteuerA.E. BinzT.M. BaumgartnerM.R. BaurD.M. QuednowB.B. KraemerT. SeifritzE. LandoltH.P. BoschO.G. Nocturnal gamma-hydroxybutyrate reduces cortisol-awakening response and morning kynurenine pathway metabolites in healthy volunteers.Int. J. Neuropsychopharmacol.2019221063163910.1093/ijnp/pyz047 31504554
    [Google Scholar]
  102. NavaF. PremiS. ManzatoE. CampagnolaW. LucchiniA. GessaG.L. Gamma-hydroxybutyrate reduces both withdrawal syndrome and hypercortisolism in severe abstinent alcoholics: An open study vs. diazepam.Am. J. Drug Alcohol Abuse200733337939210.1080/00952990701315046 17613965
    [Google Scholar]
  103. WendtG. KemmelV. MensahP.C. LambertU.B. EckertA. SchmittM.J. NyaganM.A.G. Gamma-hydroxybutyrate, acting through an anti-apoptotic mechanism, protects native and amyloid-precursor-protein-transfected neuroblastoma cells against oxidative stress-induced death.Neuroscience201426320321510.1016/j.neuroscience.2013.12.067 24456637
    [Google Scholar]
  104. YungJ.H.M. YeungL.S.N. IvovicA. TanY.F. JentzE.M. BatchuluunB. GohilH. WheelerM.B. JosephJ.W. GiaccaA. MamelakM. Prevention of lipotoxicity in pancreatic islets with gammahydroxybutyrate.Cells202211354510.3390/cells11030545 35159354
    [Google Scholar]
  105. ChenF. LiX. AquadroE. HaighS. ZhouJ. SteppD.W. WeintraubN.L. BarmanS.A. FultonD.J.R. Inhibition of histone deacetylase reduces transcription of NADPH oxidases and ROS production and ameliorates pulmonary arterial hypertension.Free Radic. Biol. Med.20169916717810.1016/j.freeradbiomed.2016.08.003 27498117
    [Google Scholar]
  106. KleinC. KemmelV. TalebO. AunisD. MaitreM. Pharmacological doses of gamma-hydroxybutyrate (GHB) potentiate histone acetylation in the rat brain by histone deacetylase inhibition.Neuropharmacology200957213714710.1016/j.neuropharm.2009.04.013 19427877
    [Google Scholar]
  107. DrevetsW.C. ZarateC.A.Jr FureyM.L. Antidepressant effects of the muscarinic cholinergic receptor antagonist scopolamine: A review.Biol. Psychiatry201373121156116310.1016/j.biopsych.2012.09.031 23200525
    [Google Scholar]
  108. MamelakM. EscriuJ.M. StokanO. Sleep-inducing effects of gammahydroxybutyrate.Lancet1973302782432832910.1016/S0140‑6736(73)90839‑8 4124818
    [Google Scholar]
  109. MamelakM. Sleep, narcolepsy, and sodium oxybate.Curr. Neuropharmacol.202220227229110.2174/1570159X19666210407151227 33827411
    [Google Scholar]
  110. MamelakM. BlackJ. MontplaisirJ. RistanovicR. A pilot study on the effects of sodium oxybate on sleep architecture and daytime alertness in narcolepsy.Sleep20042771327133410.1093/sleep/27.7.1327 15586785
    [Google Scholar]
  111. LeeM.G. HassaniO.K. AlonsoA. JonesB.E. Cholinergic basal forebrain neurons burst with theta during waking and paradoxical sleep.J. Neurosci.200525174365436910.1523/JNEUROSCI.0178‑05.2005 15858062
    [Google Scholar]
  112. SteigerA. PawlowskiM. Depression and sleep.Int. J. Mol. Sci.201920360710.3390/ijms20030607 30708948
    [Google Scholar]
  113. HeldK. KünzelH. IsingM. SchmidD.A. ZobelA. MurckH. HolsboerF. SteigerA. Treatment with the CRH1-receptor-antagonist R121919 improves sleep-EEG in patients with depression.J. Psychiatr. Res.200438212913610.1016/S0022‑3956(03)00076‑1 14757326
    [Google Scholar]
  114. AngstJ. GammaA. SellaroR. LavoriP.W. ZhangH. Recurrence of bipolar disorders and major depression.Eur. Arch. Psychiatry Clin. Neurosci.2003253523624010.1007/s00406‑003‑0437‑2 14504992
    [Google Scholar]
/content/journals/cn/10.2174/1570159X22666240815120244
Loading
/content/journals/cn/10.2174/1570159X22666240815120244
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test